
Scheduling in Practice

Colin Perkins
http://csperkins.org/teaching/2003-2004/rtes4/lecture12.pdf

Reminder: Problem set 2 due at 5pm today!
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Lecture Outline

• Implementing priority scheduling:
– Tasks, threads and queues
– Building a priority scheduler
– Fixed priority scheduling (RM and DM)
– Dynamic priority scheduling (EDF and LST)
– Sporadic and aperiodic tasks

• Outline of priority scheduling standards:
– POSIX 1003.1b (a.k.a. POSIX.4)
– POSIX 1003.1c (a.k.a. pthreads)
– Implementation details

• Use of priority scheduling standards:
– Rate monotonic and deadline monotonic scheduling
– User level servers to support aperiodic and sporadic tasks
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Tasks and Threads

Periodic
Task Parameters

Sporadic or aperiodicTask Type

• A system comprises a set of tasks (or jobs)
• Tasks are typed, and timed with parameters (ϕ, p, e, D)
• A thread is the basic unit of work handled by the scheduler

– Threads are the instantiation of tasks that have been admitted 
to the system

– Acceptance test performed before admitting new tasks

[All equally applicable to processes, rather than threads]

Phase, ϕ
Server

Period, p

Relative Deadline, D

Number of Instances

Event List
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Tasks and Threads

Periodic

• Real time tasks commonly defined to execute periodically
• Two implementation strategies:

– A thread is instantiated by the system each period, and runs a 
single instance of the task

• A periodic thread, not widely supported
• Clean abstraction: a function that runs periodically
• high overhead due to repeated thread instantiation
• Operating system handles timing

– A thread is instantiated once, and repeatedly performs the task 
then sleeps until the beginning of the next period

• Lower overhead, but relies on the programmer to handle timing

Task ParametersNumber of cycles a 
periodic thread can
execute before it
terminates

Sporadic or aperiodicTask Type

Phase, ϕ
Server

Period, p

Relative Deadline, D

Number of Instances

Event List
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Tasks and Threads

Periodic
Task Parameters

Sporadic or aperiodicTask Type

• Event list to trigger sporadic and aperiodic tasks
– May be external (hardware) interrupts
– May be signalled by another task

• Each instance of a sporadic or aperiodic task may be 
instantiated by the system as a sporadic or aperiodic 
thread
– Not well supported
– Requires scheduler assistance

• Alternatively, may be implemented using a server task

Phase, ϕ
Server

Period, p

Relative Deadline, D

Number of Instances

Event List
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Tasks and Threads

Periodic
Task Parameters

Sporadic or aperiodicTask Type

• A server thread is a periodic thread that implements either:
– a background server (simple)
– a bandwidth preserving server (useful, but hard to implement)

• Used to implement sporadic and aperiodic threads, if not 
directly supported by the scheduler

Phase, ϕ
Server

Period, p

Relative Deadline, D

Number of Instances

Event List
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Threads

Thread Control Block

Thread ID

Starting Address

Thread Context

Scheduling Information

Synchronization Information

Time Usage Information

Timer Information

Other Information 

Task Parameters

Task Type

Phase, ϕ
Period, p

Number of Instances

Event List

Relative Deadline, D

• When a thread is instantiated, the thread control block is 
created referencing the task, and maintaining the thread ID, 
starting address, register context and other state
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Threads

Thread Control Block

Thread ID

Starting Address

Thread Context

Of interest today is the scheduling and time usage data…

Scheduling Information

Synchronization Information

Time Usage Information

Timer Information

• Current priority
• Normal priority
• Absolute deadline
• Remaining time quantum

• Used to implement server threads
• Budget
• Replenishment/Consumption rules

Other Information 
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Thread States and Transitions

Sleeping ⇒ Periodic thread queued between cycles
Ready      ⇒ Queued at some priority, waiting to run
Executing ⇒ Running on a processor
Blocked    ⇒ Queued waiting for a resource

• Transitions happen according to scheduling policy, resource 
access, external events

Ready Blocked

Resource availabilityStart of cycle

S
ch

ed
ul

e

End of cycle

Thread created Thread destroyed
Sleeping Executing
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Mapping States onto Queues

Ready Blocked

Abstract states…

Sleeping Executing

Sleeping Ready BlockedExecuting

…realised as
a set of queues
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Queuing in a Priority Scheduler

• Scheduling algorithms implemented by varying the number 
of queues, queue selection policy and service discipline
– How to decide which queue holds a newly released thread?
– How are the queues ordered?
– From which queue is the next job to execute taken?

• Different solutions for:
– Fixed priority scheduling
– Dynamic priority/deadline scheduling
– Sporadic and server tasks

Sleeping Ready BlockedExecuting
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Fixed Priority Scheduling

• Provide a number of ready queues
• Each queue represents a priority level

– Tasks inserted into queues according to priority
– Queues serviced in FIFO or round-robin order

• RR tasks have a budget that depletes with each clock interrupt, 
then yield and go to back of queue

• FIFO tasks run until sleep, block or yield

• Always run task at the head of the highest priority queue 
that has ready tasks

Sleeping Ready BlockedExecuting

…
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Fixed Priority Scheduling

• Theoretical scheduling complexity is O(Ω)
– Where Ω is the number of priorities/ready queues

• Commonly 256 queues provided

– Since you have to look at each queue to determine what to run

• Requires n = Ω/k+log2k-1 comparisons
– 256 priority levels (Ω = 256)
– 32 bit processor (k = 32)
– n = 256/32 + 5 – 1

= 12 

– Implement as a bit mask of runnable priorities:

Low High
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Example: Rate Monotonic

• Assign fixed priorities to tasks based on their period, p
– short period ⇒ higher priority

• Implementation:
– Task resides in sleep queue until released at phase, ϕ
– When released, task inserted into a FIFO ready queue
– One ready queue for each distinct priority
– Always run task at the head of the highest priority queue that 

has ready tasks

Ready

…

BlockedExecutingSleeping
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Blocking on Multiple Events

• Typically there are several reasons why tasks may block
– Disk I/O
– Network
– Inter-process communication
– etc.

• Usually want multiple blocked queues, for different reasons
– Reduces overheads searching a long queue to wakeup thread

• This is a typical priority scheduler provided by most RTOS

Ready

…

BlockedExecutingSleeping

…
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Dynamic Priority Scheduling

• Thread priority can change during execution
• Implies that threads move between ready queues

– Search through the ready queues to find the thread changing 
it’s priority

– Remove from the ready queue
– Calculate new priority
– Insert at end of new ready queue

• Expensive operation:
– O(N) where N is the number of tasks
– Suitable for system reconfiguration or priority inheritance when

the rate of change of priorities is slow
– Unsuitable for EDF or LST scheduling, since these require 

frequent priority changes
• Too computationally expensive
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Earliest Deadline First Scheduling

• To directly support EDF scheduling:
– When each thread is created, it’s relative deadline is specified
– When a thread is released, it’s absolute deadline is calculated 

from it’s relative deadline and release time

• Could maintain a single ready queue:
– Conceptually simple, threads ordered by absolute deadline
– Inefficient if many active threads

• Scheduling decision involves walking the queue
• O(N) where N is the number of tasks
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Earliest Deadline First Scheduling

• Maintain a ready queue for each relative deadline
– Tasks enter these queues in order of release
– Ω’ queues

• Maintain a queue, sorted by absolute deadline, pointing to 
tasks at the head of each ready queue
– Updated each time a task completes
– Updated when a task added to an empty ready queue
– Always execute the task at the head of this queue

• Scheduling decision is O(Ω’) where Ω’ < N

Ready

…

BlockedExecutingSleeping

…
E
D

F 
Q

u
eu

e
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Scheduling Sporadic Tasks

• Recall: sporadic tasks have hard deadlines but unpredictable 
arrival times

• Straight-forward to schedule using EDF:
– Add to separate queue of ready sporadic tasks on release
– Perform acceptance test
– If accepted, insert into the EDF queue according to deadline

• Difficult if using fixed priority scheduling:
– Need a bandwidth preserving server

Ready

…

BlockedExecutingSleeping

E
D

F 
Q

u
eu

e

Sporadic Acceptance test
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Scheduling Aperiodic Tasks

• Recall: aperiodic tasks have unpredictable arrival times, but 
no deadline

• Trivial to implement in as a background server, using a 
single lowest priority queue
– All the problems described in lecture 8:

• Excessive delay of aperiodic jobs
• Potential for priority inversion if the aperiodic jobs use resources

– Linux community has exactly this issue with idle-jobs

• As discussed in lecture 8, better to use a bandwidth 
preserving server
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Implementing Bandwidth Preserving Servers

• Recall definition of BP server: 
– a periodic server, defined by budget consumption and 

replenishment rules
• consume when executing
• consume when idle in some cases

– executes when it has budget and work to do
– sleeps when budget expires or idle
– moves onto ready queue when 

• budget replenished, if work to do
• work becomes available

• Several different types of BP server
– Different replenishment and consumption rules
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Implementing Bandwidth Preserving Servers

• BP server is scheduled as a periodic task, with some priority
• When ready and selected for execution, given a scheduling 

quantum equal to the current budget
• Runs until pre-empted or blocked; or
• Runs until the quantum expires, then sleeps until replenished

• At each scheduling event in the system
• Update budget consumption considering:

• time for which the BP server has executed
• time for which other tasks have executed
• algorithm depends on BP server type

• Replenish budget if necessary
• Keep remaining budget in the thread control block

• “Time usage information” seen earlier
• Fairly complex calculations, e.g. for sporadic server
• Possible, since the scheduler knows the run times of all tasks

• Difficult to be accurate, if the BP server runs for partial intervals
• May need to use a high resolution timer, instead of the usual 

scheduling clock

• Not widely supported…

Not like RR scheduling
which yields when 
quantum expires
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Standards for Priority Scheduling

• POSIX 1003.1b (a.k.a. POSIX.4)
• POSIX 1003.1c (a.k.a. pthreads)
• Implementation details
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The POSIX 1003.1b Real-Time Scheduling API

#include <unistd.h>
#ifdef _POSIX_PRIORITY_SCHEDULING
#include <sched.h>

struct sched_param {
int sched_priority;
…

}

int sched_setscheduler(pid_t pid, int policy, struct sched_param *sp);
int sched_getscheduler(pid_t pid);
int sched_getparam(pid_t pid, struct sched_param *sp);
int sched_setparam(pid_t pid, struct sched_param *sp);
int sched_get_priority_max(int policy);
int sched_get_priority_min(int policy);
int sched_yield(void);
#endif

Policy is one of SCHED_FIFO, SCHED_RR and SCHED_OTHER

Works with tasks (i.e. processes on Unix, not threads)

Key features:
• Get/set scheduling policy
• Get/set parameters
• Yield the processor
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POSIX APIs: Scheduling

• POSIX 1003.1b provides three scheduling policies, selected 
using sched_setscheduler():
– SCHED_FIFO

• Fixed priority, pre-emptive, FIFO scheduler
– SCHED_RR

• Fixed priority, pre-emptive, round robin scheduler
• Use sched_rr_get_interval(pid_t pid, struct timespec *t) 

to find the scheduling time quantum

– SCHED_OTHER
• Unspecified (often the default time-sharing scheduler)

• Implementations can support alternative schedulers
• Scheduling parameters are defined in struct sched_param

– Currently just priority; other parameters can be added in future
– Not all parameters applicable to all schedulers

• E.g. SCHED_OTHER doesn’t use priority

• A process can sched_yield() or otherwise block at any time
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POSIX APIs: Priority

• POSIX 1003.1b provides (largely) fixed priority scheduling
– Priority can be changed using sched_set_param(), but this is 

high overhead and is intended for reconfiguration rather than 
for dynamic scheduling

• Limited set of priorities:
– Use sched_get_priority_min(), sched_get_priority_max()

to determine the range
– Guarantees at least 32 priority levels

• Compare to Windows NT which supports only 16 priorities
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POSIX APIs: Mapping onto Priority Queues

• Tasks using SCHED_FIFO and SCHED_RR map onto a set of 
priority queues as described previously
– Relatively small change to existing time-sharing scheduler

• Additional queues support SCHED_OTHER if providing a time 
sharing service
– Time sharing tasks only progress if no active real-time task
– Beware: a rogue real-time task can lock out time sharing tasks

…

Executing

…

Ready Blocked

Sleeping

Real-time

Time sharing

…

Sleeping
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The POSIX 1003.1c Real-Time Scheduling API

#include <unistd.h>
#ifdef _POSIX_THREADS
#include <pthread.h>
#ifdef _POSIX_THREAD_PRIORITY_SCHEDULING

Check for presence of pthreads

int pthread_create(pthread_t      *thread, 
pthread_attr_t *attr, 
void *(*thread_func)(void*), 
void   *thread_arg);

Pointer to function that
runs as the thread, and
it's argument

Returns thread ID

int pthread_attr_init(pthread_attr_t *attr);

int pthread_attr_getschedparam(pthread_attr_t *attr, struct sched_param *p);

int pthread_attr_setschedparam(pthread_attr_t *attr, struct sched_param *p);

int pthread_attr_getschedpolicy(pthread_attr_t *attr, int policy);
int pthread_attr_setschedpolicy(pthread_attr_t *attr, int policy);

Same scheduling policies and
parameters as POSIX 1003.1b
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The POSIX 1003.1c Real-Time Scheduling API

Scheduling parameters can be modified after a thread is created:
int pthread_getschedparam(pthread_t t, int *policy, struct sched_param *p);
int pthread_setschedparam(pthread_t t, int  policy, struct sched_param *p);

Threads can yield:
int sched_yield(void);

Threads exit in the usual manner:
int pthread_exit(void *retval);
int pthread_join(pthread_t thread, void **retval);
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Implementation of Threads

• Many operating systems make a distinction between 
threads which are exposed to the user, and kernel 
scheduled entities (KSE)

• The mapping may be one thread for each KSE or many 
threads for each KSE:

Threads

User
Kernel

KSEs

Many-to-one One-to-one

• If many threads map to each KSE, all threads in the group 
may share the same scheduling policy, or may block at once
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Detecting POSIX Support

• If you need to write portable code, e.g. to run on Unix/Linux 
systems, you can check the presence of POSIX 1003.1b via 
pre-processor defines:

#include <stdio.h>
#include <unistd.h>
#ifdef _POSIX_PRIORITY_SCHEDULING

printf("POSIX 1003.1b\n");
#endif
#ifdef _POSIX_THREADS
#ifdef _POSIX_THREAD_PRIORITY_SCHEDULING

printf("POSIC 1003.1c\n");
#endif
#endif

• Access to POSIX real-time extensions is usually privileged 
on general purpose systems (e.g. suid root on Unix)
– Remember to drop privileges!
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Using POSIX Scheduling: Rate Monotonic

• Rate monotonic and deadline monotonic schedules can 
naturally be implemented using POSIX primitives
1. Assign priorities to tasks in the usual way for RM/DM
2. Query the range of allowed system priorities

sched_get_priority_min()
sched_get_priority_max()

3. Map task set onto system priorities
• Care needs to be taken if there are large numbers of tasks, since 

some systems only support a few priority levels

4. Start tasks using assigned priorities and SCHED_FIFO
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Effects of Limited Priority Levels

• When building a custom system, can ensure that there are 
as many ready queues as priority levels

• If an operating system is present, through, the set of tasks 
may need priority levels than there are queues provided

T1

T2

T3

T4

T5

T6

Implication: non-distinct priorities
• Some tasks will be delayed relative 

to the “correct” schedule
– A set of tasks TE(i) is mapped to the 

same priority queue as task Ti
– This may delay Ti up to

• The schedulable utilization of the 
system will be reduced

∑
∈ )(iTT

k
Ek

e
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Effects of Limited Priority Levels

• How to map a set of tasks needing Ωn priorities onto a set of 
Ωs priority levels, where Ωs < Ωn?

Uniform mapping
Q = | Ωn / Ωs |

tasks map onto each
system priority level

π1 = 11
2
3
4 π2 = 4
5
6
7
8
9

π3 = 10

Constant Ratio mapping
k = (πi-1+1)/πi

tasks where k is a constant map to
each system priority with weight, πi

• Constant ratio mapping better preserves execution times of 
high priority jobs
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Periodic Tasks

• Much of the previous discussion has assumed periodic tasks 
scheduled by the operating systems

• However, direct support for periodic tasks is rare
– RT-Mach
– Not one of the standard real-time POSIX extensions

• Implement instead using a looping task:
…set repeating wake up timer
while (1) {

…suspend until timer expires
…do something

}

• [Will discuss timers more tomorrow]
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Using POSIX Scheduling: EDF

• EDF scheduling is not supported by POSIX
• Conceptually would be simple to add:

– A new scheduling policy
– A new parameter to specify the relative deadline of each task

• But, requires the kernel to implement deadline scheduling
– POSIX grew out of the Unix community
– Unlike priority scheduling, difficult to retro-fit deadline 

scheduling onto a Unix kernel…
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Using POSIX Scheduling: Aperiodic and 
Sporadic Tasks

• Difficult to implement aperiodic and sporadic tasks since:
– No support for EDF scheduling
– No support for bandwidth preserving server

• Can use background server thread at the lowest priority:
– One thread with a queue of functions to execute

• Work added to the queue by other threads

– One thread per event, blocked on the event
– Take care about priority inversion when accessing resources

• Bandwidth preserving server cannot easily be simulated:
– Need something like ITIMER_VIRTUAL to measure execution 

time of the server, but:
• Inaccurate
• Often lacking resolution
• Implies: may underestimate BP server run-time, and overuse 

resources

– No way of knowing which other tasks have run, needed for the 
sporadic server algorithm
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Summary of POSIX Scheduling

• Good support for fixed priority scheduling
– Rate and deadline monotonic
– Background server can be used for aperiodic tasks

• No support for earliest deadline scheduling, sporadic tasks
– Some specialised RTOS support these
– Earliest deadline scheduling more widely used to schedule 

network packets
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Summary

By now, you should know:
• How real-time scheduler are typically implemented
• POSIX 1003.1b and 1003.1c APIs
• How to use POSIX APIs for fixed priority scheduling
• Limitations of the POSIX APIs
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