
Scheduling in Practice

Colin Perkins
http://csperkins.org/teaching/2003-2004/rtes4/lecture12.pdf

Reminder: Problem set 2 due at 5pm today!



C
op

yr
ig

h
t 

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s 

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Lecture Outline

• Implementing priority scheduling:
– Tasks, threads and queues
– Building a priority scheduler
– Fixed priority scheduling (RM and DM)
– Dynamic priority scheduling (EDF and LST)
– Sporadic and aperiodic tasks

• Outline of priority scheduling standards:
– POSIX 1003.1b (a.k.a. POSIX.4)
– POSIX 1003.1c (a.k.a. pthreads)
– Implementation details

• Use of priority scheduling standards:
– Rate monotonic and deadline monotonic scheduling
– User level servers to support aperiodic and sporadic tasks



C
op

yr
ig

h
t 

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s 

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Tasks and Threads

Periodic
Task Parameters

Sporadic or aperiodicTask Type

• A system comprises a set of tasks (or jobs)
• Tasks are typed, and timed with parameters (ϕ, p, e, D)
• A thread is the basic unit of work handled by the scheduler

– Threads are the instantiation of tasks that have been admitted 
to the system

– Acceptance test performed before admitting new tasks

[All equally applicable to processes, rather than threads]

Phase, ϕ
Server

Period, p

Relative Deadline, D

Number of Instances

Event List



C
op

yr
ig

h
t 

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s 

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Tasks and Threads

Periodic

• Real time tasks commonly defined to execute periodically
• Two implementation strategies:

– A thread is instantiated by the system each period, and runs a 
single instance of the task

• A periodic thread, not widely supported
• Clean abstraction: a function that runs periodically
• high overhead due to repeated thread instantiation
• Operating system handles timing

– A thread is instantiated once, and repeatedly performs the task 
then sleeps until the beginning of the next period

• Lower overhead, but relies on the programmer to handle timing

Task ParametersNumber of cycles a 
periodic thread can
execute before it
terminates

Sporadic or aperiodicTask Type

Phase, ϕ
Server

Period, p

Relative Deadline, D

Number of Instances

Event List



C
op

yr
ig

h
t 

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s 

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Tasks and Threads

Periodic
Task Parameters

Sporadic or aperiodicTask Type

• Event list to trigger sporadic and aperiodic tasks
– May be external (hardware) interrupts
– May be signalled by another task

• Each instance of a sporadic or aperiodic task may be 
instantiated by the system as a sporadic or aperiodic 
thread
– Not well supported
– Requires scheduler assistance

• Alternatively, may be implemented using a server task

Phase, ϕ
Server

Period, p

Relative Deadline, D

Number of Instances

Event List



C
op

yr
ig

h
t 

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s 

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Tasks and Threads

Periodic
Task Parameters

Sporadic or aperiodicTask Type

• A server thread is a periodic thread that implements either:
– a background server (simple)
– a bandwidth preserving server (useful, but hard to implement)

• Used to implement sporadic and aperiodic threads, if not 
directly supported by the scheduler

Phase, ϕ
Server

Period, p

Relative Deadline, D

Number of Instances

Event List



C
op

yr
ig

h
t 

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s 

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Threads

Thread Control Block

Thread ID

Starting Address

Thread Context

Scheduling Information

Synchronization Information

Time Usage Information

Timer Information

Other Information 

Task Parameters

Task Type

Phase, ϕ
Period, p

Number of Instances

Event List

Relative Deadline, D

• When a thread is instantiated, the thread control block is 
created referencing the task, and maintaining the thread ID, 
starting address, register context and other state



C
op

yr
ig

h
t 

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s 

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Threads

Thread Control Block

Thread ID

Starting Address

Thread Context

Of interest today is the scheduling and time usage data…

Scheduling Information

Synchronization Information

Time Usage Information

Timer Information

• Current priority
• Normal priority
• Absolute deadline
• Remaining time quantum

• Used to implement server threads
• Budget
• Replenishment/Consumption rules

Other Information 



C
op

yr
ig

h
t 

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s 

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Thread States and Transitions

Sleeping ⇒ Periodic thread queued between cycles
Ready      ⇒ Queued at some priority, waiting to run
Executing ⇒ Running on a processor
Blocked    ⇒ Queued waiting for a resource

• Transitions happen according to scheduling policy, resource 
access, external events

Ready Blocked

Resource availabilityStart of cycle

S
ch

ed
ul

e

End of cycle

Thread created Thread destroyed
Sleeping Executing



C
op

yr
ig

h
t 

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s 

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Mapping States onto Queues

Ready Blocked

Abstract states…

Sleeping Executing

Sleeping Ready BlockedExecuting

…realised as
a set of queues



C
op

yr
ig

h
t 

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s 

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Queuing in a Priority Scheduler

• Scheduling algorithms implemented by varying the number 
of queues, queue selection policy and service discipline
– How to decide which queue holds a newly released thread?
– How are the queues ordered?
– From which queue is the next job to execute taken?

• Different solutions for:
– Fixed priority scheduling
– Dynamic priority/deadline scheduling
– Sporadic and server tasks

Sleeping Ready BlockedExecuting



C
op

yr
ig

h
t 

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s 

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Fixed Priority Scheduling

• Provide a number of ready queues
• Each queue represents a priority level

– Tasks inserted into queues according to priority
– Queues serviced in FIFO or round-robin order

• RR tasks have a budget that depletes with each clock interrupt, 
then yield and go to back of queue

• FIFO tasks run until sleep, block or yield

• Always run task at the head of the highest priority queue 
that has ready tasks

Sleeping Ready BlockedExecuting

…



C
op

yr
ig

h
t 

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s 

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Fixed Priority Scheduling

• Theoretical scheduling complexity is O(Ω)
– Where Ω is the number of priorities/ready queues

• Commonly 256 queues provided

– Since you have to look at each queue to determine what to run

• Requires n = Ω/k+log2k-1 comparisons
– 256 priority levels (Ω = 256)
– 32 bit processor (k = 32)
– n = 256/32 + 5 – 1

= 12 

– Implement as a bit mask of runnable priorities:

Low High



C
op

yr
ig

h
t 

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s 

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Example: Rate Monotonic

• Assign fixed priorities to tasks based on their period, p
– short period ⇒ higher priority

• Implementation:
– Task resides in sleep queue until released at phase, ϕ
– When released, task inserted into a FIFO ready queue
– One ready queue for each distinct priority
– Always run task at the head of the highest priority queue that 

has ready tasks

Ready

…

BlockedExecutingSleeping



C
op

yr
ig

h
t 

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s 

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Blocking on Multiple Events

• Typically there are several reasons why tasks may block
– Disk I/O
– Network
– Inter-process communication
– etc.

• Usually want multiple blocked queues, for different reasons
– Reduces overheads searching a long queue to wakeup thread

• This is a typical priority scheduler provided by most RTOS

Ready

…

BlockedExecutingSleeping

…



C
op

yr
ig

h
t 

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s 

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Dynamic Priority Scheduling

• Thread priority can change during execution
• Implies that threads move between ready queues

– Search through the ready queues to find the thread changing 
it’s priority

– Remove from the ready queue
– Calculate new priority
– Insert at end of new ready queue

• Expensive operation:
– O(N) where N is the number of tasks
– Suitable for system reconfiguration or priority inheritance when

the rate of change of priorities is slow
– Unsuitable for EDF or LST scheduling, since these require 

frequent priority changes
• Too computationally expensive



C
op

yr
ig

h
t 

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s 

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Earliest Deadline First Scheduling

• To directly support EDF scheduling:
– When each thread is created, it’s relative deadline is specified
– When a thread is released, it’s absolute deadline is calculated 

from it’s relative deadline and release time

• Could maintain a single ready queue:
– Conceptually simple, threads ordered by absolute deadline
– Inefficient if many active threads

• Scheduling decision involves walking the queue
• O(N) where N is the number of tasks



C
op

yr
ig

h
t 

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s 

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Earliest Deadline First Scheduling

• Maintain a ready queue for each relative deadline
– Tasks enter these queues in order of release
– Ω’ queues

• Maintain a queue, sorted by absolute deadline, pointing to 
tasks at the head of each ready queue
– Updated each time a task completes
– Updated when a task added to an empty ready queue
– Always execute the task at the head of this queue

• Scheduling decision is O(Ω’) where Ω’ < N

Ready

…

BlockedExecutingSleeping

…
E
D

F 
Q

u
eu

e



C
op

yr
ig

h
t 

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s 

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Scheduling Sporadic Tasks

• Recall: sporadic tasks have hard deadlines but unpredictable 
arrival times

• Straight-forward to schedule using EDF:
– Add to separate queue of ready sporadic tasks on release
– Perform acceptance test
– If accepted, insert into the EDF queue according to deadline

• Difficult if using fixed priority scheduling:
– Need a bandwidth preserving server

Ready

…

BlockedExecutingSleeping

E
D

F 
Q

u
eu

e

Sporadic Acceptance test



C
op

yr
ig

h
t 

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s 

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Scheduling Aperiodic Tasks

• Recall: aperiodic tasks have unpredictable arrival times, but 
no deadline

• Trivial to implement in as a background server, using a 
single lowest priority queue
– All the problems described in lecture 8:

• Excessive delay of aperiodic jobs
• Potential for priority inversion if the aperiodic jobs use resources

– Linux community has exactly this issue with idle-jobs

• As discussed in lecture 8, better to use a bandwidth 
preserving server



C
op

yr
ig

h
t 

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s 

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Implementing Bandwidth Preserving Servers

• Recall definition of BP server: 
– a periodic server, defined by budget consumption and 

replenishment rules
• consume when executing
• consume when idle in some cases

– executes when it has budget and work to do
– sleeps when budget expires or idle
– moves onto ready queue when 

• budget replenished, if work to do
• work becomes available

• Several different types of BP server
– Different replenishment and consumption rules



C
op

yr
ig

h
t 

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s 

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Implementing Bandwidth Preserving Servers

• BP server is scheduled as a periodic task, with some priority
• When ready and selected for execution, given a scheduling 

quantum equal to the current budget
• Runs until pre-empted or blocked; or
• Runs until the quantum expires, then sleeps until replenished

• At each scheduling event in the system
• Update budget consumption considering:

• time for which the BP server has executed
• time for which other tasks have executed
• algorithm depends on BP server type

• Replenish budget if necessary
• Keep remaining budget in the thread control block

• “Time usage information” seen earlier
• Fairly complex calculations, e.g. for sporadic server
• Possible, since the scheduler knows the run times of all tasks

• Difficult to be accurate, if the BP server runs for partial intervals
• May need to use a high resolution timer, instead of the usual 

scheduling clock

• Not widely supported…

Not like RR scheduling
which yields when 
quantum expires



C
op

yr
ig

h
t 

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s 

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Standards for Priority Scheduling

• POSIX 1003.1b (a.k.a. POSIX.4)
• POSIX 1003.1c (a.k.a. pthreads)
• Implementation details



C
op

yr
ig

h
t 

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s 

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
The POSIX 1003.1b Real-Time Scheduling API

#include <unistd.h>
#ifdef _POSIX_PRIORITY_SCHEDULING
#include <sched.h>

struct sched_param {
int sched_priority;
…

}

int sched_setscheduler(pid_t pid, int policy, struct sched_param *sp);
int sched_getscheduler(pid_t pid);
int sched_getparam(pid_t pid, struct sched_param *sp);
int sched_setparam(pid_t pid, struct sched_param *sp);
int sched_get_priority_max(int policy);
int sched_get_priority_min(int policy);
int sched_yield(void);
#endif

Policy is one of SCHED_FIFO, SCHED_RR and SCHED_OTHER

Works with tasks (i.e. processes on Unix, not threads)

Key features:
• Get/set scheduling policy
• Get/set parameters
• Yield the processor



C
op

yr
ig

h
t 

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s 

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
POSIX APIs: Scheduling

• POSIX 1003.1b provides three scheduling policies, selected 
using sched_setscheduler():
– SCHED_FIFO

• Fixed priority, pre-emptive, FIFO scheduler
– SCHED_RR

• Fixed priority, pre-emptive, round robin scheduler
• Use sched_rr_get_interval(pid_t pid, struct timespec *t) 

to find the scheduling time quantum

– SCHED_OTHER
• Unspecified (often the default time-sharing scheduler)

• Implementations can support alternative schedulers
• Scheduling parameters are defined in struct sched_param

– Currently just priority; other parameters can be added in future
– Not all parameters applicable to all schedulers

• E.g. SCHED_OTHER doesn’t use priority

• A process can sched_yield() or otherwise block at any time



C
op

yr
ig

h
t 

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s 

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
POSIX APIs: Priority

• POSIX 1003.1b provides (largely) fixed priority scheduling
– Priority can be changed using sched_set_param(), but this is 

high overhead and is intended for reconfiguration rather than 
for dynamic scheduling

• Limited set of priorities:
– Use sched_get_priority_min(), sched_get_priority_max()

to determine the range
– Guarantees at least 32 priority levels

• Compare to Windows NT which supports only 16 priorities



C
op

yr
ig

h
t 

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s 

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
POSIX APIs: Mapping onto Priority Queues

• Tasks using SCHED_FIFO and SCHED_RR map onto a set of 
priority queues as described previously
– Relatively small change to existing time-sharing scheduler

• Additional queues support SCHED_OTHER if providing a time 
sharing service
– Time sharing tasks only progress if no active real-time task
– Beware: a rogue real-time task can lock out time sharing tasks

…

Executing

…

Ready Blocked

Sleeping

Real-time

Time sharing

…

Sleeping



C
op

yr
ig

h
t 

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s 

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
The POSIX 1003.1c Real-Time Scheduling API

#include <unistd.h>
#ifdef _POSIX_THREADS
#include <pthread.h>
#ifdef _POSIX_THREAD_PRIORITY_SCHEDULING

Check for presence of pthreads

int pthread_create(pthread_t      *thread, 
pthread_attr_t *attr, 
void *(*thread_func)(void*), 
void   *thread_arg);

Pointer to function that
runs as the thread, and
it's argument

Returns thread ID

int pthread_attr_init(pthread_attr_t *attr);

int pthread_attr_getschedparam(pthread_attr_t *attr, struct sched_param *p);

int pthread_attr_setschedparam(pthread_attr_t *attr, struct sched_param *p);

int pthread_attr_getschedpolicy(pthread_attr_t *attr, int policy);
int pthread_attr_setschedpolicy(pthread_attr_t *attr, int policy);

Same scheduling policies and
parameters as POSIX 1003.1b



C
op

yr
ig

h
t 

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s 

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
The POSIX 1003.1c Real-Time Scheduling API

Scheduling parameters can be modified after a thread is created:
int pthread_getschedparam(pthread_t t, int *policy, struct sched_param *p);
int pthread_setschedparam(pthread_t t, int  policy, struct sched_param *p);

Threads can yield:
int sched_yield(void);

Threads exit in the usual manner:
int pthread_exit(void *retval);
int pthread_join(pthread_t thread, void **retval);



C
op

yr
ig

h
t 

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s 

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Implementation of Threads

• Many operating systems make a distinction between 
threads which are exposed to the user, and kernel 
scheduled entities (KSE)

• The mapping may be one thread for each KSE or many 
threads for each KSE:

Threads

User
Kernel

KSEs

Many-to-one One-to-one

• If many threads map to each KSE, all threads in the group 
may share the same scheduling policy, or may block at once



C
op

yr
ig

h
t 

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s 

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Detecting POSIX Support

• If you need to write portable code, e.g. to run on Unix/Linux 
systems, you can check the presence of POSIX 1003.1b via 
pre-processor defines:

#include <stdio.h>
#include <unistd.h>
#ifdef _POSIX_PRIORITY_SCHEDULING

printf("POSIX 1003.1b\n");
#endif
#ifdef _POSIX_THREADS
#ifdef _POSIX_THREAD_PRIORITY_SCHEDULING

printf("POSIC 1003.1c\n");
#endif
#endif

• Access to POSIX real-time extensions is usually privileged 
on general purpose systems (e.g. suid root on Unix)
– Remember to drop privileges!



C
op

yr
ig

h
t 

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s 

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Using POSIX Scheduling: Rate Monotonic

• Rate monotonic and deadline monotonic schedules can 
naturally be implemented using POSIX primitives
1. Assign priorities to tasks in the usual way for RM/DM
2. Query the range of allowed system priorities

sched_get_priority_min()
sched_get_priority_max()

3. Map task set onto system priorities
• Care needs to be taken if there are large numbers of tasks, since 

some systems only support a few priority levels

4. Start tasks using assigned priorities and SCHED_FIFO



C
op

yr
ig

h
t 

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s 

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Effects of Limited Priority Levels

• When building a custom system, can ensure that there are 
as many ready queues as priority levels

• If an operating system is present, through, the set of tasks 
may need priority levels than there are queues provided

T1

T2

T3

T4

T5

T6

Implication: non-distinct priorities
• Some tasks will be delayed relative 

to the “correct” schedule
– A set of tasks TE(i) is mapped to the 

same priority queue as task Ti
– This may delay Ti up to

• The schedulable utilization of the 
system will be reduced

∑
∈ )(iTT

k
Ek

e



C
op

yr
ig

h
t 

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s 

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Effects of Limited Priority Levels

• How to map a set of tasks needing Ωn priorities onto a set of 
Ωs priority levels, where Ωs < Ωn?

Uniform mapping
Q = | Ωn / Ωs |

tasks map onto each
system priority level

π1 = 11
2
3
4 π2 = 4
5
6
7
8
9

π3 = 10

Constant Ratio mapping
k = (πi-1+1)/πi

tasks where k is a constant map to
each system priority with weight, πi

• Constant ratio mapping better preserves execution times of 
high priority jobs



C
op

yr
ig

h
t 

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s 

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Periodic Tasks

• Much of the previous discussion has assumed periodic tasks 
scheduled by the operating systems

• However, direct support for periodic tasks is rare
– RT-Mach
– Not one of the standard real-time POSIX extensions

• Implement instead using a looping task:
…set repeating wake up timer
while (1) {

…suspend until timer expires
…do something

}

• [Will discuss timers more tomorrow]



C
op

yr
ig

h
t 

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s 

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Using POSIX Scheduling: EDF

• EDF scheduling is not supported by POSIX
• Conceptually would be simple to add:

– A new scheduling policy
– A new parameter to specify the relative deadline of each task

• But, requires the kernel to implement deadline scheduling
– POSIX grew out of the Unix community
– Unlike priority scheduling, difficult to retro-fit deadline 

scheduling onto a Unix kernel…



C
op

yr
ig

h
t 

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s 

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/

Using POSIX Scheduling: Aperiodic and 
Sporadic Tasks

• Difficult to implement aperiodic and sporadic tasks since:
– No support for EDF scheduling
– No support for bandwidth preserving server

• Can use background server thread at the lowest priority:
– One thread with a queue of functions to execute

• Work added to the queue by other threads

– One thread per event, blocked on the event
– Take care about priority inversion when accessing resources

• Bandwidth preserving server cannot easily be simulated:
– Need something like ITIMER_VIRTUAL to measure execution 

time of the server, but:
• Inaccurate
• Often lacking resolution
• Implies: may underestimate BP server run-time, and overuse 

resources

– No way of knowing which other tasks have run, needed for the 
sporadic server algorithm



C
op

yr
ig

h
t 

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s 

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Summary of POSIX Scheduling

• Good support for fixed priority scheduling
– Rate and deadline monotonic
– Background server can be used for aperiodic tasks

• No support for earliest deadline scheduling, sporadic tasks
– Some specialised RTOS support these
– Earliest deadline scheduling more widely used to schedule 

network packets



C
op

yr
ig

h
t 

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s 

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Summary

By now, you should know:
• How real-time scheduler are typically implemented
• POSIX 1003.1b and 1003.1c APIs
• How to use POSIX APIs for fixed priority scheduling
• Limitations of the POSIX APIs


	Scheduling in Practice
	Lecture Outline
	Tasks and Threads
	Tasks and Threads
	Tasks and Threads
	Tasks and Threads
	Threads
	Threads
	Thread States and Transitions
	Mapping States onto Queues
	Queuing in a Priority Scheduler
	Fixed Priority Scheduling
	Fixed Priority Scheduling
	Example: Rate Monotonic
	Blocking on Multiple Events
	Dynamic Priority Scheduling
	Earliest Deadline First Scheduling
	Earliest Deadline First Scheduling
	Scheduling Sporadic Tasks
	Scheduling Aperiodic Tasks
	Implementing Bandwidth Preserving Servers
	Implementing Bandwidth Preserving Servers
	Standards for Priority Scheduling
	The POSIX 1003.1b Real-Time Scheduling API
	POSIX APIs: Scheduling
	POSIX APIs: Priority
	POSIX APIs: Mapping onto Priority Queues
	The POSIX 1003.1c Real-Time Scheduling API
	The POSIX 1003.1c Real-Time Scheduling API
	Implementation of Threads
	Detecting POSIX Support
	Using POSIX Scheduling: Rate Monotonic
	Effects of Limited Priority Levels
	Effects of Limited Priority Levels
	Periodic Tasks
	Using POSIX Scheduling: EDF
	Using POSIX Scheduling: Aperiodic and Sporadic Tasks
	Summary of POSIX Scheduling
	Summary

