
Real-time Support in Operating Systems

Colin Perkins
http://csperkins.org/teaching/2003-2004/rtes4/lecture11.pdf
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Lecture Outline

• Overview of the rest of the module
• Real-time support in operating systems

– Overview of concepts
– Examples of real time operating systems

Reading for this week: Chapter 12 + Appendix
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Real Time & Embedded Systems 

• Course overview:
– Lectures 1-10: theory of real-time systems, covering 

scheduling and resource management
– Lectures 11-20: the pragmatics of building real-time systems 

with available operating systems and network stacks

• Assessment:
– Two assessed problem sets in weeks 1-5
– Assessed program design exercise in weeks 6-10
– 20% of grade derived from assessed course work

• 2 problem sets @ 4% each
• 1 program design assignment @12%

– 80% of grade derived from exam mark
• Answer 3 out of 4 questions
• 2 questions from each part of the course
• Sample paper will be distributed later in the term
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Real Time & Embedded Systems

Lecture 20Lecture 19Q&A15 March

Lecture 18Lecture 17Q&A8 March

Individual work on program design assignment1 March

Lecture 16Lecture 15Lecture 1423 February

Lecture 13Lecture 12Lecture 1116 February

Lecture 10Lecture 9Q&A9 February

Lecture 8Lecture 7Q&A2 February

Lecture 6Lecture 5Q&A26 January

Lecture 4Lecture 3Q&A19 January

Lecture 2Lecture 1No meeting12 January

Thu, 12:00-13:00Wed, 12:00-13:00Tue, 15:00-16:00Week beginning
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Real Time & Embedded Systems

20Review of Major Concepts

19Low-Level Programming

18Real-Time Embedded Systems

Chapter 1017Real-Time on General Purpose Systems

16Real-Time Communications on IP Networks

15Quality of Service for Packet Networks

Chapter 1114Introduction to Real-Time Communications

13Operating System Support for Concurrency

12Scheduling in Practice

Chapter 12 + Appendix11Real-Time Support in Operating Systems

Pre-ReadingLectureTopic
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Real Time Support in Operating Systems

• Real time versus general purpose operating systems
– Real time constraints
– Implications on real time operating system (RTOS) design

• Real time operating system concepts
– Overall system architecture

• Microkernels and nanokernels

– Time services and scheduling
• Cyclic executives, tasks
• Clocks and timers
• Interrupts and devices

– Optimising system calls
– Other services

• Messaging, signals and events
• Concurrency, synchronisation and locking
• Memory protection

• Examples of real-time operating systems
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Constraints on Practical Real Time Systems

• Need predictable behaviour
– Raw performance less critical than consistent and predictable 

performance; hence focus on scheduling algorithms
– Don’t want to fairly share resources

• Need to run on a wide range of hardware
– Often custom hardware for each application
– Not just peripherals: system-on-a-chip designs are common

• Often resource constrained
– Limited memory, CPU, power consumption, size, weight

• Often safety critical
– Limited functionality is easier to verify and certify

• Embedded and may be difficult to upgrade
– Closed set of applications, trusted code
– Strong reliability requirements
– How to upgrade software in a car engine? A DVD player? After 

you shipped millions of devices?
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Implications on Operating Systems

• General purpose operating systems are not well suited for 
real time systems
– They assume plentiful resources that need to be fairly shared 

amongst un-trusted users
– Exactly the opposite of an RTOS!

• Instead want something that is:
– Small and light on resources
– Predictable
– Customisable, modular and extensible
– Reliable

…and that can be demonstrated or proven to be so
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Real-Time Operating System Concepts

• A real-time operating system is typically implemented as a 
microkernel, rather than a traditional monolithic kernel
– Limited and well defined functionality 
– Easier to demonstrate correctness
– Easier to customise

• Provide rich scheduling primitives
• Provide rich support for concurrency
• Expose low-level system details to the applications

– Control of scheduling
– Power awareness
– Interaction with hardware devices
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Microkernel Architecture

Immediate
Interrupt
Service

Scheduling

Time
Services &
Scheduling

Case of

Trap

create_thread
suspend_thread
destroy_thread

create_timer
timer_sleep
timer_notify

other system calls

…
…

Return to user

Hardware/
Software

Exceptions

System
Calls

Clock
Interrupts

Kernel

Will not discuss recovery from
hardware and software exceptions
in this module: the usual safety 
critical systems issues apply

External
Interrupts
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Microkernel Architecture

External
Interrupts

System
Calls

Clock
Interrupts

Immediate
Interrupt
Service

Scheduling

Time
Services &
Scheduling

Case of

create_thread
suspend_thread
destroy_thread

create_timer
timer_sleep
timer_notify

other system calls

…
…

Return to userKernel

Three reasons why the system can
take control from an executing thread:
• service timers and schedule tasks
• handle external hardware interrupts
• respond to a system call

All other services built above these

Trap
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Time Services: Basic

• The minimal time service is a scheduled clock pulse with 
fixed period

• Allows implementation of a static cyclic schedule, provided:
– tasks periods are a multiples of the clock period
– all interactions with hardware to be done on a polled basis

• Operating system becomes a single task cyclic executive:

setup timer
c = 0;
while (1) {

suspend until timer expires
c++;
do tasks due every cycle
if ((c % 2) == 0) do tasks due every 2nd cycle
if (((c+1) % 3) == 0) {

do tasks due every 3rd cycle, with phase 1
}

}
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Time Services: Helicopter Control Example

setup timer
c = 0;
while (1) {

Suspend until 1/180th second timer expires
c++;
Select data source, collect and validate sensor data
if (failure occurred) reconfigure system;
if ((c % 6) == 0) { // 30Hz

Collect Keyboard input and mode selection
Perform data normalization and transform coordinates
Update tracking reference
Compute outer pitch- and roll-control parameters
Compute outer yaw- and collective-control parameters

}
if ((c % 2) == 0) { // 90Hz

Compute inner pitch-control parameters
Compute inner roll- and collective-control parameters

}
Compute the inner yaw-control parameters
Output flight control commands based on computed parameters
Carry out built-in-test

}
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Nanokernel Architecture

Immediate
Interrupt
Service

Scheduling

Time
Services &
Scheduling

Case of

Trap

create_thread
suspend_thread
destroy_thread

create_timer
timer_sleep
timer_notify

other system calls

…
…

Return to userKernel

Sometimes a microkernel is too
resource intensive, and a limited
nanokernel is used instead

Simply provides a clock interrupt
that can be used to drive a cyclic
executive

Only for the simplest systems, 
with a static task set and polled
hardware devices

Commonly want more features,
but sometimes useful. We won’t 
discuss these much further…

External
Interrupts

System
Calls

Clock
Interrupts
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Time Services: Tasks and Scheduling

• Cyclic executives trivial to implement, but inflexible and only 
allow simple clock-driven schedules to be implemented

• If we want to implement other scheduling algorithms, need 
support for tasks
– Operations to create, destroy, suspend and resume tasks

– Can be implemented as either threads or processes
• Processes not always supported by the hardware, or useful

• Scheduling triggered by:
– Periodic timer interrupt
– Threads being created or destroyed
– Threads suspension and resumption

• Most systems support fixed priority scheduling of tasks
– A few also support deadline scheduling

• Implementation of schedulers will be discussed in detail 
tomorrow
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Time Services: Other Clocks

• In addition to the clock interrupt used for scheduling, 
most systems support time service interrupts derived 
from high resolution hardware timers
– Either “one-shot” timers or a high frequency interrupt source
– Useful to application authors

• Two key issues should be noted:
– The time service hardware often has nanosecond resolution, 

but this is rarely available to the application
• Interrupt latencies, operating system overheads, etc, cause 

inaccuracy and limit the resolution to microseconds on most 
systems

– Beware that the frequency of crystal oscillators varies with 
temperature

• Supposedly identical systems in different environments observe 
different clock frequencies; problematic for networked systems

• Causes observed clock rate to drift over time

• Will discuss clocks and timers more on Thursday
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Interrupts and Device Interaction

• In addition to driving the scheduler and timing services, 
interrupts are often used to signal that hardware devices 
require attention
– Useful for devices that require sporadic attention
– Polling is an alternative, that may be lower overhead, for 

devices that need periodic attention

• Interrupts have priority, asserted by the hardware
• The system may support more devices than interrupt 

request lines
– Require the interrupt service routine to poll multiple devices
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Interrupts and Device Interaction

• Interrupts may be serviced immediately
– Fast response to device
– Significant delay to currently scheduled task

User
Kernel

Task 1 Task 1 continues

Interrupt service
routine

• Interrupts are disabled using the interrupt service routine
– To safely modify the interrupt management data structures

• Problematic if there are multiple interrupt sources, since 
high priority interrupts can be blocked
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Interrupt Threads

• Alternatively, an interrupt service routine may schedule a 
kernel thread to complete the interaction
– Slower to service the device
– Potentially less impact on interrupted task, although this 

depends on the priority of the kernel thread

Interrupt
thread

User
Kernel

Task 1 Task 1 continues

Interrupt service
routine

• Reduces the blocking during the interrupt service routine, 
and allows high priority interrupts to activate
– Threads servicing the high priority interrupt run with high 

priority, and pre-empt those servicing other interrupts
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Interrupts and Device Interactions

• Interrupt latency varies:
– Depending how many devices must be polled to locate the 

interrupt source
– Depending on the tasks executing when the interrupt arrives
– If multiple interrupts occurs at once

• Affects response time to hardware interrupts
• Affects clock and time service latency
• Implications:

– Jitter on job release times
– Inaccuracy on timers

…will affect scheduling

• Will discuss low level programming, interrupts and device 
interactions more in lecture 19
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Synchronous System Calls

• Tasks invoke the microkernel 
through system calls

• The kernel usually executes in 
separate a memory space, 
protected from user tasks
– A system calls traps to kernel 

mode, switches protection 
domains, and saves the 
context of the user thread

– Reduces to a function call if 
the system doesn’t implement 
memory protection

• The call name and arguments 
are retrieved from the stack, 
and executed by the kernel on 
behalf of the thread

• When a system call completes
– the kernel saves the result
– switches protection domains 

and returns to user mode (if 
necessary). 

– the highest priority thread is 
executed (may differ from the 
thread that initiated the call)

User
Kernel

Task 1 Task 2

System call invoked
by task 1
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Synchronous System Calls

• Some systems cannot be pre-empted during system calls
– Worst case system call latency must be taken into account 

when scheduling
• Systems calls might block for 100s of milliseconds, if they result in 

access to a hardware device

– Example: low latency patches for Linux to reduce audio skip

System call latency

User
Kernel
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Asynchronous System Calls

• An alternative is an asynchronous system call, which asks 
the kernel to perform an operation and returns immediately
– Non-blocking networking and I/O functions
– Inter-process communication

• Such calls generate a kernel thread to service the request
– The kernel thread may execute with various priority values, 

depending on its use

• Complicates design, since results returned asynchronously 

Task 1 Task 2
User
Kernel

System call invoked
by task 1
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Other Operating System Features

• In addition to basic time and scheduling services, interrupts, 
system calls many standard operating system features are 
also useful in real time operating systems: 
– Messaging, Signals and Events
– Synchronisation and Locking
– Memory Access and Protection

• Concepts and services often need to be slightly modified 
from their general purpose equivalents

• Typically implemented as system service providers 
outside the microkernel
– Operating system literature refers to these as servers; we use 

the term system service provider to avoid confusion with other  
server tasks scheduled at the application level

– Allows them to be optional, only implemented when needed
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Messaging, Signals and Events

• In addition to typical inter-process communication features, 
real time operating systems provide:
– Message queues (synchronous, as an alternative to pipes)

• Messages delivered in priority order
• Priority inheritance based on message reception
• Notification and wakeup on message arrival

– Asynchronous event notification (application defined signals)
– Real time signals, priority queued, carrying data

• Messaging, signals and events will be discussed more on 
Thursday
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Synchronisation and Locking

• In addition to mutexes, locks, condition variables and 
semaphores, a real-time operating system may support:
– Priority inheritance and restoration
– The priority ceiling protocol, or the similar ceiling priority 

protocol
– Ability to disable priority inheritance to reduce overheads, if not 

needed

• The synchronisation and locking primitives provided by 
typical real-time operating systems will be described on 
Thursday
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Memory Access and Protection

• Many embedded real time systems do not use memory 
protection
– Any task can directly access any other task’s memory
– Any task can directly access kernel memory

• If you have a closed system that has been proved correct, 
then memory protection is just unnecessary overhead
– Time overheads, and unpredictability

• Context switch overhead
• Unpredictable access times, especially if virtual memory used

– Memory overheads
• Protection provided on a per-page basis, leads to wastage
• Overhead of maintaining the page tables and protection maps

• Most commercial RTOS provide memory protection as an 
option, if supported by the hardware
– Requires the system to fail-safe if an illegal access trap occurs
– Useful for complex (or reconfigurable) systems
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Summary of RTOS Features

• Modular and scalable
– The microkernel is small
– Configurable through system service provider routines

• Efficient
– Low overhead, highly optimised

• System calls and interrupt handling optimised 
– To make the non-premptible regions small and predictable
– Many actions deferred to kernel threads, with appropriate 

priority

• Scheduling
– Fixed priority scheduling, many priority levels, reconfigurable
– Limited support for deadline scheduling

• Priority inversion control
• Clock and timer resolution on the order microseconds
• Memory management

– No paging, no cache, protection optional
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RTOS Standards

• Operating systems are notoriously non-standard
• IEEE 1003 POSIX®

– “Portable Operating System Interface”
– Started as a subset of Unix functionality, various (optional) 

extensions have been added to support real-time scheduling, 
signals, message queues, etc.

– “The name POSIX was suggested by Richard Stallman. It is 
expected to be pronounced pahz-icks, as in positive, not poh-
six, or other variations. The pronunciation has been published 
in an attempt to promulgate a standardized way of referring 
to a standard operating system interface.”

• Widely implemented:
– Widespread support in RTOS
– Partial support in Unix variants
– Limited support in Linux and Windows

• Will discuss more later in the module…
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Example Real Time Operating Systems

Commercial RTOS:
• QNX/Neutrino
• VxWorks
• RTLinux

General purpose systems with real-time extensions:
• Windows NT
• Unix/Linux
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Example Real Time Operating Systems

Commercial RTOS:
• QNX/Neutrino
• VxWorks
• RTLinux

General purpose systems with real-time extensions:
• Windows NT
• Unix/Linux

Traditional hard RTOS:
• Dedicated real time operating systems
• Provide all the features discussed
• Fully POSIX compliant, with extensions

The book talks about these, and others,
in some detail
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Example Real Time Operating Systems

Commercial RTOS:
• QNX/Neutrino
• VxWorks
• RTLinux

General purpose systems with real-time extensions:
• Windows NT
• Unix/Linux

• Microkernel hard RTOS
• Supports most features described
• Runs Linux as a low priority server
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Example Real Time Operating Systems

Commercial RTOS:
• QNX/Neutrino
• VxWorks
• RTLinux

General purpose systems with real-time extensions:
• Windows NT
• Unix/Linux

• Suitable for soft real time applications
• Support a subset of RTOS features
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Example Real Time Operating Systems

Commercial RTOS:
• QNX/Neutrino
• VxWorks
• RTLinux

General purpose systems with real-time extensions:
• Windows NT
• Unix/Linux

Will be used as examples during the rest of the module…
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Summary

By now, you should know:
• The structure of the rest of the module
• An overview of real time operating systems, and how they 

differ from conventional systems
• An understanding of some of the sources of timing 

inaccuracy in real systems
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