
Real-time Support in Operating Systems

Colin Perkins
http://csperkins.org/teaching/2003-2004/rtes4/lecture11.pdf

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Lecture Outline

• Overview of the rest of the module
• Real-time support in operating systems

– Overview of concepts
– Examples of real time operating systems

Reading for this week: Chapter 12 + Appendix

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Real Time & Embedded Systems

• Course overview:
– Lectures 1-10: theory of real-time systems, covering

scheduling and resource management
– Lectures 11-20: the pragmatics of building real-time systems

with available operating systems and network stacks

• Assessment:
– Two assessed problem sets in weeks 1-5
– Assessed program design exercise in weeks 6-10
– 20% of grade derived from assessed course work

• 2 problem sets @ 4% each
• 1 program design assignment @12%

– 80% of grade derived from exam mark
• Answer 3 out of 4 questions
• 2 questions from each part of the course
• Sample paper will be distributed later in the term

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Real Time & Embedded Systems

Lecture 20Lecture 19Q&A15 March

Lecture 18Lecture 17Q&A8 March

Individual work on program design assignment1 March

Lecture 16Lecture 15Lecture 1423 February

Lecture 13Lecture 12Lecture 1116 February

Lecture 10Lecture 9Q&A9 February

Lecture 8Lecture 7Q&A2 February

Lecture 6Lecture 5Q&A26 January

Lecture 4Lecture 3Q&A19 January

Lecture 2Lecture 1No meeting12 January

Thu, 12:00-13:00Wed, 12:00-13:00Tue, 15:00-16:00Week beginning

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Real Time & Embedded Systems

20Review of Major Concepts

19Low-Level Programming

18Real-Time Embedded Systems

Chapter 1017Real-Time on General Purpose Systems

16Real-Time Communications on IP Networks

15Quality of Service for Packet Networks

Chapter 1114Introduction to Real-Time Communications

13Operating System Support for Concurrency

12Scheduling in Practice

Chapter 12 + Appendix11Real-Time Support in Operating Systems

Pre-ReadingLectureTopic

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Real Time Support in Operating Systems

• Real time versus general purpose operating systems
– Real time constraints
– Implications on real time operating system (RTOS) design

• Real time operating system concepts
– Overall system architecture

• Microkernels and nanokernels

– Time services and scheduling
• Cyclic executives, tasks
• Clocks and timers
• Interrupts and devices

– Optimising system calls
– Other services

• Messaging, signals and events
• Concurrency, synchronisation and locking
• Memory protection

• Examples of real-time operating systems

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Constraints on Practical Real Time Systems

• Need predictable behaviour
– Raw performance less critical than consistent and predictable

performance; hence focus on scheduling algorithms
– Don’t want to fairly share resources

• Need to run on a wide range of hardware
– Often custom hardware for each application
– Not just peripherals: system-on-a-chip designs are common

• Often resource constrained
– Limited memory, CPU, power consumption, size, weight

• Often safety critical
– Limited functionality is easier to verify and certify

• Embedded and may be difficult to upgrade
– Closed set of applications, trusted code
– Strong reliability requirements
– How to upgrade software in a car engine? A DVD player? After

you shipped millions of devices?

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Implications on Operating Systems

• General purpose operating systems are not well suited for
real time systems
– They assume plentiful resources that need to be fairly shared

amongst un-trusted users
– Exactly the opposite of an RTOS!

• Instead want something that is:
– Small and light on resources
– Predictable
– Customisable, modular and extensible
– Reliable

…and that can be demonstrated or proven to be so

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Real-Time Operating System Concepts

• A real-time operating system is typically implemented as a
microkernel, rather than a traditional monolithic kernel
– Limited and well defined functionality
– Easier to demonstrate correctness
– Easier to customise

• Provide rich scheduling primitives
• Provide rich support for concurrency
• Expose low-level system details to the applications

– Control of scheduling
– Power awareness
– Interaction with hardware devices

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Microkernel Architecture

Immediate
Interrupt
Service

Scheduling

Time
Services &
Scheduling

Case of

Trap

create_thread
suspend_thread
destroy_thread

create_timer
timer_sleep
timer_notify

other system calls

…
…

Return to user

Hardware/
Software

Exceptions

System
Calls

Clock
Interrupts

Kernel

Will not discuss recovery from
hardware and software exceptions
in this module: the usual safety
critical systems issues apply

External
Interrupts

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Microkernel Architecture

External
Interrupts

System
Calls

Clock
Interrupts

Immediate
Interrupt
Service

Scheduling

Time
Services &
Scheduling

Case of

create_thread
suspend_thread
destroy_thread

create_timer
timer_sleep
timer_notify

other system calls

…
…

Return to userKernel

Three reasons why the system can
take control from an executing thread:
• service timers and schedule tasks
• handle external hardware interrupts
• respond to a system call

All other services built above these

Trap

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Time Services: Basic

• The minimal time service is a scheduled clock pulse with
fixed period

• Allows implementation of a static cyclic schedule, provided:
– tasks periods are a multiples of the clock period
– all interactions with hardware to be done on a polled basis

• Operating system becomes a single task cyclic executive:

setup timer
c = 0;
while (1) {

suspend until timer expires
c++;
do tasks due every cycle
if ((c % 2) == 0) do tasks due every 2nd cycle
if (((c+1) % 3) == 0) {

do tasks due every 3rd cycle, with phase 1
}

}

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Time Services: Helicopter Control Example

setup timer
c = 0;
while (1) {

Suspend until 1/180th second timer expires
c++;
Select data source, collect and validate sensor data
if (failure occurred) reconfigure system;
if ((c % 6) == 0) { // 30Hz

Collect Keyboard input and mode selection
Perform data normalization and transform coordinates
Update tracking reference
Compute outer pitch- and roll-control parameters
Compute outer yaw- and collective-control parameters

}
if ((c % 2) == 0) { // 90Hz

Compute inner pitch-control parameters
Compute inner roll- and collective-control parameters

}
Compute the inner yaw-control parameters
Output flight control commands based on computed parameters
Carry out built-in-test

}

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Nanokernel Architecture

Immediate
Interrupt
Service

Scheduling

Time
Services &
Scheduling

Case of

Trap

create_thread
suspend_thread
destroy_thread

create_timer
timer_sleep
timer_notify

other system calls

…
…

Return to userKernel

Sometimes a microkernel is too
resource intensive, and a limited
nanokernel is used instead

Simply provides a clock interrupt
that can be used to drive a cyclic
executive

Only for the simplest systems,
with a static task set and polled
hardware devices

Commonly want more features,
but sometimes useful. We won’t
discuss these much further…

External
Interrupts

System
Calls

Clock
Interrupts

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Time Services: Tasks and Scheduling

• Cyclic executives trivial to implement, but inflexible and only
allow simple clock-driven schedules to be implemented

• If we want to implement other scheduling algorithms, need
support for tasks
– Operations to create, destroy, suspend and resume tasks

– Can be implemented as either threads or processes
• Processes not always supported by the hardware, or useful

• Scheduling triggered by:
– Periodic timer interrupt
– Threads being created or destroyed
– Threads suspension and resumption

• Most systems support fixed priority scheduling of tasks
– A few also support deadline scheduling

• Implementation of schedulers will be discussed in detail
tomorrow

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Time Services: Other Clocks

• In addition to the clock interrupt used for scheduling,
most systems support time service interrupts derived
from high resolution hardware timers
– Either “one-shot” timers or a high frequency interrupt source
– Useful to application authors

• Two key issues should be noted:
– The time service hardware often has nanosecond resolution,

but this is rarely available to the application
• Interrupt latencies, operating system overheads, etc, cause

inaccuracy and limit the resolution to microseconds on most
systems

– Beware that the frequency of crystal oscillators varies with
temperature

• Supposedly identical systems in different environments observe
different clock frequencies; problematic for networked systems

• Causes observed clock rate to drift over time

• Will discuss clocks and timers more on Thursday

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Interrupts and Device Interaction

• In addition to driving the scheduler and timing services,
interrupts are often used to signal that hardware devices
require attention
– Useful for devices that require sporadic attention
– Polling is an alternative, that may be lower overhead, for

devices that need periodic attention

• Interrupts have priority, asserted by the hardware
• The system may support more devices than interrupt

request lines
– Require the interrupt service routine to poll multiple devices

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Interrupts and Device Interaction

• Interrupts may be serviced immediately
– Fast response to device
– Significant delay to currently scheduled task

User
Kernel

Task 1 Task 1 continues

Interrupt service
routine

• Interrupts are disabled using the interrupt service routine
– To safely modify the interrupt management data structures

• Problematic if there are multiple interrupt sources, since
high priority interrupts can be blocked

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Interrupt Threads

• Alternatively, an interrupt service routine may schedule a
kernel thread to complete the interaction
– Slower to service the device
– Potentially less impact on interrupted task, although this

depends on the priority of the kernel thread

Interrupt
thread

User
Kernel

Task 1 Task 1 continues

Interrupt service
routine

• Reduces the blocking during the interrupt service routine,
and allows high priority interrupts to activate
– Threads servicing the high priority interrupt run with high

priority, and pre-empt those servicing other interrupts

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Interrupts and Device Interactions

• Interrupt latency varies:
– Depending how many devices must be polled to locate the

interrupt source
– Depending on the tasks executing when the interrupt arrives
– If multiple interrupts occurs at once

• Affects response time to hardware interrupts
• Affects clock and time service latency
• Implications:

– Jitter on job release times
– Inaccuracy on timers

…will affect scheduling

• Will discuss low level programming, interrupts and device
interactions more in lecture 19

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Synchronous System Calls

• Tasks invoke the microkernel
through system calls

• The kernel usually executes in
separate a memory space,
protected from user tasks
– A system calls traps to kernel

mode, switches protection
domains, and saves the
context of the user thread

– Reduces to a function call if
the system doesn’t implement
memory protection

• The call name and arguments
are retrieved from the stack,
and executed by the kernel on
behalf of the thread

• When a system call completes
– the kernel saves the result
– switches protection domains

and returns to user mode (if
necessary).

– the highest priority thread is
executed (may differ from the
thread that initiated the call)

User
Kernel

Task 1 Task 2

System call invoked
by task 1

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Synchronous System Calls

• Some systems cannot be pre-empted during system calls
– Worst case system call latency must be taken into account

when scheduling
• Systems calls might block for 100s of milliseconds, if they result in

access to a hardware device

– Example: low latency patches for Linux to reduce audio skip

System call latency

User
Kernel

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Asynchronous System Calls

• An alternative is an asynchronous system call, which asks
the kernel to perform an operation and returns immediately
– Non-blocking networking and I/O functions
– Inter-process communication

• Such calls generate a kernel thread to service the request
– The kernel thread may execute with various priority values,

depending on its use

• Complicates design, since results returned asynchronously

Task 1 Task 2
User
Kernel

System call invoked
by task 1

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Other Operating System Features

• In addition to basic time and scheduling services, interrupts,
system calls many standard operating system features are
also useful in real time operating systems:
– Messaging, Signals and Events
– Synchronisation and Locking
– Memory Access and Protection

• Concepts and services often need to be slightly modified
from their general purpose equivalents

• Typically implemented as system service providers
outside the microkernel
– Operating system literature refers to these as servers; we use

the term system service provider to avoid confusion with other
server tasks scheduled at the application level

– Allows them to be optional, only implemented when needed

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Messaging, Signals and Events

• In addition to typical inter-process communication features,
real time operating systems provide:
– Message queues (synchronous, as an alternative to pipes)

• Messages delivered in priority order
• Priority inheritance based on message reception
• Notification and wakeup on message arrival

– Asynchronous event notification (application defined signals)
– Real time signals, priority queued, carrying data

• Messaging, signals and events will be discussed more on
Thursday

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Synchronisation and Locking

• In addition to mutexes, locks, condition variables and
semaphores, a real-time operating system may support:
– Priority inheritance and restoration
– The priority ceiling protocol, or the similar ceiling priority

protocol
– Ability to disable priority inheritance to reduce overheads, if not

needed

• The synchronisation and locking primitives provided by
typical real-time operating systems will be described on
Thursday

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Memory Access and Protection

• Many embedded real time systems do not use memory
protection
– Any task can directly access any other task’s memory
– Any task can directly access kernel memory

• If you have a closed system that has been proved correct,
then memory protection is just unnecessary overhead
– Time overheads, and unpredictability

• Context switch overhead
• Unpredictable access times, especially if virtual memory used

– Memory overheads
• Protection provided on a per-page basis, leads to wastage
• Overhead of maintaining the page tables and protection maps

• Most commercial RTOS provide memory protection as an
option, if supported by the hardware
– Requires the system to fail-safe if an illegal access trap occurs
– Useful for complex (or reconfigurable) systems

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Summary of RTOS Features

• Modular and scalable
– The microkernel is small
– Configurable through system service provider routines

• Efficient
– Low overhead, highly optimised

• System calls and interrupt handling optimised
– To make the non-premptible regions small and predictable
– Many actions deferred to kernel threads, with appropriate

priority

• Scheduling
– Fixed priority scheduling, many priority levels, reconfigurable
– Limited support for deadline scheduling

• Priority inversion control
• Clock and timer resolution on the order microseconds
• Memory management

– No paging, no cache, protection optional

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
RTOS Standards

• Operating systems are notoriously non-standard
• IEEE 1003 POSIX®

– “Portable Operating System Interface”
– Started as a subset of Unix functionality, various (optional)

extensions have been added to support real-time scheduling,
signals, message queues, etc.

– “The name POSIX was suggested by Richard Stallman. It is
expected to be pronounced pahz-icks, as in positive, not poh-
six, or other variations. The pronunciation has been published
in an attempt to promulgate a standardized way of referring
to a standard operating system interface.”

• Widely implemented:
– Widespread support in RTOS
– Partial support in Unix variants
– Limited support in Linux and Windows

• Will discuss more later in the module…

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Example Real Time Operating Systems

Commercial RTOS:
• QNX/Neutrino
• VxWorks
• RTLinux

General purpose systems with real-time extensions:
• Windows NT
• Unix/Linux

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Example Real Time Operating Systems

Commercial RTOS:
• QNX/Neutrino
• VxWorks
• RTLinux

General purpose systems with real-time extensions:
• Windows NT
• Unix/Linux

Traditional hard RTOS:
• Dedicated real time operating systems
• Provide all the features discussed
• Fully POSIX compliant, with extensions

The book talks about these, and others,
in some detail

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Example Real Time Operating Systems

Commercial RTOS:
• QNX/Neutrino
• VxWorks
• RTLinux

General purpose systems with real-time extensions:
• Windows NT
• Unix/Linux

• Microkernel hard RTOS
• Supports most features described
• Runs Linux as a low priority server

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Example Real Time Operating Systems

Commercial RTOS:
• QNX/Neutrino
• VxWorks
• RTLinux

General purpose systems with real-time extensions:
• Windows NT
• Unix/Linux

• Suitable for soft real time applications
• Support a subset of RTOS features

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Example Real Time Operating Systems

Commercial RTOS:
• QNX/Neutrino
• VxWorks
• RTLinux

General purpose systems with real-time extensions:
• Windows NT
• Unix/Linux

Will be used as examples during the rest of the module…

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Summary

By now, you should know:
• The structure of the rest of the module
• An overview of real time operating systems, and how they

differ from conventional systems
• An understanding of some of the sources of timing

inaccuracy in real systems

	Real-time Support in Operating Systems
	Lecture Outline
	Real Time & Embedded Systems
	Real Time & Embedded Systems
	Real Time & Embedded Systems
	Real Time Support in Operating Systems
	Constraints on Practical Real Time Systems
	Implications on Operating Systems
	Real-Time Operating System Concepts
	Microkernel Architecture
	Microkernel Architecture
	Time Services: Basic
	Time Services: Helicopter Control Example
	Nanokernel Architecture
	Time Services: Tasks and Scheduling
	Time Services: Other Clocks
	Interrupts and Device Interaction
	Interrupts and Device Interaction
	Interrupt Threads
	Interrupts and Device Interactions
	Synchronous System Calls
	Synchronous System Calls
	Asynchronous System Calls
	Other Operating System Features
	Messaging, Signals and Events
	Synchronisation and Locking
	Memory Access and Protection
	Summary of RTOS Features
	RTOS Standards
	Example Real Time Operating Systems
	Example Real Time Operating Systems
	Example Real Time Operating Systems
	Example Real Time Operating Systems
	Example Real Time Operating Systems
	Summary

