
Real Time and Embedded Systems 5 February 2004

Lecture 8 1

5 February 2004 Lecture 8 1

Scheduling Aperiodic and Sporadic Jobs in
Priority-driven Systems

More Definitions
A task that behaves more or less like a periodic task and is
created for the purpose of executing aperiodic jobs is called a
periodic server.
A periodic server, TPS = (φPS, pPS, ePS) never executes for more
than ePS units of time in any time interval of length pPS.
The parameter ePS is called the execution budget (or simply
budget) of the periodic server.
The ratio uPS = ePS / pPS is the size of the periodic server.
A poller is a kind of periodic server; at the beginning of each
period, the budget of the poller is set to eS – i.e. its budget is
replenished by eS units
A time instant when the server budget is replenished is called a
replenishment time.

5 February 2004 Lecture 8 2

Scheduling Aperiodic and Sporadic Jobs in
Priority-driven Systems

Yet More Definitions
A periodic server is backlogged whenever the aperiodic job
queue is nonempty
The server is idle if the queue is empty
The server is eligible (ready) for execution ONLY WHEN IT IS
BACKLOGGED AND HAS BUDGET
The server is scheduled just like any other periodic task based
upon the priority scheme used by the scheduling algorithm
When the server is scheduled and executes aperiodic jobs, it
consumes its budget at the rate of 1 per unit time
The server budget has been exhausted when the budget
becomes 0.
Different kinds of periodic servers differ in how the server budget
changes when the server still has budget but the server is idle.

Real Time and Embedded Systems 5 February 2004

Lecture 8 2

5 February 2004 Lecture 8 3

Scheduling Aperiodic and Sporadic Jobs in
Priority-driven Systems

Bandwidth-preserving server algorithms
A deficiency of the polling server algorithm is that if the
server is scheduled when it is not backlogged, it loses its
execution budget until it is replenished when it is next
released; an aperiodic job arriving just after the polling
server has been scheduled and found the aperiodic job
queue empty will have to wait until the next replenishment
time
We would like to be able to preserve the execution budget
of the server when it finds an empty queue, such that it can
execute an aperiodic job that arrives later in the period if
doing so will not affect the correctness of the schedule
Algorithms that improve the polling approach in this
manner are called bandwidth-preserving server
algorithms

5 February 2004 Lecture 8 4

Scheduling Aperiodic and Sporadic Jobs in
Priority-driven Systems

Attributes of bandwidth-preserving (BP) algorithms
Bandwidth-preserving servers are periodic servers
Each algorithm is defined by a set of consumption and replenishment
rules

Consumption – conditions under which the execution budget is preserved and
consumed
Replenishment – how the budget is replenished

How do such servers work?
A backlogged BP server is ready for execution when it has budget.
The scheduler keeps track of the consumption of the server budget and
suspends the server when the budget is exhausted or the server becomes
idle.
The scheduler moves the server back to the ready queue once it replenishes
the server budget if the server is backlogged at that time.
The server suspends itself whenever it finds the aperiodic job queue empty –
i.e. when it becomes idle.
When the server becomes backlogged again upon the arrival of an aperiodic
job, the scheduler puts the server back on the ready queue if the server has
budget at that time.

Real Time and Embedded Systems 5 February 2004

Lecture 8 3

5 February 2004 Lecture 8 5

Scheduling Aperiodic and Sporadic Jobs in
Priority-driven Systems

Deferrable server
The simplest of BP servers
Consumption rule – the execution budget of the
server is consumed at the rate of one per unit
time whenever the server executes
Replenishment rule – the execution budget of the
server is set to eS at time instants kpS, for k = 0, 1,
2, …
Note that the server is not allowed to carry over
budget from period to period

5 February 2004 Lecture 8 6

Scheduling Aperiodic and Sporadic Jobs in
Priority-driven Systems

Schedulability
To determine the schedulability of a fixed-priority system with a
deferrable server, we need to determine the situation that
corresponds to a critical instant
Often, the deferrable server is given the highest priority in a fixed-
priority system
In a fixed-priority system T in which Di ≤ pi for all i, and there is a
deferrable server (, pS, eS) with the highest priority among all
tasks, a critical instant of every periodic tasks Ti occurs at a time
t0 when all of the following are true:

One of its jobs Ji,c is released at t0
A job in every higher-priority periodic task is released at t0
The budget of the server is eS at t0, one or more aperiodic jobs are
released at t0, and they keep the server backlogged hereafter
The next replenishment time of the server is t0 + eS

Real Time and Embedded Systems 5 February 2004

Lecture 8 4

5 February 2004 Lecture 8 7

Scheduling Aperiodic and Sporadic Jobs in
Priority-driven Systems

Time-demand analysis for fixed-priority systems
This definition of critical instant is identical to that for the periodic
tasks without the deferrable server + the worst-case
requirements for the server
Therefore, the expression for the time-demand function becomes
wi(t) = ei + [t/p1]e1 + [t/p2]e2 + … + [t/pi-1]ei-1 + eS + [(t-eS)/pS]eS

To determine whether the task Ti is schedulable, we simply have
to check whether wi(t) ≤ t for some t ≤ Di.
If there are N tasks in the system, plus the deferrable server, we
can prove the system schedulable if we can prove that wN(t) ≤ t
for some t ≤ DN.
Remember, this is a sufficient condition, not necessary – i.e. if
this condition is not true, the system may not be schedulable

5 February 2004 Lecture 8 8

Scheduling Aperiodic and Sporadic Jobs in
Priority-driven Systems

Schedulability of deadline-driven systems with a deferrable
server

The deadline of a deferrable server is its next replenishment
time
A period task Ti in a system of N independent, preemptive,
periodic tasks is schedulable with a deferrable server with period
pS, execution budget eS, and utilization uS, according to the EDF
algorithm if

11
),min(1

≤

 −
++∑

= i

ss
s

N

k kk

k

D
epu

pD
e

Note that if the deferrable server was being treated just like any other
periodic task, the second term on the left hand side would just be uS.

Real Time and Embedded Systems 5 February 2004

Lecture 8 5

5 February 2004 Lecture 8 9

Scheduling Aperiodic and Sporadic Jobs in
Priority-driven Systems

Sporadic servers
Limitation of deferrable servers – they may delay
lower-priority tasks for more time than a periodic
task with the same period and execution time
Sporadic server are designed to eliminate this
limitation. Its consumption and replenishment
rules ensure that a sporadic server with period pS
and budget eS never demands more processor
time than a periodic task with the same
parameters

5 February 2004 Lecture 8 10

Scheduling Aperiodic and Sporadic Jobs in
Priority-driven Systems

Sporadic servers in fixed-priority systems
System T of N independent, preemptable, periodic tasks
One sporadic server, with arbitrary priority πS; if this is the same
priority as some periodic task, the tie is broken in favour of the
server
TH is the subset of periodic tasks with higher priorities than the
server
TH idles when no job in TH is ready for execution; TH is busy
otherwise
A server busy interval is a time interval which begins when an
aperiodic job arrives at an empty aperiodic job queue and ends
when the queue becomes empty again
pS and eS have been chosen such that the system T plus the
sporadic server is schedulable according to the fixed-priority
algorithm use by the system

Real Time and Embedded Systems 5 February 2004

Lecture 8 6

5 February 2004 Lecture 8 11

Scheduling Aperiodic and Sporadic Jobs in
Priority-driven Systems

Consumption and replenishment rules
Definitions

tr denotes the latest (actual) replenishment time
tf denotes the first instant after tr at which the server begins to
execute
te denotes the latest effective replenishment time
At any time t, BEGIN is the beginning instant of the earliest busy
interval among the latest contiguous sequence of busy intervals of TH
that started before t.
END is the end of the latest busy interval in this sequence if this
interval ends before t and equal to ∞ if the interval ends after t

The scheduler sets tr to the current time each time it replenishes the
server’s execution budget.
When the server first begins to execute after a replenishment, the
scheduler determines the latest effective replenishment time te
based on the history of the system and sets the next replenishment
time to te+pS

5 February 2004 Lecture 8 12

Scheduling Aperiodic and Sporadic Jobs in
Priority-driven Systems

Simple Sporadic Server
Consumption rules – at any time t after tr, the
server’s budget is consumed at the rate of 1 per
unit time until the budget is exhausted when
either of the following two conditions is true.
When they are not true, the server holds its
budget

1. The server is executing
2. The server has executed since tr and END < t

Real Time and Embedded Systems 5 February 2004

Lecture 8 7

5 February 2004 Lecture 8 13

Scheduling Aperiodic and Sporadic Jobs in
Priority-driven Systems

Simple Sporadic Server
Replenishment rules

1. Initially when the system begins execution and each time
that the budget is replenished, set the execution budget to
eS and tr = the current time.

2. At time tf, if END = tf, te = max(tr, BEGIN). If END < tf, te =
tf. The next replenishment time is set to te + pS.

3. The next replenishment occurs at the next replenishment
time (te + pS), except under the following conditions:

a. If te + pS is earlier than tf, the budget is replenished as soon as it is
exhausted

b. If T becomes idle before te + pS, and becomes busy again at tb,
the budget is replenished at min(tb, te + pS)

5 February 2004 Lecture 8 14

Scheduling Aperiodic and Sporadic Jobs in
Priority-driven Systems

What do these rules mean in practice
Consumption rule 1 (C1) and Replenishment rule 1 (R1)
are identical to those for deferrable server
C2 says that the server consumes its budget at any time t if
it has executed since tr, it is suspended at time t, and TH is
idle.
R2 says that the next replenishment time is pS units after tr
(i.e. the effective replenishment time te is tr) only if TH has
been busy through the interval (tr, tf); otherwise, te is later; it
is the latest instant at which an equal or lower-priority task
executes (or the system is idle) in (tr, tf)

Real Time and Embedded Systems 5 February 2004

Lecture 8 8

5 February 2004 Lecture 8 15

Scheduling Aperiodic and Sporadic Jobs in
Priority-driven Systems

More discussion
C1 ensures that each server job never executes for more
time than its execution budget eS.
C2 applies when the server becomes idle while it still has
budget – the budget of an idle simple sporadic server
continues to decrease with time as if the server were
executing
These two rules guarantee that a server job never
executes at times when the corresponding job of the
periodic task TS does not.
C2 also means that the server holds onto its budget at any
time t after tr in two situations:

Some higher-priority job is executing
The server has not executed since tr

5 February 2004 Lecture 8 16

Scheduling Aperiodic and Sporadic Jobs in
Priority-driven Systems

More discussion (continued)
R2 and R3a cause the next replenishment time to be at least pS
time units after the effective release time te; te ≥ tr; the next
release time is never earlier than the next replenishment time –
therefore, consecutive replenishments occur at least pS units
apart
R2 makes the effective replenishment time as soon as possible
without making the server behave differently from a periodic task.

At tf, te is set to tr if higher-priority tasks have executed throughout the
interval (tr, tf); this emulates a job in TS released at tr but has to wait
for higher-priority tasks to become idle before it can execute
If lower-priority tasks executed in this interval, te is set to the latest
time instant when a lower-priority task executes; this emulates a job
in TS that is released at te and waits for higher-priority tasks to
become idle and then begins execution.

Real Time and Embedded Systems 5 February 2004

Lecture 8 9

5 February 2004 Lecture 8 17

Scheduling Aperiodic and Sporadic Jobs in
Priority-driven Systems

More discussion (continued)
R3a applies when the current server job has to
wait for more than pS units of time before its
execution begins; the budget is replenished as
soon as it is exhausted

Real Time and Embedded Systems 10 February 2004

Lecture 8.5 1

10 February 2004 Lecture 8.5 1

Scheduling Aperiodic and Sporadic Jobs in
Priority-driven Systems

Recall Simple Sporadic Server for fixed-priority
Release rules: the server is enabled whenever it is backlogged and
has budget
Consumption rules: budget is consumed when

1. the server is executing
2. the server has executed since tr and (lower-priority jobs are

executing OR the system is idle)
Replenishment rules

1. initially, and at each replenishment time, budget := es and set tr :=
current time

2. tf is the time that the server is 1st scheduled after tr; calculate te as:
a. If tf coincides with the end of a higher-priority job, te := max(tr, BEGIN)
b. If lower-priority job or idle system preceded tf, te := tf

the next replenishment time is set for te + ps
3. Replenishment occurs at te + ps except …

a. If te + ps < tf, budget is replenished as soon as exhausted
b. If system idles before te + ps and becomes busy again at tb < te + ps, the

budget is replenished at tb

10 February 2004 Lecture 8.5 2

Scheduling Aperiodic and Sporadic Jobs in
Priority-driven Systems

What do these rules really mean?
View each replenishment time as the nominal “release time” of a server job;
actual release time is te
C1 implies each server job executes for no more time than its execution
budget
C2 implies that the server retains its budget if

A higher-priority job is executing, or
It has not executed since tr
This implies that if the server idles while it has budget, budget continues to
decrease over time

R2 makes the effective replenishment time as soon as possible
commensurate with the server acting like a periodic task (, ps, es)
R3a assumes that Ds > ps, and that this fact was taken into account in
determining the schedulability of the system
The system is correct without rule R3b; the text discusses why it is still
correct with R3b; in essence, it causes replenishment to happen sooner if
the system becomes busy after an idle interval that the system will be
able to react more quickly to the arrival of an aperiodic task

Real Time and Embedded Systems 10 February 2004

Lecture 8.5 2

10 February 2004 Lecture 8.5 3

Scheduling Aperiodic and Sporadic Jobs in
Priority-driven Systems

Simple Sporadic Server for dynamic-priority (EDF)
Release rules: the server is enabled whenever it is backlogged, it has
budget, and its deadline d is defined
Consumption rules: budget is consumed when

1. the server is executing
2. the deadline d is defined, the server is idle, and there are no jobs with a

deadline before d ready for execution
Replenishment rules

1. initially, and at each replenishment time, budget := es and set tr := current
time; initially, te and d are undefined

2. whenever te is defined, d = te + ps, and the next replenishment time is te + ps;
te defined as follows:

a. At time t when an aperiod job arrives at an empty queue
i. If only jobs with deadlines earlier than tr + ps have executed in (tr, t), te := tr
ii. If any jobs with deadlines after tr +ps have executed in (tr, t), te := t

b. At replenishment time tr
i. If server is backlogged, te := tr
ii. If server is idle, te and d become undefined

3. Replenishment occurs at te + ps except …
a. If te + ps < t when server first becomes backlogged after tr, budget is replenished as

soon as exhausted
b. budget is replenished at end of each idle interval of T

10 February 2004 Lecture 8.5 4

Scheduling Aperiodic and Sporadic Jobs in
Priority-driven Systems

Consider the following system:
T1 = (, 3, 1)
T2 = (, 4, 0.5)
Ts = (, 5, 0.5)
T3 = (, 10, 2)

Aperiodic tasks A1, A2, A3, each requiring 0.75 units of
time, arrive at 0.5, 12.25, 17.
Show the schedules that result and calculate the
response times for Ai for the following servers for both
fixed- and dynamic-priority algorithms:

Polling
Deferrable
Simple sporadic

RM + Polling Server
Time Aperiodic Q Budget Run Q Execute
0.00 Ø 0.5 J1,1[1]; J2,1[0.5]; JS; J3,1[2] J1,1
0.50 A1[0.75] 0.5 J1,1[0.5]; J2,1[0.5]; JS; J3,1[2] J1,1
1.00 A1[0.75] 0.5 J2,1[0.5]; JS; J3,1[2] J2,1
1.50 A1[0.75] 0.5 JS; J3,1[2] JS
2.00 A1[0.25] 0 J3,1[2] J3,1
3.00 A1[0.25] 0 J1,2[1]; J3,1[1] J1,2
4.00 A1[0.25] 0 J2,2[0.5]; J3,1[1] J2,2
4.50 A1[0.25] 0 J3,1[1] J3,1
5.00 A1[0.25] 0.5 JS; J3,1[0.5] JS
5.25 Ø 0.25 JS; J3,1[0.5] JS
5.25 Ø 0 J3,1[0.5] J3,1
5.75 Ø 0 Ø -
6.00 Ø 0 J1,3[1] J1,3
7.00 Ø 0 Ø -
8.00 Ø 0 J2,3[0.5] J2,3
8.50 Ø 0 Ø -
9.00 Ø 0 J1,4[1] J1,4

10.00 Ø 0.5 JS; J3,2[2] JS
10.00 Ø 0 J3,2[2] J3,2
12.00 Ø 0 J1,5[1]; J2,4[0.5] J1,5
12.25 A2[0.75] 0 J1,5[0.75]; J2,4[0.5] J1,5
13.00 A2[0.75] 0 J2,4[0.5] J2,4
13.50 A2[0.75] 0 Ø -
15.00 A2[0.75] 0.5 J1,6[1]; JS J1,6
16.00 A2[0.75] 0.5 J2,5[0.5]; JS J2,5
16.50 A2[0.75] 0.5 JS JS
17.00 A2[0.25]; A3[0.75] 0 Ø -
18.00 A2[0.25]; A3[0.75] 0 J1,7[1] J1,7
19.00 A2[0.25]; A3[0.75] 0 Ø -
20.00 A2[0.25]; A3[0.75] 0.5 J2,6[0.5]; JS; J3,3[2] J2,6
20.50 A2[0.25]; A3[0.75] 0.5 JS; J3,3[2] JS
20.75 A3[0.75] 0.25 JS; J3,3[2] JS
21.00 A3[0.5] 0 J1,8[1]; J3,3[2] J1,8
22.00 A3[0.5] 0 J3,3[2] J3,3
24.00 A3[0.5] 0 J1,9[1]; J2,7[0.5] J1,9
25.00 A3[0.5] 0.5 J2,7[0.5]; JS J2,7
25.50 A3[0.5] 0.5 JS JS
26.00 Ø 0 Ø -

Response time for A1 = 5.25 – 0.5 = 4.75
Response time for A2 = 20.75 – 12.25 = 8.50
Response time for A3 = 26.00 – 17.00 = 9.00

RM + Deferrable Server
Time Aperiodic Q Budget Run Q Execute
0.00 Ø 0.5 J1,1[1]; J2,1[0.5]; J3,1[2] J1,1
0.50 A1[0.75] 0.5 J1,1[0.5]; J2,1[0.5]; JS; J3,1[2] J1,1
1.00 A1[0.75] 0.5 J2,1[0.5]; JS; J3,1[2] J2,1
1.50 A1[0.75] 0.5 JS; J3,1[2] JS
2.00 A1[0.25] 0 J3,1[2] J3,1
3.00 A1[0.25] 0 J1,2[1]; J3,1[1] J1,2
4.00 A1[0.25] 0 J2,2[0.5]; J3,1[1] J2,2
4.50 A1[0.25] 0 J3,1[1] J3,1
5.00 A1[0.25] 0.5 JS; J3,1[0.5] JS
5.25 Ø 0.25 J3,1[0.5] J3,1
5.75 Ø 0.25 Ø -
6.00 Ø 0.25 J1,3[1] J1,3
7.00 Ø 0.25 Ø -
8.00 Ø 0.25 J2,3[0.5] J2,3
8.50 Ø 0.25 Ø -
9.00 Ø 0.25 J1,4[1] J1,4

10.00 Ø 0.5 J3,2[2] J3,2
12.00 Ø 0.5 J1,5[1]; J2,4[0.5] J1,5
12.25 A2[0.75] 0.5 J1,5[0.75]; J2,4[0.5]; JS J1,5
13.00 A2[0.75] 0.5 J2,4[0.5]; JS J2,4
13.50 A2[0.75] 0.5 JS JS
14.00 A2[0.25] 0 Ø -
15.00 A2[0.25] 0.5 J1,6[1]; JS J1,6
16.00 A2[0.25] 0.5 J2,5[0.5]; JS J2,5
16.50 A2[0.25] 0.5 JS JS
16.75 Ø 0.25 Ø -
17.00 A3[0.75] 0.25 JS JS
17.25 A3[0.50] 0 Ø -
18.00 A3[0.50] 0 J1,7[1] J1,7
19.00 A3[0.50] 0 Ø -
20.00 A3[0.50] 0.5 J2,6[0.5]; JS; J3,3[2] J2,6
20.50 A3[0.50] 0.5 JS; J3,3[2] JS
21.00 Ø 0 J1,8[1]; J3,3[2] J1,8
22.00 Ø 0 J3,3[2] J3,3
24.00 Ø 0 J1,9[1]; J2,7[0.5] J1,9

Response time for A1 = 5.25 – 0.5 = 4.75
Response time for A2 = 16.75 – 12.25 = 4.50
Response time for A3 = 21 – 17 = 4.00

RM + Sporadic Server
t tr te BEGIN END Aperiodic Q Budget Run Q Execute

0.00 0 ? 0 ∞

Ø 0.5 J1,1[1]; J2,1[0.5]; J3,1[2] J1,1

0.50 0 ? 0 ∞ A1[0.75] 0.5 J1,1[0.5]; J2,1[0.5]; JS; J3,1[2] J1,1
1.00 0 ? 0 ∞ A1[0.75] 0.5 J2,1[0.5]; JS; J3,1[2] J2,1
1.50 0 0 0 1.5 A1[0.75] 0.5 JS; J3,1[2] JS
2.00 0 0 0 1.5 A1[0.25] 0 J3,1[2] J3,1
3.00 0 0 3.0 ∞ A1[0.25] 0 J1,2[1]; J3,1[1] J1,2
4.00 0 0 3.0 ∞ A1[0.25] 0 J2,2[0.5]; J3,1[1] J2,2
4.50 0 0 3.0 4.5 A1[0.25] 0 J3,1[1] J3,1
5.00 5 5 3.0 4.5 A1[0.25] 0.5 JS; J3,1[0.5] JS
5.25 5 5 3.0 4.5 Ø 0.25 J3,1[0.5] J3,1
5.5 5 5 3.0 4.5 Ø 0 J3,1[0.25] J3,1

5.75 5 5 3.0 4.5 Ø 0 Ø -
6.00 6 ? 6.0 ∞ Ø 0.5 J1,3[1] J1,3
7.00 6 ? 6.0 7.0 Ø 0.5 Ø -
8.00 8 ? 8.0 ∞ Ø 0.5 J2,3[0.5] J2,3
8.50 8 ? 8.0 8.5 Ø 0.5 Ø -
9.00 9 ? 9.0 ∞ Ø 0.5 J1,4[1] J1,4

10.00 9 ? 9.0 10.0 Ø 0.5 J3,2[2] J3,2
12.00 9 ? 12.0 ∞ Ø 0.5 J1,5[1]; J2,4[0.5] J1,5
12.25 9 ? 12.0 ∞ A2[0.75] 0.5 J1,5[0.75]; J2,4[0.5]; JS J1,5
13.00 9 ? 12.0 ∞ A2[0.75] 0.5 J2,4[0.5]; JS J2,4
13.50 9 12.0 12.0 13.5 A2[0.75] 0.5 JS JS
14.00 9 12.0 12.0 13.5 A2[0.25] 0 Ø -
15.00 15 ? 15.0 ∞ A2[0.25] 0.5 J1,6[1]; JS J1,6
16.00 15 ? 15.0 ∞ A2[0.25] 0.5 J2,5[0.5]; JS J2,5
16.50 15 15.0 15.0 16.5 A2[0.25] 0.5 JS JS
16.75 15 15.0 15.0 16.5 Ø 0.25 Ø -
17.00 15 15.0 15.0 16.5 A3[0.75] 0 Ø -
18.00 18 ? 18.0 ∞ A3[0.75] 0.5 J1,7[1]; JS J1,7
19.00 18 18.0 18.0 19.0 A3[0.75] 0.5 JS JS
19.5 18 18.0 18.0 19.0 A3[0.25] 0 Ø -

20.00 20 ? 20.0 ∞ A3[0.25] 0.5 J2,6[0.5]; JS; J3,3[2] J2,6
20.50 20 20 20.0 20.5 A3[0.25] 0.5 JS; J3,3[2] JS
20.75 20 20 20.0 20.5 Ø 0.25 J3,3[2] J3,3
21.00 20 20 20.0 20.5 Ø 0 J1,8[1]; J3,3[1.75] J1,8
22.00 Ø J3,3[1.75] J3,3
23.75 Ø Ø -

Response time for A1 = 5.25 – 0.5 = 4.75
Response time for A2 = 16.75 – 12.25 = 4.50
Response time for A3 = 20.75 – 17.0 = 3.75

EDF + Polling Server
Time Aperiodic Q Budget Run Q Execute
0.00 Ø 0.5 J1,1[1,3]; J2,1[0.5,4]; JS[0.5,5];

J3,1[2,10]
J1,1

0.50 A1[0.75] 0.5 J1,1[0.5,3]; J2,1[0.5,4]; JS[0.5,5];
J3,1[2,10]

J1,1

1.00 A1[0.75] 0.5 J2,1[0.5,4]; JS[0.5,5]; J3,1[2,10] J2,1
1.50 A1[0.75] 0.5 JS[0.5,5]; J3,1[2,10] JS
2.00 A1[0.25] 0 J3,1[2,10] J3,1
3.00 A1[0.25] 0 J1,2[1,6]; J3,1[1,10] J1,2
4.00 A1[0.25] 0 J2,2[0.5,8]; J3,1[1,10] J2,2
4.50 A1[0.25] 0 J3,1[1,10] J3,1
5.00 A1[0.25] 0.5 JS[0.5,10]; J3,1[0.5,10] JS
5.25 Ø 0.25 JS[0.25,10]; J3,1[0.5,10] JS
5.25 Ø 0 J3,1[0.5,10] J3,1
5.75 Ø 0 Ø -
6.00 Ø 0 J1,3[1,9] J1,3
7.00 Ø 0 Ø -
8.00 Ø 0 J2,3[0.5,12] J2,3
8.50 Ø 0 Ø -
9.00 Ø 0 J1,4[1,12] J1,4

10.00 Ø 0.5 JS[0.5,15]; J3,2[2,20] JS
10.00 Ø 0 J3,2[2,20] J3,2
12.00 Ø 0 J1,5[1,15]; J2,4[0.5,16] J1,5
12.25 A2[0.75] 0 J1,5[0.75,15]; J2,4[0.5,16] J1,5
13.00 A2[0.75] 0 J2,4[0.5,16] J2,4
13.50 A2[0.75] 0 Ø -
15.00 A2[0.75] 0.5 J1,6[1,18]; JS[0.5,20] J1,6
16.00 A2[0.75] 0.5 JS[0.5,20]; J2,5[0.5,20] JS
16.50 A2[0.25] 0 J2,5[0.5,20] J2,5
17.00 A2[0.25]; A3[0.75] 0 Ø -
18.00 A2[0.25]; A3[0.75] 0 J1,7[1,21] J1,7
19.00 A2[0.25]; A3[0.75] 0 Ø -
20.00 A2[0.25]; A3[0.75] 0.5 J2,6[0.5,24]; JS[0.5,25]; J3,3[2,30] J2,6
20.50 A2[0.25]; A3[0.75] 0.5 JS[0.5,25]; J3,3[2,30] JS
20.75 A3[0.75] 0.25 JS[0.25,25]; J3,3[2,30] JS
21.00 A3[0.5] 0 J1,8[1,24]; J3,3[2,30] J1,8
22.00 A3[0.5] 0 J3,3[2,30] J3,3
24.00 A3[0.5] 0 J1,9[1,27]; J2,7[0.5,28] J1,9
25.00 A3[0.5] 0.5 J2,7[0.5,28]; JS[0.5,30] J2,7
25.50 A3[0.5] 0.5 JS[0.5,30] JS
26.00 Ø 0 Ø -

Response time for A1 = 5.25 – 0.5 = 4.75
Response time for A2 = 20.75 – 12.25 = 8.50
Response time for A3 = 26.00 – 17.00 = 9.00

EDF + Deferrable Server
Time Aperiodic Q Budget Run Q Execute
0.00 Ø 0.5 J1,1[1,3]; J2,1[0.5,4]; J3,1[2,10] J1,1
0.50 A1[0.75] 0.5 J1,1[0.5,3]; J2,1[0.5,4]; JS[0.5,5]; J3,1[2,10] J1,1
1.00 A1[0.75] 0.5 J2,1[0.5,4]; JS[0.5,5]; J3,1[2,10] J2,1
1.50 A1[0.75] 0.5 JS[0.5,5]; J3,1[2,10] JS
2.00 A1[0.25] 0 J3,1[2,10] J3,1
3.00 A1[0.25] 0 J1,2[1,6]; J3,1[1,10] J1,2
4.00 A1[0.25] 0 J2,2[0.5,8]; J3,1[1,10] J2,2
4.50 A1[0.25] 0 J3,1[1,10] J3,1
5.00 A1[0.25] 0.5 JS[0.5,10]; J3,1[0.10] JS
5.25 Ø 0.25 J3,1[0.5,10] J3,1
5.75 Ø 0.25 Ø -
6.00 Ø 0.25 J1,3[1,9] J1,3
7.00 Ø 0.25 Ø -
8.00 Ø 0.25 J2,3[0.5,12] J2,3
8.50 Ø 0.25 Ø -
9.00 Ø 0.25 J1,4[1,12] J1,4

10.00 Ø 0.5 J3,2[2,20] J3,2
12.00 Ø 0.5 J1,5[1,15]; J2,4[0.5,16] J1,5
12.25 A2[0.75] 0.5 J1,5[0.75,15]; JS[0.5,15]; J2,4[0.5,16] J1,5
13.00 A2[0.75] 0.5 JS[0.5,15]; J2,4[0.5,16] JS
13.50 A2[0.75] 0 J2,4[0.5,16] J2,4
14.00 A2[0.25] 0 Ø -
15.00 A2[0.25] 0.5 J1,6[1,18]; JS[0.5,20] J1,6
16.00 A2[0.25] 0.5 JS[0.5,20]; J2,5[0.5,20] JS
16.25 Ø 0.25 J2,5[0.5,20] J2,5
16.75 Ø 0.25 Ø -
17.00 A3[0.75] 0.25 JS[0.25,20] JS
17.25 A3[0.50] 0 Ø -
18.00 A3[0.50] 0 J1,7[1,21] J1,7
19.00 A3[0.50] 0 Ø -
20.00 A3[0.50] 0.5 J2,6[0.5,24]; JS[0.5,25]; J3,3[2,30] J2,6
20.50 A3[0.50] 0.5 JS[0.5,25]; J3,3[2,30] JS
21.00 Ø 0 J1,8[1,24]; J3,3[2,30] J1,8
22.00 Ø 0 J3,3[2,30] J3,3
24.00 Ø 0 J1,9[1,27]; J2,7[0.5,28] J1,9

Response time for A1 = 5.25 – 0.5 = 4.75
Response time for A2 = 16.25 – 12.25 = 4.00
Response time for A3 = 21.0 – 17.0 = 4.00

EDF + Sporadic Server
t tr te d Aperiodic

Q
Budget Run Q Execute

0.00 0 ? ? Ø 0.5 J1,1[1,3]; J2,1[0.5,4]; J3,1[2,10] J1,1
0.50 0 0 5 A1[0.75] 0.5 J1,1[0.5,3]; J2,1[0.5,4]; JS[0.5,5];

J3,1[2,10]
J1,1

1.00 0 0 5 A1[0.75] 0.5 J2,1[0.5,4]; JS[0.5,5]; J3,1[2,10] J2,1
1.50 0 0 5 A1[0.75] 0.5 JS[0.5,5]; J3,1[2,10] JS
2.00 0 0 5 A1[0.25] 0 J3,1[2,10] J3,1
3.00 0 0 5 A1[0.25] 0 J1,2[1,6]; J3,1[1,10] J1,2
4.00 0 0 5 A1[0.25] 0 J2,2[0.5,8]; J3,1[1,10] J2,2
4.50 0 0 5 A1[0.25] 0 J3,1[1,10] J3,1
5.00 5 5 10 A1[0.25] 0.5 JS[0.5,10]; J3,1[0.5,10] JS
5.25 5 5 10 Ø 0.25 J3,1[0.5,10] J3,1
5.5 5 5 10 Ø 0 J3,1[0.25,10] J3,1

5.75 5 5 10 Ø 0 Ø -
6.00 6 ? ? Ø 0.5 J1,3[1,9] J1,3
7.00 6 ? ? Ø 0.5 Ø -
8.00 8 ? ? Ø 0.5 J2,3[0.5,12] J2,3
8.50 8 ? ? Ø 0.5 Ø -
9.00 8 ? ? Ø 0.5 J1,4[1,12] J1,4

10.00 8 ? ? Ø 0.5 J3,2[2,20] J3,2
12.00 8 ? ? Ø 0.5 J1,5[1,15]; J2,4[0.5,16] J1,5
12.25 8 12.25 17.25 A2[0.75] 0.5 J1,5[0.75,15]; J2,4[0.5,16]; JS[0.5,17.25] J1,5
13.00 8 12.25 17.25 A2[0.75] 0.5 J2,4[0.5,16]; JS[0.5,17.25] J2,4
13.50 8 12.25 17.25 A2[0.75] 0.5 JS[0.5,17.25] JS
14.00 8 12.25 17.25 A2[0.25] 0 Ø -
15.00 15 15 20 A2[0.25] 0.5 J1,6[1,18]; JS[0.5,20] J1,6
16.00 15 15 20 A2[0.25] 0.5 JS[0.5,20]; J2,5[0.5,20] JS
16.25 15 15 20 Ø 0.25 J2,5[0.5,20] J2,5
16.50 15 15 20 Ø 0 J2,5[0.25,20] J2,5
16.75 15 15.0 20 Ø 0 Ø -
17.00 17 17.0 22 A3[0.75] 0.5 JS[0.5,22] JS
18.00 18 17.0 22 A3[0.25] 0 J1,7[1,21] J1,7
19.00 18 17.0 22 A3[0.25] 0 Ø -
20.00 20 20.0 25 A3[0.25] 0.5 J2,6[0.5,24]; JS[0.5,25]; J3,3[2,30] J2,6
20.50 20 20.0 25 A3[0.25] 0.5 JS[0.5,24]; J3,3[2,30] JS
20.75 20 20.0 25 Ø 0.25 J3,3[2,30] J3,3
21.00 20 20.0 25 Ø 0 J1,8[1,24]; J3,3[1.75,30] J1,8
22.00 20 20.0 25 Ø J3,3[1.75,30] J3,3
23.75 20 20.0 25 Ø Ø -

Response time for A1 = 5.25 – 0.5 = 4.75
Response time for A2 = 16.25 – 12.25 = 4.00
Response time for A3 = 20.75 – 17.0 = 3.75

