
Real Time and Embedded Systems 4 February 2004

Lecture 7 1

4 February 2004 Lecture 7 1

Priority-driven Scheduling of Periodic
Tasks

Schedulability test for fixed-priority tasks
Since we cannot count on any particular relationships among the
phases of tasks in a fixed-priority system, we must identify the
worst-case combination of release times of any job Ji,c in Ti and all
the jobs that have higher priorities than Ji,c
This combination is the worst-case because the response time of
Ji,c released in such a situation is the largest possible of all
combinations of release times
We, therefore, define a critical instant of a task Ti as a time
instant such that:

The job in Ti released at that instant has the maximum response time of
all jobs in Ti (if the response time of every job in Ti is equal to or less
than the relative deadline Di), and
The response time of the job released at that instant is greater than Di if
the response time of some jobs in Ti exceed Di

The response time of a job in Ti released at a critical instant is
called the maximum (possible) response time

4 February 2004 Lecture 7 2

Priority-driven Scheduling of Periodic
Tasks

Theorem: In a fixed-priority system where every job
completes before the next job in the same task is released,
a critical instant occurs when one of its jobs Ji,c is released
at the same time with a job from every higher-priority task.
Why is this important? It turns out that our schedulability
test for fixed-priority tasks will be based upon showing that
a job Ji,c released at a critical instant completes by its
relative deadline, Di – i.e. we don’t have to simulate the
entire system, we simply have to show that the system has
the correct characteristics following a critical instant; in
particular, if there are N tasks in the system, we have to
show that JN,c completes by its relative deadline, DN

Real Time and Embedded Systems 4 February 2004

Lecture 7 2

4 February 2004 Lecture 7 3

Priority-driven Scheduling of Periodic
Tasks

Time-Demand Analysis
We first compute the total demand for processor time by a
job released at a critical instant of the task and by all the
higher-priority tasks as a function of time from the critical
instant
We then check whether this demand can be met before the
deadline of the job
Consider one task at a time, starting with T1 (highest
priority) working down to TN (lowest priority)
To determine whether Ti is schedulable, after finding that
all tasks with higher priorities are schedulable, we focus on
a job in Ti that is released at time t0, which is a critical
instant of Ti.

4 February 2004 Lecture 7 4

Priority-driven Scheduling of Periodic
Tasks

Time-Demand Analysis (continued)
At time t0 + t for t ≥ 0, the total (processor) time demand of this
job and all the higher-priority jobs released in [t0, t] is given by
wi(t) = ei + [t/p1]e1 + [t/p2]e2 + … + [t/pi-1]ei-1
for 0 < t ≤ pi
This job can meet its deadline of t0+Di if at some time t0+t at or
before the deadline, the supply of processor time, which is equal
to t, becomes greater than or equal to wi(t)
Since this job of Ti has the maximum possible response time of
all jobs in Ti, we conclude that all jobs in Ti can meet their
deadlines if this job can meet its deadline
wi(t) is called the time-demand function of the task Ti
This condition is sufficient, but not necessary; i.e. if wi(t) > t for all
0 < t ≤ Di, we would have to try to establish that critical instants
do NOT occur

Real Time and Embedded Systems 4 February 2004

Lecture 7 3

4 February 2004 Lecture 7 5

Priority-driven Scheduling of Periodic
Tasks

Rate Monotonic
T1 = (, 3, 1)
T2 = (, 5, 2)
T3 = (, 10, 2)

0
0 2

2

4

4

6

6

8

8

10

10

Time

Ti
m

e-
de

m
an

d
fu

nc
tio

n

w1(t)

w2(t)

w3(t)

4 February 2004 Lecture 7 6

Priority-driven Scheduling of Periodic
Tasks

J1,6J1,6[1]; J2,4[2]15

29J3,2J3,2[2]13

J3,3J3,3[1]28J1,5J1,5[1]; J3,2[2]12

J1,10J1,10[1]; J3,3[1]27J2,3J2,3[2]; J3,2[2]10

J2,6J2,6[2]; J3,3[1]25J1,4J1,4[1]9

J1,9J1,9[1]; J3,3[1]24J3,1J3,1[1]8

J3,3J3,3[2]23J2,2J2,2[1]; J3,1[1]7

J2,5J2,5[1]; J3,3[2]22J1,3J1,3[1]; J2,2[1]; J3,1[1]6

J1,8J1,8[1]; J2,5[1]; J3,3[2]21J2,2J2,2[2]; J3,1[1]5

J2,5J2,5[2]; J3,3[2]20J3,1J3,1[2]4

19J1,2J1,2[1]; J3,1[2]3

J1,7J1,7[1]18J2,1J2,1[2]; J3,1[2]1

J2,4J2,4[2]16J1,1J1,1[1]; J2,1[2]; J3,1[2]0

ExecuteQueueTimeExecuteQueueTime

Real Time and Embedded Systems 4 February 2004

Lecture 7 4

4 February 2004 Lecture 7 7

Priority-driven Scheduling of Periodic
Tasks

We can see that the time-demand function wi(t) is a staircase
function
The “steps” occur at integer multiples of the period for higher-
priority tasks
The value of wi(t) – t linearly decreases from a step until the next
step
If our primary interest is the schedulability of a task, it suffices to
check whether wi(t) ≤ t at the time instants when a higher-priority
job is released
Our schedulability test becomes:

Compute wi(t)
Check whether wi(t) ≤ t is satisfied for the following values of t
t = j*pk; k = 1, 2, …, i; j = 1, 2, …, [min(pi, Di)/pk]

4 February 2004 Lecture 7 8

Priority-driven Scheduling of Periodic
Tasks

Tick Scheduling
All of our previous discussion of priority-driven scheduling was
driven by job release and job completion events
Alternatively, can perform priority-driven scheduling at periodic
events (timer interrupts) generated by a hardware clock – i.e. tick
(or time-based) scheduling
Additional factors to account for in schedulability analysis

The fact that a job is ready to execute will not be noticed and acted
upon until the next clock interrupt (tick); this will delay the completion
of the job
A ready job that is yet to be noticed by the scheduler must be held
somewhere other than the ready job queue, the pending job queue
When the scheduler executes, it moves jobs in the pending queue to
the ready queue according to their priorities; once in the ready queue,
the jobs execute in priority order

Real Time and Embedded Systems 4 February 2004

Lecture 7 5

4 February 2004 Lecture 7 9

Priority-driven Scheduling of Periodic
Tasks

Tick Scheduling (continued)
Denote the tick size by p0, which is the length of time between
consecutive clock interrupts
We model the scheduler as a periodic task T0 whose period is p0;
it is the highest priority task; its execution time e0 is the time
required to service the clock interrupt
We also have to account for the time required to move a job from
the pending queue to the ready queue; call this time S0 (for
Staging time)
It is fairly obvious that the available utilization for tasks other than
the tick scheduler is reduced by two factors:

u0 = e0/p0
Within a hyperperiod, H, each task Ti will have released [H/pi] jobs;
each job will have been staged from pending to ready queues;
therefore, the total additional utilization consumed by staging is
S0 * (H/p1 + H/p2 + … + H/pi)

4 February 2004 Lecture 7 10

Scheduling Aperiodic and Sporadic Jobs in
Priority-driven Systems

Assumptions
One processor
Periodic tasks are independent
Aperiodic and sporadic jobs are independent of each other
and of the periodic tasks
Every job can be preempted at any time
We are focussing on admission control of sporadic jobs –
i.e. we will NOT accept a sporadic job if we cannot
guarantee that it will meet its deadline
pi and ei are known for all periodic tasks
A priority-driven algorithm is used to schedule the system
In the absence of aperiodic and sporadic jobs, the periodic
tasks meet all deadlines

Real Time and Embedded Systems 4 February 2004

Lecture 7 6

4 February 2004 Lecture 7 11

Scheduling Aperiodic and Sporadic Jobs in
Priority-driven Systems

ProcessorPeriodic
Jobs

Aperiodic
Jobs

Sporadic
Jobs

Acceptance
Test

rejection

4 February 2004 Lecture 7 12

Scheduling Aperiodic and Sporadic Jobs in
Priority-driven Systems

More assumptions
The operating system maintains the priority queues shown in the
previous slide
Ready periodic jobs are placed in the periodic task queue, ordered
by the priorities assigned according to the selected scheduling
algorithm
Each accepted sporadic job is assigned a priority and placed in a
priority queue; it may not be the same as the periodic task queue
Newly arrived aperiodic jobs are placed in the aperiodic task queue
Newly arrived sporadic jobs are placed in a waiting queue to await
acceptance
The scheduler is ONLY concerned with scheduling the jobs at the
tops of the priority queues onto the processor according to the
algorithm
The queueing discipline used to order aperoidic jobs among
themselves is given

Real Time and Embedded Systems 4 February 2004

Lecture 7 7

4 February 2004 Lecture 7 13

Scheduling Aperiodic and Sporadic Jobs in
Priority-driven Systems

Aperiodic and Sporadic Job Scheduling
Algorithms

Need to solve the following problems:
Based on the execution time and deadline of each
newly arrived sporadic job, decide whether to accept
or reject the job; accepting the job implies that the job
will complete within its deadline without causing any
periodic tasks or previously accepted sporadic jobs to
miss their deadlines
Try to complete each aperiodic job as soon as
possible, without causing periodic tasks and accepted
sporadic jobs to miss their deadlines

4 February 2004 Lecture 7 14

Scheduling Aperiodic and Sporadic Jobs in
Priority-driven Systems

More definitions
A correct schedule is one for which periodic and accepted sporadic
tasks never miss their deadlines
An aperiodic or sporadic scheduling algorithm is correct if it produces
only correct schedules of the system.
An aperiodic job scheduling algorithm is optimal if it minimizes either
the response time of the job at the head of the aperiodic job queue
OR the average response time of all aperiodic jobs for the given
queueing discipline
A sporadic job scheduling algorithm (acceptance + scheduling) is
optimal if it accepts each newly arrived sporadic job and schedules
the job to complete by its deadline if and only if the new job can be
correctly scheduled to complete in time by some means – note that
this is different from the definition of optimal on-line algorithms
discussed previously, as that definition required that ALL offered
sporadic jobs had to be accepted and completed in time

Real Time and Embedded Systems 4 February 2004

Lecture 7 8

4 February 2004 Lecture 7 15

Scheduling Aperiodic and Sporadic Jobs in
Priority-driven Systems

1. Background Approach
Aperiodic jobs are scheduled and executed only
at times when there are no periodic or sporadic
jobs ready for execution
Pros

Clearly produces correct schedules
Extremely simple to implement

Cons
Almost guaranteed to delay the execution of
aperiodic jobs and to unnecessarily prolong their
response times

4 February 2004 Lecture 7 16

Scheduling Aperiodic and Sporadic Jobs in
Priority-driven Systems

2. Interrupt-Driven Execution Approach
Whenever an aperiodic job arrives, the execution
of periodic tasks is interrupted, and the aperiodic
job is executed.
Pros

Minimizes response times of aperiodic jobs
Cons

Periodic/sporadic tasks will probably miss some
deadlines – i.e. the algorithm is not correct

Real Time and Embedded Systems 4 February 2004

Lecture 7 9

4 February 2004 Lecture 7 17

Scheduling Aperiodic and Sporadic Jobs in
Priority-driven Systems

3. Slack Stealing Approach
Whenever an aperiodic job arrives, the execution of
periodic tasks is interrupted, and the aperiodic job is
executed ONLY IF IT IS SAFE TO DO SO.
Need to keep track of the slack associated with each
periodic/sporadic job; upon receipt of the interrupt, can
schedule an aperiodic job if the periodic/sporadic jobs
have slack > 0.
Pros

Minimizes response times of aperiodic jobs
Generates correct schedules

Cons
Much more complex algorithm, since we need to keep
track of the slack in all jobs

4 February 2004 Lecture 7 18

Scheduling Aperiodic and Sporadic Jobs in
Priority-driven Systems

Polled Executions
A poller or polling server is a periodic task TS
with pS as its polling period and eS as its
execution time.
When the poller executes, it examines the
aperiodic job queue; if the queue is nonempty, it
executes the job at the head of the queue.
The poller suspends its execution or is suspended
by the scheduler either when it has executed for
eS units of time in the period or when the
aperiodic job queue becomes empty.

Real Time and Embedded Systems 4 February 2004

Lecture 7 10

4 February 2004 Lecture 7 19

Scheduling Aperiodic and Sporadic Jobs in
Priority-driven Systems

More Definitions
A task that behaves more or less like a periodic task and is
created for the purpose of executing aperiodic jobs is called a
periodic server.
A periodic server, TPS = (φPS, pPS, ePS) never executes for more
than ePS units of time in any time interval of length pPS.
The parameter ePS is called the execution budget (or simply
budget) of the periodic server.
The ratio uPS = ePS / pPS is the size of the periodic server.
A poller is a kind of periodic server; at the beginning of each
period, the budget of the poller is set to eS – i.e. its budget is
replenished by eS units
A time instant when the server budget is replenished is called a
replenishment time.

4 February 2004 Lecture 7 20

Scheduling Aperiodic and Sporadic Jobs in
Priority-driven Systems

Yet More Definitions
A periodic server is backlogged whenever the aperiodic job
queue is nonempty
The server is idle if the queue is empty
The server is eligible (ready) for execution ONLY WHEN IT IS
BACKLOGGED AND HAS BUDGET
The server is scheduled just like any other periodic task based
upon the priority scheme used by the scheduling algorithm
When the server is scheduled and executes aperiodic jobs, it
consumes its budget at the rate of 1 per unit time
The server budget has been exhausted when the budget
becomes 0.
Different kinds of periodic servers differ in how the server budget
changes when the server still has budget but the server is idle.

