
Real Time and Embedded Systems 29 January 2004

Lecture 6 1

29 January 2004 Lecture 6 1

Priority-driven Scheduling of Periodic
Tasks

Recall that a periodic task Ti is defined by the 4-tuple (φi, pi, ei, Di)
and that the utilization of Ti, ui = ei / pi
For a system of periodic tasks T = {Ti, i = 1..n}, the total
utilization, U(T) = u1 + u2 + … + un
A scheduling algorithm can feasibly schedule any system T of
periodic tasks on a processor if U(T) is equal to or less than the
schedulable utilization of the algorithm
Schedulable utilization is an attribute of a scheduling algorithm;
we will denote it as UALG
If UALG = 1, the algorithm is optimal
Why is the knowledge of UALG important?

Validation of your system then depends upon simply showing that for
your system T, U(T) ≤ UALG

29 January 2004 Lecture 6 2

Priority-driven Scheduling of Periodic
Tasks

The schedulable utilization of the EDF algorithm
Theorem: A system T = {Ti, I = 1..n} of independent, preemptable
periodic tasks with Di = pi can be feasibly scheduled on one
processor if and only if U(T) ≤ 1. (proof covered next Tuesday)
Corollaries:

A system T of independent, preemptable periodic tasks with
Di > pi can be feasibly scheduled on a processor as long as
U(T) ≤ 1
UEDF(n) for n independent, preemptable periodic tasks with
Di ≥ pi is 1.
ULST(n) for n independent, preemptable periodic tasks with
Di ≥ pi is 1.

Note that all of these results are independent of φi

Real Time and Embedded Systems 29 January 2004

Lecture 6 2

29 January 2004 Lecture 6 3

Priority-driven Scheduling of Periodic
Tasks

What happens if Di < pi for some i?
Define τi = min(Di, pi)
The density for Ti, δi = ei / τi
The density of the system, ∆(T) = δ1 + δ2 + … + δn
Theorem: A system T of independent,
preemptable periodic tasks can be feasibly
scheduled on one processor if ∆(T) ≤ 1.

Note that this is not a necessary condition, it
is simply sufficient – i.e. a system may be
feasible when ∆(T) > 1.

29 January 2004 Lecture 6 4

Priority-driven Scheduling of Periodic
Tasks

Schedulability testing
A test for the purpose of validating that the given application
system meets all its hard deadlines when scheduled according to
a particular scheduling algorithm is a schedulability test.
If a schedulability test is efficient, then it can be used as an on-
line acceptance test.

Schedulability test for EDF
∆(T) ≤ 1
What do we conclude if this test is not satisfied?

If Di ≥ pi for all i, then the system is not schedulable
If Di < pi for some i, the system may not be schedulable

This test is robust – i.e. the test holds true if some jobs execute
for less than their maximum execution times; it also holds true if
the interrelease times of jobs in a task are longer than the period
(minimum interrelease time)

Real Time and Embedded Systems 29 January 2004

Lecture 6 3

29 January 2004 Lecture 6 5

Priority-driven Scheduling of Periodic
Tasks

How can you use this in practice?
Assume that you have decided to use EDF to schedule multiple
periodic tasks

You know the execution times for jobs in each periodic task
You can choose the periods for the tasks such that the schedulability
test is met

Example – digital robot controller
Control-law computation takes 8 ms
Desired sampling rate is 100 Hz => period is 10 ms => utilization is .8
Suppose that a built-in self test task is to be included, and that the
computation of the test takes 50 ms; schedulability test tells us that
as long as the period for this task is 250 ms or more, the total
utilization remains ≤ 1; if a period of 1 sec is chosen, utilization is 0.05
If we now wish to add another task, as long as its utilization is ≤ 0.15,
the system is still feasible

29 January 2004 Lecture 6 6

Priority-driven Scheduling of Periodic
Tasks

Optimality of the RM and DM algorithms
We’ve already seen examples wherein these fixed-priority
algorithms are not optimal
In fact, if the periods of the tasks in the system are related
appropriately, then the RM and DM algorithms are optimal
A system of periodic tasks is simply periodic if for every pair of
tasks Ti and Tk in the system and pi < pk, pk is an integer multiple
of pi. (Recall our avionics example from lecture 2.)
Theorem: A system of simply periodic, independent, preemptable
tasks whose relative deadlines are ≥ their periods is schedulable
on one processor according to the RM algorithm iff its total
utilization is ≤ 1.
Corollary: The same is true for the DM algorithm.
Since fixed-priority algorithms are more constrained, why would
one choose to use them?

They often lead to more predictable and stable systems

Real Time and Embedded Systems 29 January 2004

Lecture 6 4

29 January 2004 Lecture 6 7

Priority-driven Scheduling of Periodic
Tasks

Schedulable utilization of the RM algorithm
Assume Di = pi for all I
Arbitrary relationships between relative deadlines of tasks
URM(n) = n (21/n – 1)
For large n, approaches ln 2 (0.693)
U(T) ≤ URM(n) is a necessary condition – i.e. if U(T) > URM(n) , the
RM algorithm (or better yet, the DM algorithm) may be able to
find a feasible schedule

0.6960.7050.7070.7080.7100.7140.7180.7240.7350.7570.828URM(n)

1002018161412108642n

29 January 2004 Lecture 6 8

Priority-driven Scheduling of Periodic
Tasks

What happens if the relative deadlines for tasks are
not equal to their respective periods?

Assume that Dk = ν pk for some number ν
URM(n, ν) has the following values:

URM(n, ν)ν

ν (n – 1) ((1+1/ν)1/n-1 – 1)ν = 2, 3, …

n ((2ν)1/n – 1) + 1 - ν0.5 ≤ ν ≤ 1

ν0 ≤ ν ≤ 0.5

Real Time and Embedded Systems 29 January 2004

Lecture 6 5

29 January 2004 Lecture 6 9

Priority-driven Scheduling of Periodic
Tasks

0.5000.5820.6360.6700.6870.6930.8100.8630.892∞

0.5000.5840.6420.6820.7070.7200.8290.8760.9039

0.5000.5840.6430.6840.7090.7240.8310.8780.9058

0.5000.5840.6440.6860.7130.7280.8340.8810.9067

0.5000.5850.6460.6880.7170.7340.8380.8840.9096

0.5000.5850.6480.6920.7230.7430.8440.8880.9125

0.5000.5860.6510.6980.7330.7560.8530.8940.9174

0.5000.5880.6560.7080.7490.7790.8680.9060.9263

0.5000.5900.6660.7290.7830.8280.8980.9280.9442

0.50.60.70.80.91.02.03.04.0n\ν

29 January 2004 Lecture 6 10

Priority-driven Scheduling of Periodic
Tasks

Practical factors
A ready job is blocked when it is prevented from executing by a
lower-priority job
A priority inversion occurs whenever a lower-priority job
executes while some ready higher-priority job waits
Nonpreemptability

Many reasons why a job may have nonpreemptable sections
Critical section over a resource
Some system calls are nonpreemptable
Disk scheduling

If a job becomes nonpreemptable, priority inversions may occur
When attempting to understand whether a task meets all of its
deadlines, we must consider not only all the tasks that have higher
priorities than that task, also the nonpreemptable portions of lower-
priority tasks

Real Time and Embedded Systems 29 January 2004

Lecture 6 6

29 January 2004 Lecture 6 11

Priority-driven Scheduling of Periodic
Tasks

Practical factors (continued)
Nonpreemptability (continued)

Define bi(np) as the longest amount of time for which any
job in the task Ti can be blocked each time it is blocked due
to nonpreemptive lower-priority tasks

Self-suspension
A job may invoke an external operation (e.g. request and
I/O operation), during which time the job is suspended

Context Switches
Assume we know the maximum number of context switches
Ki for a job in Ti
Can add 2(Ki + 1) tCS to the execution time of Ti

