
Real Time and Embedded Systems 28 January 2004

Lecture 5 1

28 January 2004 Lecture 5 1

Priority-driven Scheduling of Periodic 
Tasks

Focus on well-known priority-driven algorithms for scheduling 
periodic tasks on a processor
Assume a restricted periodic task model

1. The tasks are independent
2. There are no aperiodic or sporadic tasks

Other assumptions made:
1. Every job is:

Ready for execution as soon as it is released
Can be preempted at any time
Never suspends itself

2. Scheduling decisions are made immediately upon job releases 
and completions

3. Context switch overhead is negligibly small compared with 
execution times of the jobs

4. The number of priority levels is unlimited

28 January 2004 Lecture 5 2

Priority-driven Scheduling of Periodic 
Tasks

Additional assumptions
The period of a task means the minimum interrelease time of jobs in 
the task
A fixed number of periodic tasks
The addition of another task to the system requires the scheduler to 
perform an acceptance test – i.e. the task will be added to the 
system only if the new task and all other existing tasks can be 
feasibly scheduled
Focus on scheduling on uniprocessor systems

Recall from lecture 3 …
Priority-driven algorithms NEVER intentionally leave any resource 
idle.
Scheduling decisions are made when events such as releases and 
job completions occur; hence, such algorithms are event-driven
Locally optimal scheduling decisions are often NOT globally optimal



Real Time and Embedded Systems 28 January 2004

Lecture 5 2

28 January 2004 Lecture 5 3

Priority-driven Scheduling of Periodic 
Tasks

Dynamic vs Static Systems
If jobs are scheduled on multiple processors, and a job can be 
dispatched to any of the processors, the system is dynamic
If jobs are partitioned into subsystems, and each subsystem is 
bound statically to a processor, we have a static system.
In static systems, the scheduler for a particular processor 
schedules the jobs in its subsystem independently of the 
schedulers for other processors
Difficult to determine the worst-case and best-case performance 
of dynamic systems.
Most hard RT systems built to date are static
Results that we prove with regards to a uni-processor system are 
directly applicable to each subsystem in the static case 

28 January 2004 Lecture 5 4

Priority-driven Scheduling of Periodic 
Tasks

Fixed-priority vs. Dynamic-priority Algorithms
A priority-driven scheduler is an on-line scheduler

It does NOT precompute a schedule of tasks/jobs
It assigns priorities to jobs when they are released and places them on a 
ready job queue in priority order
When preemption is allowed, a scheduling decision is made whenever a job is 
released or completed
At each scheduling decision time, the scheduler updates the ready job queue 
and then schedules and executes the job at the head of the queue

A fixed-priority algorithm assigns the same priority to all the jobs in a task.
A dynamic-priority algorithm assigns different priorities to the individual 
jobs in a task.
The priority of a job is usually assigned upon its release and does not 
change
Three categories of algorithms:

Task-level fixed-priority
Task-level dynamic-priority and job-level fixed-priority
Job-level dynamic-priority



Real Time and Embedded Systems 28 January 2004

Lecture 5 3

28 January 2004 Lecture 5 5

Priority-driven Scheduling of Periodic 
Tasks

Fixed-priority Algorithms
Rate-monotonic algorithm (RM)

Assigns priorities to tasks based on their periods – the shorter 
the period, the higher the priority
Since the rate is (period)-1, the higher the rate, the higher the 
priority

Deadline-monotonic algorithm (DM)
Assigns priorities to tasks according to their relative deadlines –
the shorter the relative deadline, the higher the priority

When the relative deadline of every task is proportional to its period, 
the RM and DM algorithms give identical results
When the relative deadlines are arbitrary, the DM algorithm 
performs better in the sense that it can sometimes produce a 
feasible schedule when RM fails, while RM always fails when DM 
fails

28 January 2004 Lecture 5 6

Priority-driven Scheduling of Periodic 
Tasks

Rate-monotonic example
T1 = (,4, 1); T2 = (, 5, 2); T3 = (, 20, 5)
Relative priorities: T1 > T2 > T3

J1,3J1,3; J3,18

J3,1J3,17

J2,2J2,2; J3,15

J1,2J1,2; J3,14

J3,1J3,13

J2,1J2,1; J3,11

J1,1J1,1; J2,1; J3,10

ScheduledReady to runTime



Real Time and Embedded Systems 28 January 2004

Lecture 5 4

28 January 2004 Lecture 5 7

Priority-driven Scheduling of Periodic 
Tasks

18
J2,4J2,417
J1,5J1,5; J2,416
J2,4J2,415
J3,1J3,113
J1,4J1,4; J3,112
J2,3J2,3; J3,110
J3,1J3,19

ScheduledReady to runTime

0 4 8 12 16 20

J1,5 J2,4J1,1 J1,2 J1,3 J1,4 J2,4J2,1 J3,1 J2,3J2,2 J3,1 J3,1 J3,1

28 January 2004 Lecture 5 8

Priority-driven Scheduling of Periodic 
Tasks

Dynamic-priority algorithms
Earliest-deadline-first (EDF)

The job queue is ordered by earliest deadline
Least-slack-time-first (LST)

The job queue is ordered by least slack time
Nonstrict – scheduling decisions are made only when jobs are 
released or completed
Strict – scheduling decisions are made also whenever a queued 
job’s slack time becomes smaller than the executing job’s slack 
time – huge overheads, not used

First-in-first-out (FIFO)
Job queue is first-in-first-out by release time

Last-in-first-out (LIFO)
Job queue is last-in-first-out by release time



Real Time and Embedded Systems 28 January 2004

Lecture 5 5

28 January 2004 Lecture 5 9

Priority-driven Scheduling of Periodic 
Tasks

Compare RM, EDF, LST, FIFO
T1 = (, 2, 1); T2 = (, 5, 2.5)
The total utilization is 1.0
Expect some of these algorithms to lead to 
missed deadlines!

28 January 2004 Lecture 5 10

Priority-driven Scheduling of Periodic 
Tasks

J2,2J2,29
J1,5J1,5; J2,28
J2,2J2,27
J1,4J1,4; J2,26
J2,2J2,25.5
J2,1J2,1; J2,25
J1,3J1,3; J2,14
J2,1J2,13
J1,2J1,2; J2,12
J2,1J2,11
J1,1J1,1; J2,10

Rate-monotonic

J1,3J1,3[6]4.5

J2,2J2,2[10]9
J1,5J1,5[10]; J2,2[10]8
J2,2J2,2[10]7
J1,4J1,4[8]; J2,2[10]6
J2,2J2,2[10]5.5
J1,3J1,3[6]; J2,2[10]5

J2,1J2,1[5]; J1,3[6]4
J2,1J2,1[5]3
J1,2J1,2[4]; J2,1[5]2
J2,1J2,1[5]1
J1,1J1,1[2]; J2,1[5]0

Earliest-deadline-first



Real Time and Embedded Systems 28 January 2004

Lecture 5 6

28 January 2004 Lecture 5 11

Priority-driven Scheduling of Periodic 
Tasks

J1,3J1,3[0.5]4.5

J2,2J2,2[0]9
J1,5J1,5[1]; J2,2[1]8
J2,2J2,2[1]7
J1,4J1,4[1]; J2,2[2]6
J2,2J2,2[2]5.5
J1,3J1,3[0.5]; J2,2[2.5]5

J2,1J2,1[0.5]; J1,3[1]4
J2,1J2,1[0.5]3
J1,2J1,2[1]; J2,1[1.5]2
J2,1J2,1[1.5]1
J1,1J1,1[1]; J2,1[2.5]0

Least-slack-time-first

J1,3J1,34.5

J1,5J1,59
J1,4J1,4; J1,58
J2,2J2,2; J1,46
J2,2J2,25.5
J1,3J1,3; J2,25

J1,2J1,2; J1,34
J1,2J1,23.5
J2,1J2,1; J1,22
J2,1J2,11
J1,1J1,1; J2,10

First-in-first-out

28 January 2004 Lecture 5 12

Priority-driven Scheduling of Periodic 
Tasks

0 2 4 6 8 10

J1,1

J1,1

J1,1

J1,1

J2,1 J1,2 J2,1 J1,3 J2,1 J2,2 J1,4 J1,5J2,2 J2,2

J2,1

J1,2 J2,1 J2,1 J1,3 J2,2 J1,4 J1,5J2,2 J2,2

J2,1 J1,2 J2,1 J2,1 J1,3 J2,2 J1,4 J1,5J2,2 J2,2

J2,1

J1,2 J1,3 J2,2 J1,4 J1,5

RM

EDF

LST

FIFO



Real Time and Embedded Systems 28 January 2004

Lecture 5 7

28 January 2004 Lecture 5 13

Priority-driven Scheduling of Periodic 
Tasks

Relative merits
Algorithms that do not take into account the urgencies of 
jobs in priority assignment usually perform poorly (FIFO, 
LIFO)
Algorithms are ranked by their ability to maximize the 
utilization of the system in terms of meeting job deadlines –
maximum value of 1 – EDF is optimal in this sense, while 
RM and DM are not
EDF continues to give high priority to jobs that have 
already missed their deadlines relative to a job whose 
deadline is in the future; therefore, EDF is not particularly 
suitable to systems where overload conditions are 
unavoidable


