
Real Time and Embedded Systems 22 January 2004

Lecture 4 1

22 January 2004 Lecture 4 1

Precedence Graphs Revisited (Again)

T1

T2

T3

T4

T5

T6 . . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .[i,i+6) [i+6,i+12)

[i,i+6) [i+6,i+12)

[i,i+2) [i+6,i+8)[i+4,i+6)[i+2,i+4)

[i,i+1) [i+1,i+2) [i+2,i+3) [i+3,i+4) [i+4,i+5) [i+5,i+6) [i+6,i+7)

[i,i+1) [i+1,i+2) [i+2,i+3) [i+3,i+4) [i+4,i+5) [i+5,i+6) [i+6,i+7)

[i,i+1) [i+1,i+2) [i+2,i+3) [i+3,i+4) [i+4,i+5) [i+5,i+6) [i+6,i+7)

mod(i,6) 1 2 3 4 5 0 1

22 January 2004 Lecture 4 2

Clock-driven Scheduling

This approach is applicable only when the system
is mostly deterministic, except for a few aperiodic
and sporadic jobs
This lecture will assume a restricted periodic task
model

1. There are n periodic tasks in the system; as long as the
system remains in a particular operation mode, n is fixed

2. The parameters of all period tasks are known a priori; in
particular, variations in the inter-release times of jobs in a
periodic tasks are negligibly small – i.e. each job in Ti is
released pi units of time after the previous job in Ti

3. Each job Ji,k is ready for execution at its release time ri,k

Real Time and Embedded Systems 22 January 2004

Lecture 4 2

22 January 2004 Lecture 4 3

Clock-driven Scheduling

Refer to a periodic task Ti with phase φi, period pi, execution
time ei, and relative deadline Di by the 4-tuple (φi, pi, ei, Di)
Default phase of a task is 0, default relative deadline is its
period; omit elements of the tuple that have default values
Examples:

63100(10,3,6)

103100(10,3)

63101(1, 10, 3, 6)

DepφTuple

22 January 2004 Lecture 4 4

Clock-driven Scheduling

Assume there are aperiodic jobs released at
unexpected time instants
For now, assume no sporadic jobs (recall that
sporadic jobs have hard deadlines, aperiodic jobs
do NOT have hard deadlines)
Assume that the system maintains a single queue
for aperiodic jobs; addition of such jobs to the queue
does not require attention of the scheduler;
whenever the processor is available for aperiodic
jobs, the job at the head of this queue is executed

Real Time and Embedded Systems 22 January 2004

Lecture 4 3

22 January 2004 Lecture 4 5

Static, Timer-driven Scheduler

Since the parameters of jobs with hard deadlines are known
before the system begins to execute, construct a static schedule
of the jobs off-line; periodic static schedule == cyclic schedule
The amount of processor time allocated to every job is equal to
its maximum execution time
The static schedule guarantees that each job completes by its
deadline
The scheduler dispatches jobs according to the static schedule;
as long as no job ever overruns, all deadlines are met
Since the schedule is calculated off-line, we can employ
complex, sophisticated algorithms; in particular, we can choose a
feasible schedule from all possible feasible schedules that
optimizes some characteristic of the system (e.g. the idle periods
for the processor are nearly periodic to accommodate aperiodic
jobs)

22 January 2004 Lecture 4 6

Static, Timer-driven Scheduler

Example - consider a system with 4 independent periodic tasks:
T1 = (4, 1), T2 = (5, 1.8), T3 = (20, 1), and T4 = (20, 2)
Hyperperiod H is 20 (least common multiple of 4, 5, 20, 20)
T1 starts execution at 0, 4, 9.8, 13.8, 16
T2 starts execution at 2, 8, 12, 18
T3 starts execution at 1
T4 starts execution at 6
Idle intervals: (3.8,4), (5,6), (10.8,12), (14.8,16), (17,18),
(19.8,20)

40 8 12 16 20

T1 T1 T1 T1 T1 T1T2 T2 T2 T2T3 T4

Real Time and Embedded Systems 22 January 2004

Lecture 4 4

22 January 2004 Lecture 4 7

Static, Timer-driven Scheduler

Can execute aperiodic jobs during the idle
intervals
May be advantageous to scatter the unused
intervals somewhat periodically in the
schedule
If no aperiodic jobs ready to execute during
such intervals, can execute background non-
realtime jobs

22 January 2004 Lecture 4 8

Static, Timer-driven Scheduler

Implementing such a scheduler
Store the pre-computed schedule as a table
Each entry (tk, T(tk)), where tk is a decision time (a time instant
when a scheduling decision is to be made) and T(tk) is either the
name of the task to start at that time or I (for idle)
During initialization, the system creates all the tasks that are to
be executed (allocates sufficient memory for the code and data of
every task and brings the code executed by the task into
memory)
After initialization is complete, the scheduler sets the hardware
timer to interrupt at the first decision time
Upon receipt of an interrupt at tk, the scheduler sets the timer to
expire at tk+1 and prepares the task T(tk) for execution; it then
suspends itself, letting the task have the processor to execute

Real Time and Embedded Systems 22 January 2004

Lecture 4 5

22 January 2004 Lecture 4 9

Static, Timer-driven Scheduler
Input: stored schedule (tk, T(tk)) for k = 0, 1, N – 1.
Task SCHEDULER:

set the next decision point I and table entry k to 0;
set the timer to expire at tk;
do forever:

accept timer interrupt;
if an aperiodic job is executing, preempt the job;
current task T = T(tk);
increment i by 1;
compute the next table entry k = I mod (N);
set the timer to expire at [I / N] * H + tk;
if the current task T is I,

let the job at the head of the aperiodic queue execute;
else,

let the task T execute;
sleep;

end do.
End SCHEDULER.

22 January 2004 Lecture 4 10

General structure of cyclic schedules

General consensus is that it is better to use cyclic
schedules that exhibit some structure, as opposed
to using totally ad hoc schedules – e.g. make
scheduling decisions at periodic intervals, rather
than at arbitrary times
Such periodic scheduling intervals partition the
timeline into frames; there is no pre-emption within
frames
The phase of each periodic task is a non-negative
integer multiple of the frame size – i.e. the first job of
every task is released at the beginning of a frame

Real Time and Embedded Systems 22 January 2004

Lecture 4 6

22 January 2004 Lecture 4 11

Frame size constraints

Want the frames to be sufficiently long so that every job and start
and complete its execution within a frame

[eq 1] f ≥ max(e1, e2, …, en)
To minimize the length of the cyclic schedule, the frame size
should divide the hyperperiod of the system; this is true if f
divides the period pi of at least one task Ti

[eq 2] ∃ i such that mod(pi, f) = 0
To make it possible for the scheduler to determine that every job
completes by its deadline, the frame size should be sufficiently
small such that between the release time and deadline of every
job, there is at least one frame

[eq 3] 2*f – gcd(pi, f) ≤ Di for i = 1, 2, …, n

22 January 2004 Lecture 4 12

Frame size constraints

Example - reconsider the system with 4
independent periodic tasks: T1 = (4, 1), T2 =
(5, 1.8), T3 = (20, 1), and T4 = (20, 2)
Hyperperiod H is 20 (least common multiple
of 4, 5, 20, 20)

Eq 1 ⇒ f ≥ 2
Eq 2 ⇒ f ∈ { 2, 4, 5, 10, 20 }
Eq 3 ⇒ f = 2

Therefore, f = 2

Real Time and Embedded Systems 22 January 2004

Lecture 4 7

22 January 2004 Lecture 4 13

Job Slices

Sometimes, the task parameters for a system cannot meet all
three frame size constraints simultaneously
Forced to partition a large-execution-time job in a task into
slices/subjobs with smaller execution times
To construct a cyclic schedule, we need to make three kinds of
design decisions:

Choose a frame size
Partition jobs into slices
Place slices in frames

These decisions cannot be taken independently
Sometimes we need to partition jobs into more slices than
required by the frame size constraints in order to yield a feasible
schedule

22 January 2004 Lecture 4 14

Cyclic Executives

A table-driven cyclic scheduler for all types of jobs in a multi-
threaded system
Table that drives the scheduler has F entries, where F = H / f; each
corresponding entry L(k) lists the names of the job slices that are
scheduled to execute in frame k; called a scheduling block
Cyclic executive takes over the processor and executes at the clock
interrupt that signals the start of a frame

It determines the appropriate scheduling block for this frame
It executes the jobs in the scheduling block
It wakes up jobs in the aperiodic job queue to permit them to use
the remaining time in the frame

Major assumptions:
Existence of a timer
Each timer interrupt is handled by the executive in a bounded
time

Real Time and Embedded Systems 22 January 2004

Lecture 4 8

22 January 2004 Lecture 4 15

Scheduling aperiodic jobs

Thus far, aperiodic jobs are scheduled in the background
after all the job slices with hard deadlines scheduled in
each frame have completed
Delaying the execution, and hence the completion, of
aperiodic jobs in preference to periodic tasks is not
necessarily a good one
There is no advantage to completing a hard RT job early
Since an aperiodic job is released due to an event, the
sooner such a job completes, the more responsive the
system
Minimizing the response times of aperiodic jobs is
typically a design goal of real-time schedulers

22 January 2004 Lecture 4 16

Slack Stealing

Execute aperiodic jobs ahead of periodic jobs whenever possible – in
essence, place the “idle” periods at the beginning of each frame, rather than
at the end
Every periodic job slice must be scheduled in a frame that ends no later
than its deadline
When an aperiodic job executes ahead of slices of periodic tasks, it
consumes the slack in the frame
The cyclic executive must keep a running tally of the slack left in each frame
As long as there is slack remaining in a frame, the cyclic executive returns
to examine the aperiodic job queue after each slice completes
Implementing such an executive:

Initial slack in each frame precomputed and stored in table
Use an interval timer to keep track of the available slack in the frame
At beginning of frame, interval timer set to available slack
Timer counts down whenever an aperiodic job executes in the frame
When timer expires, executive is interrupted, and preempts the
executing aperiodic job

Real Time and Embedded Systems 22 January 2004

Lecture 4 9

22 January 2004 Lecture 4 17

Scheduling sporadic jobs

Sporadic jobs have hard deadlines
Since their minimum release times and maximum execution
times are not known a priori, impossible to guarantee that all
sporadic jobs complete in time
Have scheduler perform an acceptance test when each sporadic
job is released

Check whether the newly released sporadic job can be feasibly
scheduled with all the jobs in the system at that time

‘Jobs in the system’ defined as periodic jobs and sporadic jobs that
have been accepted but not yet completed
If there is sufficient slack in the frames before the new job’s deadline,
the new job is accepted; otherwise, it is rejected

If more than one sporadic job is queued for acceptance test, EDF
can be used for ordering this queue

22 January 2004 Lecture 4 18

Pros of Clock-driven Scheduling

Conceptual simplicity
Ability to consider complex dependencies, communication
delays, and resource contention among jobs when
constructing the static schedule, guaranteeing absence of
deadlocks and unpredictable delays
Entire schedule is captured in a static table
Different operating modes can be represented by different
tables
No concurrency control or synchronization required
If completion time jitter requirements exist, these can be
captured in the static schedule[s]

Real Time and Embedded Systems 22 January 2004

Lecture 4 10

22 January 2004 Lecture 4 19

Pros of Clock-driven Scheduling

When the workload is mostly periodic and the
schedule is cyclic, timing constraints can be
checked and enforced at each frame
boundary
Choice of frame size can minimize context
switching and communication overheads
Such systems are relatively easy to validate,
test and certify

22 January 2004 Lecture 4 20

Cons of Clock-driven Scheduling

Such systems are inflexible – precompilation of knowledge
into the scheduling tables means that if anything changes
materially, have to redo the table generation – as a result,
best suited for systems which are rarely modified once built
Other disadvantages:

1. Release times of all jobs must be fixed
2. All combinations of periodic tasks that might execute at

the same time must be known a priori so that the
combined schedule can be precomputed

3. The treatment of aperiodic jobs is very primitive; if there is
a significant amount of soft-real-time computation in the
system, it is unlikely that this structure will yield
acceptable response times

