
Real Time and Embedded Systems 21 January 2004

Lecture 3 1

21 January 2004 Lecture 3 1

Precedence Graphs Revisited

Flight controller for a helicopter; every 1/180th of a second
Validate sensor data and select data source; in the presence of failures, reconfigure the 
system
Do the following 30-Hz avionics tasks, each once every 6 cycles:

Keyboard input and mode selection
Data normalization and coordinate transformation
Tracking reference update

Do the following 30-Hz computations, each once every 6 cycles
Control laws of the outer pitch-control loop
Control laws of the outer roll-control loop
Control laws of the outer yaw- and collective-control loop

Do each of the following 90-Hz computations once every 2 cycles, using outputs produced 
by the 30-Hz computations

Control laws of the inner pitch-control loop
Control laws of the inner roll- and collective-control loop

Compute the control laws of the inner yaw-control loop, using outputs from the 90-Hz 
computations
Output commands
Carry out built-in-test
Wait until the beginning of the next cycle

21 January 2004 Lecture 3 2

Task/Job Definitions

J1,i: keyboard input and mode selection; data normalization 
and coordinate transformation; tracking reference update
J2,i: outer pitch control-law computation; outer roll control-
law computation; outer yaw and collective control-law 
computation
J3,i: inner pitch control-law computation; inner roll and 
collective control-law computation
J4,i: inner yaw control-law computation
J5,i: output actuator commands
J6,i: carry out built-in test 
Time ti is represented overleaf by i, where ti = i* 1/180 
second



Real Time and Embedded Systems 21 January 2004

Lecture 3 2

21 January 2004 Lecture 3 3

Corresponding Precedence Graph (one 
major cycle)

T1

T2

T3

T4

T5

T6 . . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

mod(i,6) 1 2 3 4 5 0 1

[i,i+6) [i+6,i+12)

[i,i+6) [i+6,i+12)

[i,i+2) [i+6,i+8)[i+4,i+6)[i+2,i+4)

[i,i+1) [i+1,i+2) [i+2,i+3) [i+3,i+4) [i+4,i+5) [i+5,i+6) [i+6,i+7)

[i,i+1) [i+1,i+2) [i+2,i+3) [i+3,i+4) [i+4,i+5) [i+5,i+6) [i+6,i+7)

[i,i+1) [i+1,i+2) [i+2,i+3) [i+3,i+4) [i+4,i+5) [i+5,i+6) [i+6,i+7)

21 January 2004 Lecture 3 4

Commonly-used Approaches to RT 
Scheduling

Clock-driven
Primarily used for systems in which properties of 
all tasks/jobs are known at design time, such that 
offline scheduling techniques can be used

Weighted round-robin
Primarily used for scheduling real-time traffic in 
high-speed, switched networks

Priority-driven
Primarily used for RT systems with a mix of time-
based and event-based activities



Real Time and Embedded Systems 21 January 2004

Lecture 3 3

21 January 2004 Lecture 3 5

Clock-Driven Approach

Decisions about what jobs execute at what 
times are made at specific time instants; 
these instants are chosen a priori before the 
system begins execution
All parameters of hard RT jobs are fixed and 
known
A schedule of the jobs is computed off-line 
and is stored for use at run-time; as a result, 
scheduling overhead at run-time can be 
minimized

21 January 2004 Lecture 3 6

Clock-driven Approach

Frequently, make scheduling decisions at regularly 
spaced time instants – e.g. every 1/180th second in 
our avionics example
Real implementations depend upon a hardware 
timer that can be set to interrupt at regular intervals
When the system is initialized, the scheduler selects 
and schedules the job(s) that will execute until the 
next scheduling decision time; it then blocks itself 
waiting for the next timer interrupt
When the timer expires, the scheduler awakes and 
repeats these actions



Real Time and Embedded Systems 21 January 2004

Lecture 3 4

21 January 2004 Lecture 3 7

Weighted Round-robin Approach

From OS3, you know that the round-robin approach is commonly 
used for scheduling time-shared applications
Every job joins a FIFO queue when it is ready for execution; 
when the scheduler runs, it schedules the job at the head of the
queue to execute for at most one time slice (sometimes called a 
quantum – typically o(tens of ms))
If the job has not completed by the end of its quantum, it is 
preempted and placed at the end of the queue
When there are N ready jobs in the queue, each job gets one 
slice every N time slices (N time slices is called a round)
Weighted round robin – each job i is assigned a weight wi; this 
job will receive wi time slices every round, and a round is
Σi wi , for i = 1..N; regular round robin is weighted round robin 
where all weights are 1

21 January 2004 Lecture 3 8

Weighted Round-robin Approach

By giving each job a fraction of the processor, a round-robin 
scheduler delays the completion of every job
If it is used to schedule precedence-constrained jobs, the response 
time of a chain of jobs can be unduly large
If a successor job can incrementally consume output from a 
predecessor (e.g. UNIX pipes), then this is a reasonable approach, 
since a job and its successors can execute concurrently in a 
pipelined fashion
In high-speed switching networks

Message transmission is carried out in a pipeline fashion
A downstream switch can begin to xmit an earlier portion of a 
message as soon as it receives that portion without having to 
wait for the arrival of the later portion
WRR does not require a sorted priority queue, only a RR queue; 
for ultra high speed networks, priority queues with the required
speed are very expensive



Real Time and Embedded Systems 21 January 2004

Lecture 3 5

21 January 2004 Lecture 3 9

Priority-driven Approach

Priority-driven algorithms NEVER intentionally leave 
any resource idle.
Scheduling decisions are made when events such 
as releases and job completions occur; hence, such 
algorithms are event-driven
Also called greedy scheduling (makes locally 
optimal decisions), list scheduling and work-
conserving scheduling
Locally optimal scheduling decisions are often NOT 
globally optimal

21 January 2004 Lecture 3 10

Most scheduling algorithms used in non real-
time systems are priority-driven

First-In-First-Out
Last-In-First-Out
Shortest-Execution-Time-First
Longest-Execution-Time-First

Priority-driven Approach

} Based upon release times

} Based upon execution times



Real Time and Embedded Systems 21 January 2004

Lecture 3 6

21 January 2004 Lecture 3 11

Priority-driven Approach

Consider the following example:
Jobs J1 … J8, where Ji had higher priority than Jk if i < k
Jobs are scheduled on two processors P1 and P2

Jobs communicate via shared memory, so comms costs 
are negligible
The schedulers keep one common priority queue of ready 
jobs
All jobs are preemptable; scheduling decisions are made 
whenever some job becomes ready for execution or a job 
completes

21 January 2004 Lecture 3 12

Priority-driven Approach

J5 4/2

J1 0/3

J2 0/1 J3 0/2 J4 0/2

J6 0/4

J7 0/4 J8 0/1



Real Time and Embedded Systems 21 January 2004

Lecture 3 7

21 January 2004 Lecture 3 13

Priority-driven Approach

---12

8-89

866, 88

-776

575, 75

544, 5, 74

744, 73

311, 3, 71

211, 2, 70

P2P1Ready to runTime

21 January 2004 Lecture 3 14

Priority-driven Approach

---11

-668

866, 87

755, 75

744, 5, 74

744, 73

311, 3, 71

211, 2, 70

P2P1Ready to runTime

Assume jobs are non-preemptable:



Real Time and Embedded Systems 21 January 2004

Lecture 3 8

21 January 2004 Lecture 3 15

Priority-driven Approach

Dynamic vs Static Systems
If jobs are scheduled on multiple processors, and a job can 
be dispatched to any of the processors, the system is 
dynamic
A job migrates if it starts execution on one processor and is 
resumed on a different processor
If jobs are partitioned into subsystems, and each 
subsystem is bound statically to a processor, we have a 
static system.
Expect static systems to have inferior performance (in term 
of the makespan of the jobs) relative to dynamic systems

21 January 2004 Lecture 3 16

Priority-driven Approach

Sometimes, the release time of a job may be later than that of its 
successors, and its deadline may be earlier than that of its 
predecessors
Effective release time

If a job has no predecessors, its effective release time is its 
release time
If it has predecessors, its effective release time is the maximum 
of its release time and the effective release times of its 
predecessors

Effective deadline
If a job has no successors, its effective deadline is its deadline
It if has successors, its effective deadline is the minimum of its 
deadline and the effective deadline of its successors

Scheduling is then based upon the effective values



Real Time and Embedded Systems 21 January 2004

Lecture 3 9

21 January 2004 Lecture 3 17

Priority-driven Approach

Priority assignment based upon deadlines
Earliest deadline first (EDF)

This algorithm is optimal as long as preemption is allowed 
and jobs do not contend for resources

Least Slack Time first (LST)
At any time t, the slack of a job with deadline d is
d-t minus the time required to complete the remaining 
portion of the job
This algorithm is also optimal under the same conditions as 
EDF

Neither algorithm is optimal if jobs are non-preemptable or 
if there is more than one processor

21 January 2004 Lecture 3 18

Priority-driven Approach

Behaviour under load
Clairvoyant scheduler – an imaginary algorithm that knows all future 
release times for all jobs
A system is overloaded if even a clairvoyant scheduler is unable to 
come up with a feasible schedule
In an overload situation, some jobs must be discarded (shed) in order to 
allow other jobs to complete in time
During overload, measure the performance of an algorithm by the 
amount of work the scheduler can feasibly schedule; the larger this 
amount, the better the algorithm
Value of a job = its execution time if it completes by its deadline, 0 
otherwise
Value of a schedule = sum of the value of all jobs
Optimal algorithm if it always produces a schedule of maximum possible 
value for every finite set of jobs
For on-line scheduling, it is imperative to keep the system from 
becoming overloaded using some overload management or load 
shedding algorithms


