
Real Time and Embedded Systems 15 January 2004

Lecture 2 1

15 January 2004 Lecture 2 1

Real Time and Embedded Systems

Revision to weighting of assessed
coursework vs final examination

20% of grade derived from assessed course work
2 problems sets @ 4% each
1 programming assignment @ 12%

80% of grade derived from exam mark
Other data

Prof. Sventek’s office: S162
Dr. Perkins’s office: S154

15 January 2004 Lecture 2 2

A Reference Model of Real-Time Systems

A good model permits us to focus on the important
aspects of a system while ignoring the irrelevant
properties/details
Our reference model is characterized by:

A workload model that describes the applications
supported by the system
A resource model that describes the system resources
available to the applications
Algorithms that define how the application system uses the
resources at all times

Today, we will focus on the first two elements of the
reference model – the models that describe the
applications and resources

Real Time and Embedded Systems 15 January 2004

Lecture 2 2

15 January 2004 Lecture 2 3

A Reference Model of Real-Time Systems

Processor – every job must have one or more processors in
order to execute and make progress towards completion – e.g.
computer, transmission link, disk, database server
Each processor has a speed attribute – the rate of progress a job
makes toward completion depends upon the speed of the
processor upon which it executes
Processor type – two processors are of the same type if they are
functionally identical and can be used interchangeably – e.g. two
transmission links with the same xmt rate between a
sender/receiver pair, processors in a symmetrical multiprocessor
system
Resources – passive entities in the system upon which jobs
depend – e.g. memory, sequence numbers, mutexes, database
locks
A resource does NOT have a speed attribute

15 January 2004 Lecture 2 4

A Reference Model of Real-Time Systems

Processor/resource examples
Computation job shares data with other computations

Shared data is guarded by a semaphore
Semaphore modelled as a resource
Job wanting to access the shared data must obtain the semaphore
(lock it), use data, then release the semaphore

Sliding window scheme to regulate message transmission
There is a maximum number of unacknowledged messages are
allowed to be in transit; modelled as a set of valid sequence numbers
The set of valid sequence numbers moves forward as earlier
messages are acknowledged; in order for a message to be
transmitted, it must be assigned one of the valid sequence numbers
Model the transmission of a message as a job; this job executes
when the message is being transmitted
This job needs the data link and a valid unit of the sequence number
resource

Real Time and Embedded Systems 15 January 2004

Lecture 2 3

15 January 2004 Lecture 2 5

A Reference Model of Real-Time Systems

We usually talk about reusable resources – i.e. they
are not consumed during use
If the system contains ρ resources, this means:

There are ρ types of serially reusable resources
There are one or more units of each type of resource
Each unit is used in a mutually exclusive manner
A job must obtain a unit of a needed resource and then
release it

A resource is plentiful if no job is ever prevented
from executing by the unavailability of units of the
resource – i.e. it never blocks when attempting to
obtain a unit of a plentiful resource – e.g. obtaining
the contents of a read-only file

15 January 2004 Lecture 2 6

A Reference Model of Real-Time Systems

Temporal parameters of a RT workload
Many parameters of hard RT jobs and tasks are
known at all times – otherwise, we cannot ensure
that the system meets its hard RT requirements

The number of hard RT tasks or jobs – a hard RT
system may operate in different modes – the number
of tasks/jobs is know for each mode – e.g. autopilot
system is changed to standby
Each job Ji is characterized by its temporal (timing
constraints), functional (intrinsic properties of the job),
resource (needed resources), and interconnection
parameters (interdependency with other jobs)

Real Time and Embedded Systems 15 January 2004

Lecture 2 4

15 January 2004 Lecture 2 7

A Reference Model of Real-Time Systems

Temporal concepts
ri – release time of Ji

di – absolute deadline of Ji

Di – relative deadline of Ji

(ri, di] – feasible interval for Ji

Often do not know exactly when a job is released, only that
ri is in a range [ri

-, ri
+] – this is known as release time jitter

If, for all practical purposes, we can approximate the actual
release time of each job by its earliest or latest release
time, then we say that the job has a fixed release time

15 January 2004 Lecture 2 8

A Reference Model of Real-Time Systems

Nearly every real time system is required to respond to external
events which occur at random instants of time
The jobs resulting from these events are called sporadic or aperiodic
jobs because they are released at random instants of time
The release times for sporadic/aperiodic jobs are random variables;
in the model, we use a probability distribution A(t) for the probability
of t being the release time of a job; alternatively, when discussing a
stream of similar sporadic/aperiodic jobs, it is the probability
distribution for interrelease time
A(x) gives us the probability that the release time of the job is at or
earlier than x (or the interrelease time between successive jobs in
the stream is less than or equal to x)
Sometimes we use the terms arrival time (interarrival time) due to its
common use in queueing theory. A sporadic/aperiodic jobs arrives
when it is released.

Real Time and Embedded Systems 15 January 2004

Lecture 2 5

15 January 2004 Lecture 2 9

A Reference Model of Real-Time Systems

Execution time
ei is the execution time for Ji – i.e. the amount of time required to
complete the execution of Ji when it executes alone and has all
the resources it requires.
Value depends upon the complexity of the job and the speed of
the processor upon which it is scheduled
Execution time may vary for a variety of reasons

Conditional branches
Cache memories and/or pipelines
Compression (e.g. MPEG video frames)

As for release time, usually we know ei is in the range
[ei

-, ei
+]; we usually assume that we know this range for every

hard RT job
Often, we can validate a system by knowing ei

+ for each job;
therefore, ei often implies the maximum execution time

15 January 2004 Lecture 2 10

A Reference Model of Real-Time Systems

Periodic task model
Each computation or data transmission that is executed
repeatedly at regular or semi-regular time intervals is
modelled as a periodic task
Each periodic task Ti is a sequence of jobs
The period pi of Ti is the minimum length of all time
intervals between release times of consecutive jobs
The execution time ei of Ti is the maximum of all jobs in the
periodic task.
The period and execution time of every periodic task in the
system are known at all times.
The accuracy of the periodic task model decreases with
increasing release jitter and variations in execution times

Real Time and Embedded Systems 15 January 2004

Lecture 2 6

15 January 2004 Lecture 2 11

A Reference Model of Real-Time Systems

Periodic task model
Individual jobs in Ti are referred to as Ji,1, Ji,2, …
The release time ri,1 of Ji,1 in each task Ti is called the
phase of Ti, φi
The hyperperiod H of a set of periodic tasks is the least
common multiple of pi for I = 1 … N
The ratio ui = ei/pi is the utilization of task Ti – i.e. the
fraction of time a truly periodic task with period pi and
execution time ei keeps a processor busy
Total utilization U = Σ ui, where the sum is over all periodic
tasks in the system
The relative deadline, Di, is often simply the period, pi

15 January 2004 Lecture 2 12

A Reference Model of Real-Time Systems

Sporadic/aperiodic tasks
Each sporadic/aperiodic task is a stream of sporadic/aperiodic
jobs
The interarrival times between consecutive jobs in such a task
may vary widely and, in particular, can be arbitrarily small
The interarrival times of consecutive jobs are identically
distributed random variables with some probability distribution
A(x)
Similarly, the execution times of jobs are identically distributed
random variables with some probability distribution B(x)
A task is sporadic if its jobs have hard deadlines
A task is aperiodic if its jobs have either soft deadlines or no
deadlines

Real Time and Embedded Systems 15 January 2004

Lecture 2 7

15 January 2004 Lecture 2 13

A Reference Model of Real-Time Systems

Precedence constraints and data dependencies
Jobs are said to have precedence constraints if they are
constrained to execute in a particular order; otherwise they
are independent
A job Ji is a predecessor of another job Jk (and Jk a
successor of Ji) if Jk cannot begin execution until the
execution of Ji completes – Ji < Jk
Ji is an immediate predecessor of Jk if Ji < Jk and there is
no other job Jj such that Ji < Jj < Jk
Ji and Jk are independent when neither Ji < Jk nor Jk < Ji
Represent the precedence constraints among jobs in a set
J using a directed graph G = (J, <); each vertex is labelled
by the name of the job represented; a directed edge goes
from Ji to Jk if Ji is an immediate predecessor of Jk

15 January 2004 Lecture 2 14

A Reference Model of Real-Time Systems

…

…

…

…

…

Conditional block

branch

1/22/3

join

(0,7] (2,9] (4,11] (6,13] (8,15]

(2,5] (5,8] (8,11] (11,14] (14,17]

(0,5] (4,8] (5,20]

(0,6]

(2,10]

J

Real Time and Embedded Systems 15 January 2004

Lecture 2 8

15 January 2004 Lecture 2 15

A Reference Model of Real-Time Systems

Task graphs
Jobs represented by circles and squares
Directed edges represented by arrows
AND/OR precedence constraints

Normally a job must wait for the completion of all immediate
predecessors – termed an AND constraint
An OR constraint indicates that a job may begin after its
release time if only some of the immediate predecessors
have completed – k-out-of-l – shown as boxes in the task
graph
The in-type of a node in the graph indicates whether it is an
AND or an OR node

15 January 2004 Lecture 2 16

A Reference Model of Real-Time Systems

Task graphs
Conditional branches

Normally, all the immediate successors of a job must be
executed; an outgoing edge from every vertex expresses
an AND constraint
Conditional branches can be represented by outgoing
edges with an OR constraint – indicates that only 1 of the
immediate successors is to be executed – nodes
represented by filled-in circles in a task graph
Conditional branch is the subgraph from the node with the
OR conditional constraint to the corresponding join node

Pipeline relationship
Need a way to represent a pair of producer/consumer jobs
Represented in task graphs with a dotted edge

Real Time and Embedded Systems 15 January 2004

Lecture 2 9

15 January 2004 Lecture 2 17

A Reference Model of Real-Time Systems

Functional parameters
Preemptivity of jobs
Importance or criticality of jobs
Optional jobs or portions of jobs
Laxity type and function (usefulness)

Resource parameters
Preemptivity of resources

15 January 2004 Lecture 2 18

A Reference Model of Real-Time Systems

Scheduling
Jobs are scheduled and allocated resources according to a
chosen set of scheduling algorithms and resource access-control
protocols; a scheduler implements these algorithms
A scheduler specifically assigns jobs to processors
A schedule is an assignment of all jobs in the system on the
available processors.
A valid schedule satisfies the following conditions:

Every processor is assigned to at most one job at any time
Every job is assigned at most one processor at any time
No job is scheduled before its release time
The total amount of processor time assigned to every job is equal to
its maximum or actual execution time
All the precedence and resource usage constraints are satisfied

Real Time and Embedded Systems 15 January 2004

Lecture 2 10

15 January 2004 Lecture 2 19

A Reference Model of Real-Time Systems

Scheduling
A valid schedule is a feasible schedule if every job meets
its timing constraints.
A hard real time scheduling algorithm is optimal if the
algorithm always produces a feasible schedule if the given
set of jobs has feasible schedules.
lateness = completion time – deadline
tardiness = max[0, lateness]
Miss rate – the percentage of jobs that are executed but
completed too late
Loss rate – the percentage of jobs that are not executed at
all

