Real Time & Embedded Systems

e Your lecturers:
e Prof. J Sventek, weeks 1-5,
e Dr. C. Perkins, weeks 6-10,
e Venues and times
e Tuesdays, 15:00-16:00, [F171]
o Wednesdays, 12:00-13:00, [F171]
e Thursdays, 12:00-13:00, [Boyd Orr 407/LT A]

e Required textbook — “Real-Time Systems” by Jane
W. S. Liu, ISBN 0-13-099651-31

e Web site:

14 January 2004 Lecture 1 1

Real Time & Embedded Systems

e Course overview:

e Lectures 1-10 — theory of real-time systems, covering
scheduling and resource management

e Lectures 11-20 — the pragmatics of building real-time
systems with available operating systems and network
stacks

e Two assessed problem sets in weeks 1-5
e Assessed programming exercise in weeks 6-10

e 25% of grade derived from assessed course work;
75% of grade derived from your exam mark

14 January 2004 Lecture 1 2

Real Time & Embedded Systems

Week beginning | Tue, 15:00-16:00 | Wed, 12:00-13:00 | Thu, 12:00-13:00
12 January No meeting Lecture 1 Lecture 2
19 January Q&A Lecture 3 Lecture 4
26 January Q&A Lecture 5 Lecture 6
2 February Q&A Lecture 7 Lecture 8
9 February Q&A Lecture 9 Lecture 10
16 February Lecture 11 Lecture 12 Lecture 13
23 February Lecture 14 Lecture 15 Lecture 16
1 March Individual work on programming assignment
8 March Q&A Lecture 17 Lecture 18
15 March Q&A Lecture 19 Lecture 20
14 January 2004 Lecture 1 3
esee
Real Time & Embedded Systems | g2::
o0
Weeks 1-5 :
Topic Lectures Pre-Reading
Typical Real-Time Applications 1 Chapter 1
Hard vs. Soft RT Systems 1 Chapter 2
Reference Model of RT Systems 2 Chapter 3
Commonly Used Approaches to RT Scheduling 3 Chapter 4
Clock-driven Scheduling 4 Chapter 5
Priority-driven Scheduling of Periodic Tasks 5-6 Chapter 6
Scheduling Aperiodic and Sporadic Jobs in Priority- 7-8 Chapter 7
Driven Systems
Resources and Resource Access Control 9-10 Chapter 8

14 January 2004

Lecture 1

Real Time & Embedded Systems | $3::

o0
Weeks 6-10 .
Topic Lecture Pre-Reading

Real-Time Support in Operating Systems 11 Chapter 12

Scheduling in Practice 12

Operating System Support for Concurrency 13

Introduction to Real-Time Communications 14 Chapter 11

Real-Time Communications on IP Networks 15

Network Quality of Service 16

Real-Time on General Purpose Systems 17 Chapter 10

Real-Time Embedded Systems 18

Low-level Programming 19

Review of Major Concepts 20

14 January 2004 Lecture 1 5
eoo
o000
o000
eo0o
o0
 J

Typical Real-Time Applications

A real-time system is required to complete its work
and deliver its services on a timely basis

The computers and networks that run real-time
applications are often hidden from view (embedded)
— successful, embedded RT systems are not seen
by the user

Some RT systems are safety critical —i.e. if they do
not complete on a timely basis, serious
consequences result

Therefore, it is crucial that one be able to validate
RT systems — i.e. provide a rigorous demonstration
that the system has the intended timing behaviour

14 January 2004 Lecture 1 6

eecs
[XX
Typical Real-Time Applications :
e We will discuss several representative
classes of RT Applications
o Digital control
e Optimal control
e Command and control
e Signal processing
e Tracking
o Real-time databases
e Multimedia
esss
i

Typical Real-Time Applications

e Digital Control

controller
rt)
- u
reference control Ia}w 3 D/A
input computation
B e

14 January 2004 Lecture 1 8

Typical Real-Time Applications

e Digital Control

A sampled data system

y(t) is the measured state of the plant

r(t) is the desired state of the plant

e(t) = r(t) — y(t) is the difference between desired and measured

A proportional, integral and derivative (PID) controller has the
output u(t) of the controller that consists of three terms: one
proportional to e(t), a second proportional to the integral of e(t),
and a third that is proportional to the derivative of e(t)

e Pseudocode for the controller

set timer to interrupt periodically with period T;
at each timer interrupt, do

do analog-to-digital conversion to get y;

compute control output u;

output u and do digital-to-analog conversion;
end do;

14 January 2004 Lecture 1 9

Typical Real-Time Applications

e Selection of sampling period

e Sampling period — the length of time T between any two
consecutive instants at which y(t) and r(t) are sampled

e Making T small better approximates the analog behaviour
e Making T large means less processor-time demands
e Must achieve a compromise

e Perceived responsiveness — if users can provide input at
any time t, then the response to the input can be as late as
t+T; if T is too large, the user will perceive the system as
sluggish

e Want to keep the oscillation in the plant’s response small
and the system under control

14 January 2004 Lecture 1 10

Typical Real-Time Applications

Selection of sampling period

e Rise time — the amount of time that the plant takes to
reach some small neighbourhood around the final state in
response to a step change in the reference input

o If Ris the rise time, and T is the period, a good rule of
thumb is that the ratio 10 <= R/T <= 20

Multirate Systems — system is composed of multiple

sensors and actuators, each of which require

different sampling periods

Usually best to have the sampling periods for the
different degrees of freedom related in a harmonic
way

14 January 2004 Lecture 1 1

Typical Real-Time Applications

Flight controller for a helicopter

Valitdate sensor data and select data source; in the presence of failures, reconfigure the
system

Do the following 30-Hz avionics tasks, each once every 6 cycles:

o Keyboard input and mode selection

o Data normalization and coordinate transformation

e Tracking reference update

Do the following 30-Hz computations, each once every 6 cycles

e Control laws of the outer pitch-control loop

o Control laws of the outer roll-control loop

e Control laws of the outer yaw- and collective-control loop

Do each of the following 90-Hz computations once every 2 cycles, using outputs produced
by the 30-Hz computations

e Control laws of the inner pitch-control loop

e Control laws of the inner roll- and collective-control loop

Comput the control laws of the inner yaw-control loop, using outputs from the 90-Hz
computations

Output commands

Carry out built-in-test

Wait until the beginning of the next cycle

14 January 2004 Lecture 1 12

Typical Real-Time Applications

e PID controllers make three assumptions:

e Sensor data give accurate estimates of the state-variables being
monitored and controlled - noiseless

e The sensor data gives the state of the plant — usually must
compute plant state from measured values

o All parameters representing the dynamics of the plant are known

e If any of these assumptions are not valid, digital controllers are
often implemented as follows:

set timer to interrupt periodically with period T;

at each clock interrupt, do
sample and digitize sensor readings to get measured values;
compute control output from measured and state-variable values;
convert control output to analog form;
estimate and update plant parameters;
compute and update state variables;

end do;

14 January 2004 Lecture 1 13

Typical Real-Time Applications

e Divide RT applications into the following four types according to
their timing attributes:

o Purely cyclic: every task executes periodically; its demands in
(computing, communication, and storage) resources do not vary
significantly from period to period

e Mostly cyclic: most tasks execute periodically; the system must
also respond to some external events (fault recovery and
external commands) asynchronously

e Asynchronous and somewhat predictable: most tasks are not
periodic; the durations between consecutive executions of a task
may vary considerably, or the variations in resource utilization in
different periods may be large; these variations have either
bounded ranges or known statistics

e Asynchronous and unpredictable: applications that react to
asynchronous events and have tasks with high run-time
complexity

14 January 2004 Lecture 1 14

Typical Real-Time Applications

e Examples

e Purely cyclic — most digital controllers and real-
time monitors

e Mostly cyclic — modern avionics and process
control systems

e Asynchronous, predictable —

e Asynchronous, unpredictable — intelligent real-
time control systems

14 January 2004 Lecture 1 15

Hard vs. Soft Real-Time Systems

Each unit of work that is scheduled and executed by
a system is a job — e.g. computation of a control-
law, computation of an FFT on sensor data,
transmission of a data packet, retrieval of a file

a set of related jobs which jointly provide some
system function is a task — e.g. the set of jobs that
constitute the “maintain constant altitude” task —i.e.
keep an airplane flying at a constant altitude

A job executes or is executed by the operating
system

Every job executes on some resource; each such
resource is termed a processor

14 January 2004 Lecture 1 16

Hard vs. Soft Real-Time Systems

e Release time — the instant of time at which a job becomes available for
execution

e A job can be scheduled and executed at any time at or after its release
time whenever its data and control dependency conditions are met

e If all jobs are released when the system begins execution, then these
jobs “have no release time”

e Deadline — the instant of time by which a job’s execution is required to
be completed (also called absolute deadline)

e Response time — the length of time from the release time of the job to
the instant when it completes

Relative deadline — the maximum allowable response time of a job
absolute deadline = release time + relative deadline

Completion time — the instant of time at which a job completes
execution

e Timing constraint — any constraint imposed on the timing behaviour of
ajob

14 January 2004 Lecture 1 17

Hard vs. Soft Real-Time Systems

e Example: a system that monitors and controls several furnaces;
after initialization, every 100 ms, the system:

e samples and reads each temperature sensor

e computes the control-law of each furnace in order to process the
temperature readings and determine the flow rates of fuel, air,

coolant
e The periodic control-law computations can be stated in terms of the
release times of the control-law computation jobs J,, J;, ..., J, ...; if

we assume that 20 ms are required for initialization, then J,’s
release time is 20 + k x 100 ms

e Suppose each job must complete before the release of the
subsequent job —i.e. J,’s relative deadline is 100 ms; then J,’s
absolute deadline is 20 + (k + 1) x 100 ms

e Alternatively, each control-law computation may be required to finish
_sok;)ner — i.e. the relative deadline is smaller than the time between
jobs

14 January 2004 Lecture 1 18

Hard vs. Soft Real-Time Systems

e Tardiness — how late a job completes relative to its deadline; 0 if

at or before its absolute deadline, otherwise,
completion time - absolute deadline

e Common definitions for hard and soft RT constraints:

e A timing constraint is hard if the failure to meet it is considered to
be a fatal fault (e.g. failure to release a bomb on time causes
civilians around a military target to be hit instead) — this definition
is based upon the functional criticality of a job

e The usefulness of the results of a job can be used to define hard
vs soft RT — if the usefulness falls off abruptly at the deadline (or
may even go negative), then it is a hard RT constraint

e If ajob must never miss its deadline, then it is a hard RT
constraint; if the deadline can be missed occasionally with some
acceptably low probability, then it is a soft RT constraint

14 January 2004 Lecture 1 19

Hard vs. Soft Real-Time Systems

e Validation — a demonstration by a provably correct, efficient
procedure or by exhaustive simulation and testing.

e The timing constraint of a job is hard, and the job is a hard RT
job, if the user requires the validation that the system always
meets the timing constraint.

e Statistical constraint — a timing constraint specified in terms of
statistical averages

e If no validation is required, or only a demonstration that the job
meets some statistical constraint is needed, then the timing
constraint on the job is soft

e Guaranteed vs best-effort

e An application/task with hard timing constraints is a hard RT
application/task; a system containing mostly hard RT
applications/tasks is a hard RT system

14 January 2004 Lecture 1 20

Hard vs. Soft Real-Time Systems

e There may be no advantage in completing a job with a hard
deadline early — in fact, it is often advantageous/essential to keep
jitter in the response times of a stream of jobs small

e Hard timing constraints can be expressed in many ways:

e Deterministic — e.g. the relative deadline of every control-law
computation is 50 ms; the response time of at most 1 out of 5
consecutive control-law computations exceeds 50ms *

e Probabilistic — e.g. the probability of the response time exceeding
50 ms is less than 0.2

e In terms of some usefulness function — e.g. the usefulness of
every control-law computation is at least 0.8

14 January 2004 Lecture 1 21

