
Real Time and Embedded Systems 14 January 2004

Lecture 1 1

14 January 2004 Lecture 1 1

Real Time & Embedded Systems

Your lecturers:
Prof. J Sventek, weeks 1-5, joe@dcs.gla.ac.uk
Dr. C. Perkins, weeks 6-10, csp@csperkins.org

Venues and times
Tuesdays, 15:00-16:00, [F171]
Wednesdays, 12:00-13:00, [F171]
Thursdays, 12:00-13:00, [Boyd Orr 407/LT A]

Required textbook – “Real-Time Systems” by Jane 
W. S. Liu, ISBN 0-13-099651-31
Web site:
http://www.dcs.gla.ac.uk/people/personal/joe/03-04RTES.html

14 January 2004 Lecture 1 2

Real Time & Embedded Systems

Course overview:
Lectures 1-10 – theory of real-time systems, covering 
scheduling and resource management
Lectures 11-20 – the pragmatics of building real-time 
systems with available operating systems and network 
stacks

Two assessed problem sets in weeks 1-5
Assessed programming exercise in weeks 6-10
25% of grade derived from assessed course work; 
75% of grade derived from your exam mark



Real Time and Embedded Systems 14 January 2004

Lecture 1 2

14 January 2004 Lecture 1 3

Real Time & Embedded Systems

Lecture 20Lecture 19Q&A15 March

Lecture 18Lecture 17Q&A8 March

Individual work on programming assignment1 March

Lecture 16Lecture 15Lecture 1423 February

Lecture 13Lecture 12Lecture 1116 February

Lecture 10Lecture 9Q&A9 February

Lecture 8Lecture 7Q&A2 February

Lecture 6Lecture 5Q&A26 January

Lecture 4Lecture 3Q&A19 January

Lecture 2Lecture 1No meeting12 January

Thu, 12:00-13:00Wed, 12:00-13:00Tue, 15:00-16:00Week beginning

14 January 2004 Lecture 1 4

Real Time & Embedded Systems
Weeks 1-5

Chapter 89-10Resources and Resource Access Control

Chapter 77-8Scheduling Aperiodic and Sporadic Jobs in Priority-
Driven Systems

Chapter 65-6Priority-driven Scheduling of Periodic Tasks

Chapter 54Clock-driven Scheduling

Chapter 43Commonly Used Approaches to RT Scheduling

Chapter 32Reference Model of RT Systems

Chapter 21Hard vs. Soft RT Systems

Chapter 11Typical Real-Time Applications

Pre-ReadingLecturesTopic



Real Time and Embedded Systems 14 January 2004

Lecture 1 3

14 January 2004 Lecture 1 5

Real Time & Embedded Systems
Weeks 6-10

20Review of Major Concepts

19Low-level Programming

18Real-Time Embedded Systems

Chapter 1017Real-Time on General Purpose Systems

16Network Quality of Service

15Real-Time Communications on IP Networks

Chapter 1114Introduction to Real-Time Communications

13Operating System Support for Concurrency

12Scheduling in Practice

Chapter 1211Real-Time Support in Operating Systems

Pre-ReadingLectureTopic

14 January 2004 Lecture 1 6

Typical Real-Time Applications
A real-time system is required to complete its work 
and deliver its services on a timely basis
The computers and networks that run real-time 
applications are often hidden from view (embedded) 
– successful, embedded RT systems are not seen 
by the user
Some RT systems are safety critical – i.e. if they do 
not complete on a timely basis, serious 
consequences result
Therefore, it is crucial that one be able to validate 
RT systems – i.e. provide a rigorous demonstration 
that the system has the intended timing behaviour



Real Time and Embedded Systems 14 January 2004

Lecture 1 4

14 January 2004 Lecture 1 7

Typical Real-Time Applications

We will discuss several representative 
classes of RT Applications

Digital control
Optimal control
Command and control
Signal processing
Tracking
Real-time databases
Multimedia

14 January 2004 Lecture 1 8

Typical Real-Time Applications

Digital Control

Sensor ActuatorPlant

control-law
computation D/A

A/D

A/D

controller

yk

r(t)

y(t) u(t)

reference
input

rk
uk



Real Time and Embedded Systems 14 January 2004

Lecture 1 5

14 January 2004 Lecture 1 9

Typical Real-Time Applications
Digital Control

A sampled data system
y(t) is the measured state of the plant
r(t) is the desired state of the plant
e(t) = r(t) – y(t) is the difference between desired and measured
A proportional, integral and derivative (PID) controller has the
output u(t) of the controller that consists of three terms: one 
proportional to e(t), a second proportional to the integral of e(t), 
and a third that is proportional to the derivative of e(t)
Pseudocode for the controller

set timer to interrupt periodically with period T;
at each timer interrupt, do

do analog-to-digital conversion to get y;
compute control output u;
output u and do digital-to-analog conversion;

end do;

14 January 2004 Lecture 1 10

Typical Real-Time Applications
Selection of sampling period

Sampling period – the length of time T between any two 
consecutive instants at which y(t) and r(t) are sampled
Making T small better approximates the analog behaviour
Making T large means less processor-time demands
Must achieve a compromise
Perceived responsiveness – if users can provide input at 
any time t, then the response to the input can be as late as 
t+T; if T is too large, the user will perceive the system as 
sluggish
Want to keep the oscillation in the plant’s response small 
and the system under control



Real Time and Embedded Systems 14 January 2004

Lecture 1 6

14 January 2004 Lecture 1 11

Typical Real-Time Applications
Selection of sampling period

Rise time – the amount of time that the plant takes to 
reach some small neighbourhood around the final state in 
response to a step change in the reference input
If R is the rise time, and T is the period, a good rule of 
thumb is that the ratio 10 <= R/T <= 20

Multirate Systems – system is composed of multiple 
sensors and actuators, each of which require 
different sampling periods
Usually best to have the sampling periods for the 
different degrees of freedom related in a harmonic 
way

14 January 2004 Lecture 1 12

Typical Real-Time Applications
Flight controller for a helicopter

Validate sensor data and select data source; in the presence of failures, reconfigure the 
system
Do the following 30-Hz avionics tasks, each once every 6 cycles:

Keyboard input and mode selection
Data normalization and coordinate transformation
Tracking reference update

Do the following 30-Hz computations, each once every 6 cycles
Control laws of the outer pitch-control loop
Control laws of the outer roll-control loop
Control laws of the outer yaw- and collective-control loop

Do each of the following 90-Hz computations once every 2 cycles, using outputs produced 
by the 30-Hz computations

Control laws of the inner pitch-control loop
Control laws of the inner roll- and collective-control loop

Comput the control laws of the inner yaw-control loop, using outputs from the 90-Hz 
computations
Output commands
Carry out built-in-test
Wait until the beginning of the next cycle



Real Time and Embedded Systems 14 January 2004

Lecture 1 7

14 January 2004 Lecture 1 13

Typical Real-Time Applications
PID controllers make three assumptions:

Sensor data give accurate estimates of the state-variables being 
monitored and controlled - noiseless
The sensor data gives the state of the plant – usually must 
compute plant state from measured values
All parameters representing the dynamics of the plant are known

If any of these assumptions are not valid, digital controllers are 
often implemented as follows:

set timer to interrupt periodically with period T;
at each clock interrupt, do

sample and digitize sensor readings to get measured values;
compute control output from measured and state-variable values;
convert control output to analog form;
estimate and update plant parameters;
compute and update state variables;

end do;

14 January 2004 Lecture 1 14

Typical Real-Time Applications
Divide RT applications into the following four types according to 
their timing attributes:

Purely cyclic: every task executes periodically; its demands in 
(computing, communication, and storage) resources do not vary 
significantly from period to period
Mostly cyclic: most tasks execute periodically; the system must 
also respond to some external events (fault recovery and 
external commands) asynchronously
Asynchronous and somewhat predictable: most tasks are not 
periodic; the durations between consecutive executions of a task
may vary considerably, or the variations in resource utilization in 
different periods may be large; these variations have either 
bounded ranges or known statistics
Asynchronous and unpredictable: applications that react to 
asynchronous events and have tasks with high run-time 
complexity



Real Time and Embedded Systems 14 January 2004

Lecture 1 8

14 January 2004 Lecture 1 15

Typical Real-Time Applications

Examples
Purely cyclic – most digital controllers and real-
time monitors
Mostly cyclic – modern avionics and process 
control systems
Asynchronous, predictable –
Asynchronous, unpredictable – intelligent real-
time control systems

14 January 2004 Lecture 1 16

Hard vs. Soft Real-Time Systems
Each unit of work that is scheduled and executed by 
a system is a job – e.g. computation of a control-
law, computation of an FFT on sensor data, 
transmission of a data packet, retrieval of a file
a set of related jobs which jointly provide some 
system function is a task – e.g. the set of jobs that 
constitute the “maintain constant altitude” task – i.e. 
keep an airplane flying at a constant altitude
A job executes or is executed by the operating 
system
Every job executes on some resource; each such 
resource is termed a processor



Real Time and Embedded Systems 14 January 2004

Lecture 1 9

14 January 2004 Lecture 1 17

Hard vs. Soft Real-Time Systems
Release time – the instant of time at which a job becomes available for 
execution
A job can be scheduled and executed at any time at or after its release 
time whenever its data and control dependency conditions are met
If all jobs are released when the system begins execution, then these 
jobs “have no release time”
Deadline – the instant of time by which a job’s execution is required to 
be completed (also called absolute deadline)
Response time – the length of time from the release time of the job to 
the instant when it completes
Relative deadline – the maximum allowable response time of a job
absolute deadline = release time + relative deadline
Completion time – the instant of time at which a job completes 
execution
Timing constraint – any constraint imposed on the timing behaviour of 
a job

14 January 2004 Lecture 1 18

Hard vs. Soft Real-Time Systems
Example: a system that monitors and controls several furnaces; 
after initialization, every 100 ms, the system:

samples and reads each temperature sensor
computes the control-law of each furnace in order to process the 
temperature readings and determine the flow rates of fuel, air, 
coolant

The periodic control-law computations can be stated in terms of the 
release times of the control-law computation jobs J0, J1, …, Jk, …; if 
we assume that 20 ms are required for initialization, then Jk’s
release time is 20 + k x 100 ms
Suppose each job must complete before the release of the 
subsequent job – i.e. Jk’s relative deadline is 100 ms; then Jk’s
absolute deadline is 20 + (k + 1) x 100 ms
Alternatively, each control-law computation may be required to finish 
sooner – i.e. the relative deadline is smaller than the time between 
jobs



Real Time and Embedded Systems 14 January 2004

Lecture 1 10

14 January 2004 Lecture 1 19

Hard vs. Soft Real-Time Systems
Tardiness – how late a job completes relative to its deadline; 0 if 
at or before its absolute deadline, otherwise,

completion time – absolute deadline
Common definitions for hard and soft RT constraints:

A timing constraint is hard if the failure to meet it is considered to 
be a fatal fault (e.g. failure to release a bomb on time causes 
civilians around a military target to be hit instead) – this definition 
is based upon the functional criticality of a job
The usefulness of the results of a job can be used to define hard 
vs soft RT – if the usefulness falls off abruptly at the deadline (or 
may even go negative), then it is a hard RT constraint
If a job must never miss its deadline, then it is a hard RT 
constraint; if the deadline can be missed occasionally with some
acceptably low probability, then it is a soft RT constraint

14 January 2004 Lecture 1 20

Hard vs. Soft Real-Time Systems
Validation – a demonstration by a provably correct, efficient 
procedure or by exhaustive simulation and testing.
The timing constraint of a job is hard, and the job is a hard RT 
job, if the user requires the validation that the system always 
meets the timing constraint.
Statistical constraint – a timing constraint specified in terms of 
statistical averages
If no validation is required, or only a demonstration that the job 
meets some statistical constraint is needed, then the timing 
constraint on the job is soft
Guaranteed vs best-effort
An application/task with hard timing constraints is a hard RT 
application/task; a system containing mostly hard RT 
applications/tasks is a hard RT system



Real Time and Embedded Systems 14 January 2004

Lecture 1 11

14 January 2004 Lecture 1 21

Hard vs. Soft Real-Time Systems
There may be no advantage in completing a job with a hard 
deadline early – in fact, it is often advantageous/essential to keep 
jitter in the response times of a stream of jobs small
Hard timing constraints can be expressed in many ways:

Deterministic – e.g. the relative deadline of every control-law 
computation is 50 ms; the response time of at most 1 out of 5 
consecutive control-law computations exceeds 50ms *
Probabilistic – e.g. the probability of the response time exceeding 
50 ms is less than 0.2
In terms of some usefulness function – e.g. the usefulness of 
every control-law computation is at least 0.8


