Real Time and Embedded Systems/Problem Set \#1

Due at the beginning of Lecture 7, Wednesday, 4 February 2004.

1. Consider the real-time program described by the pseudocode below. Names of jobs are italicized:
```
At 9:00, start: have breakfast and go to office;
At 10:00,
    If there is class,
        teach;
    Else,
        help students;
When teach or help is done, eat_lunch;
Until 14:00, sleep;
If there is a seminar,
    If the topic is interesting,
        listen;
    Else
        read;
Else
    write in office;
When seminar is over, attend social hour;
discuss;
jog;
eat_dinner;
work a little more
end_the_day;
```

a. Draw a task graph to capture the dependencies among jobs.
b. Use as many precedence graphs as needed to represent all possible paths of the program.
2. A system contains nine nonpreemptable jobs named J_{i}, for $\mathrm{i}=1,2, \ldots, 9$. Their execution times are $3,2,2,2,4,4,4,4$, and 9 , respectively, their release times are equal to 0 , and their deadlines are 12. J_{1} is the immediate predecessor of J_{9}, and J_{4} is the immediate predecessor of $\mathrm{J}_{5}, \mathrm{~J}_{6}, \mathrm{~J}_{7}$, and J_{8}. There are no other precedence constraints. For all jobs, J_{i} has a higher priority than J_{k} if $\mathrm{i}<\mathrm{k}$.
a. Draw the precedence graph of the jobs.
b. Can the jobs meet their deadlines if they are scheduled on three processors? Explain your answer.
c. Can the jobs meet their deadlines if we make them preemptable and schedule them preemptively. Explain your answer.
d. Can the jobs meet their deadlines if they are scheduled nonpreemptively on four processors? Explain your answer.
e. Suppose that due to an improvement of the three processors, the execution time of every job is reduced by 1 . Can the jobs now meet their deadlines? Explain your answer.
3. A system contains the following periodic tasks: $\mathrm{T}_{1}=(5,1), \mathrm{T}_{2}=(7,1,9), \mathrm{T}_{3}=$ $(10,3)$, and $\mathrm{T}_{4}=(35,7)$.
a. If the frame size constraint (5-1) is ignored, what are the possible frame sizes?
b. Using the largest frame size you have found in part a, draw the network-flow graph of the system.
c. Find a cyclic schedule by solving the network-flow problem in part b or show that the system cannot be feasibly according to a cyclic schedule of the frame size used in part b.
4. This problem is concerned with the performance and behaviour of rate-monotonic and earliest-deadline-first algorithms.
a. Construct the initial segments in the time interval $(0,750)$ of a rate-monotonic schedule and an earliest-deadline-first schedule of the periodic tasks $(100,20)$, $(150,50)$, and $(250,100)$ whose total utilization is 0.93 .
b. Construct the initial segments in the time interval $(0,750)$ of a rate-monotonic schedule and an earliest-deadline-first schedule of the periodic tasks $(100,20)$, $(150,50)$, and $(250,120)$ whose total utilization is 1.1 .

