RTP Functionalities for RTCWEB

A combined view from the authors of

draft-cbran-rtcweb-media-00
draft-perkins-rtcweb-rtp-usage-02
Introduction

- Agreement that RTP is the protocol choice for Real-time Media Transport.

- These slides walk through the proposed set of RTP features
 - Provide a short motivation and explanation
 - The proposed requirement level for Implementation in an RTCWEB end-point for each
 - There is no discussion of RTP multiplexing in these slides

- Open Issues:
 - RTP Retransmissions level of requirement
 - Forward Error Correction, method and requirements level
 - Bit-rate Adaptation Solution
Core Features

- RTP [RFC3550] is REQUIRED
- RTCP is REQUIRED
- SAVPF RTP Profile [RFC5124] is REQUIRED
 - Secure RTP provided
 - AVPF RTCP Transmission rules
 - Timelier transmission of events
 - More efficient usage of RTCP bandwidth
- Key-management for SRTP, most talked about candidate is DTLS-SRTP [RFC 5764]
RTP Optimizations

• RTP and RTCP Multiplexing [RFC5761] is REQUIRED
 – Multiplex RTP and RTCP on one lower layer identifier
• Reduced Size RTCP [RFC5506] is REQUIRED
 – Allows one to send RTCP packets that are not compound packets as specified in RFC3550
 – Improves RTCP performance when sending feedback events
• Symmetric RTP [RFC4961] is REQUIRED
 – Send RTP and RTCP in bi-directional flows within an RTP session
• Short-term persistent RTCP CNAME Generation (method B) [RFC6222] is RECOMMEND
 – High Quality CNAME identifiers
 – Preserves privacy
Conferencing Extensions

- The extensions improves centralized conferencing
- Full Intra Request (FIR) [RFC5104] is RECOMMEND
 - Used by central nodes to request a new Intra to facilitate switch or when a new user joins the session.
- Picture Loss Indicator (PLI) [RFC5104] is RECOMMENDED
 - Sent by end-points that are missing packets resulting in corrupted decoder state
- Temporary Maximum Media Stream Bit Rate Request [RFC5104] is RECOMMEND
 - Allows a central node or end-point to request a temporary cap in media bit-rate from a particular source.
 - Facilitates adaptation across central nodes
RTP Header Extensions

• RTP Header Extension provides Meta Data about media stream
• If any header extension is implemented [RFC5285] is REQUIRED
 – Core specification for extensible and stackable header extensions
• Rapid RTP Synchronization [RFC6051] is RECOMMENDED
 – The header extension allows RTP synchronization information also carried in RTCP to be sent with media stream at e.g. start up or when new end-point joins a conference
• Client to Mixer Audio Level [draft-ietf-avtext-client-to-mixer-audio-level] is RECOMMEND
 – Allows a mixer to make selection decision based on this header, rather than decoding audio and measuring audio levels
• Mixer to Client Audio Level [draft-ietf-avtext-mixer-to-client-audio-level] is OPTIONAL
 – Clients receiving a mixed audio stream gets indication of level for the ones included in the mix. Thus allowing GUI indications.
Open Issue: RTP Retransmission

• RTP Retransmission [RFC4588] is an RTP packet loss repair mechanism:
 – Allows for selective retransmissions, i.e. focus on intra frames or preserving prediction chains
 – Very bandwidth efficient
 – Down side is extra delay it adds between transmission and when media decoding can start
 • Usable in interactive communication within continents
 • Ericsson has good practical experience using it in centralized video conferencing
 – Error free media at lower base quality preferred over erroneous at higher base quality
 – Targets correcting packet loss rates up to ~5%
 • Bit-rate adaptation should prevent high persistent loss rates
• What level of Implementation Requirement should it have?
 – RECOMMENDED
 – OPTIONAL
Open Issue: Forward Error Correction

- Forward Error Correction (FEC) is an alternative to retransmission (RTX)
- Possible to reduce delay compared to RTX, but has more overhead.
 - Additional delay allows for reduction in overhead
- Possible Solutions
 - Basic redundancy [RFC2198] (audio and text only), or using the retransmission format [RFC4588]
 - XOR based Block FEC [RFC5109]
 - Block FEC Schemes, e.g. Reed-Salomon
 - [draft-galanos-fecframe-rtp-reedsolomon-03]
 - [draft-ietf-fecframe-rtp-raptor-04]
- Potential IPR Concerns
- What to select, if any, is an Open Issue!
Open Issue: RTP Rate Control

• A Clear Need for RTP Media Rate Control:
 – Heterogeneous paths require that, at minimum, one prevents self-induced congestion
 – Avoiding filling buffers also keeps latency low
 – Some level of resource sharing is likely good:
 • TCP Friendliness is not required

• The open issue is the lack of a standardized, implemented and tested solution

• Possible Solutions are:
 – TFRC for RTP [draft-gharai-avtcore-rtp-tfrc-00]
 – RTP over DCCP [RFC 5762] using CCID=3 (TFRC) [RFC 5762] or CCID=4 (TFRC-SP) [RFC 5622]
 – ?