ECN for RTP over UDP/IP

draft-westerlund-avt-ecn-for-rtp-00.txt
draft-carlberg-avt-rtp-ecn-02.txt
draft-carlberg-avt-rtcp-xr-ecn-01.txt

Magnus Westerlund
Ingemar Johansson
Colin Perkins
Ken Carlberg
Piers O’Hanlon
Motivation

• ECN provides for advanced warning of persistent congestion
 – RFC3168(§5.1): “the CE codepoint should not be set by a router based on the instantaneous queue size”
• ECN-CE warning is more useful to real-time flows (TCP can always ARQ)
 – Provides opportunity for adaption before loss occurs
• RTP/SDP provides a way forward
Dynamic adaptation RTP

• Many RTP flows do not do adaptation to loss
 – Using loss as a signal is a bit late
• There are now a number of variable bit rate codecs
• ECN allows
 – Early congestion response
 • Mechanisms are out of scope for this draft
 – Improved user experience
Background

- Explicit Congestion Notification (ECN)
 - Two Layer design (RFC-3168):
 - Network: hop-by-hop marking
 - Transport: negotiation and feedback
 - Active Queue Management (AQM)
 - E.g., Random Early Detection (RED), marks packets instead of dropping

- In-Band signaling
 - IP: two bits in diff-serv field
 - ECN Capable Transport (ECT) (01, 10)
 - Congestion Experience (CE) (11)
 - ECN not supported (00)
 - TCP: two bits
 - ECN Echo, Congestion Window Reduced
 - TCP ECN Nonce (RFC 3540)
ECN for RTP over UDP/IP

• Initially seems straight-forward:
 – Signal ECN support in SIP using SDP offer/answer
 – Set ECT on RTP data packets sent in UDP/IP
 – Send feedback piggybacked on RTCP reception reports
 • (No portable way to monitor received ECN marks on UDP)
 – Respond to ECN-CE by varying media encoding rate

• Yes, but...
Why is ECN for RTP Difficult? (1/3)

• Signalling
 – Signalling can negotiate end-point capability; says nothing about ability of media path ability to support ECN

• Feedback
 – RTCP feedback on congestion events is slow – seconds rather than RTT
 • AVPF helps, but may still limit amount of feedback that can be sent

• Congestion Response
 – Codecs adaptive, within some constraints; frequent variation destroys user experience; not TCP-friendly
Why is ECN for RTP Difficult? (2/3)

• Middle-boxes
 – RTP *translators* and *mixers* within the network
 • Translator is a middle-box; must interpose itself in the ECN negotiation, split the connection, respond to congestion
 • Mixer acts as end-point; terminates transport connections
 – Only *part* of an RTP session may support ECN
Why is ECN for RTP Difficult? (3/3)

• Multicast
 – RTP is inherently a *group* communication protocol
 • ASM with many-to-many groups and multicast feedback
 • SSM with unicast feedback, potentially very large groups
 – IPTV channels, potentially millions of receivers

 – ECN per sender tree? For the entire group? All receivers? Again, only *parts* of the session may support ECN
 – May require receiver driven congestion response (layered coding?)
ECN for RTP over UDP/IP: Proposal

• Four pieces to the proposed solution:
 – Negotiation of ECN capability
 • SIP with SDP offer/answer; ICE option
 – Initiation and verification of ECT
 • Using RTP and RTCP
 • Using STUN and ICE
 – Ongoing use of ECN with RTP session
 – Failure detection, verification, and fallback
Negotiation of ECN Capability

• SIP with SDP offer/answer
 – SDP offer include new attribute to indicate ECN capability of the offering entity
 • a=ecn-capable-rtp
 • a=rtp-ecn: <sendonly|sendrecv>
 – Answering entity replies; negotiates ECN capability

 – Portable APIs exist to set ECN bits on UDP packets, but not to read them from received packets
 • Should we support devices that can send ECN, but not receive it?
ECN Probing

• End-point ECN capability != path ECN capability

• Broken middle-boxes exist which can disrupt ECN
 – Drop packets with ECT marks
 – Zero out ECT marks in transit

• Need to probe path to determine if ECN supported
 – Using STUN as part of an ICE exchange
 – Using RTP and RTCP
ECN Probing using STUN/ICE (1/2)

• Additional signalling: capability to probe the path for ECN support using STUN as part of an ICE exchange
 – a=ice-options: rtp+ecn
 – Details to be resolved: a=ice-options poorly defined

• Possible for unicast flows where ICE is supported
 – Subset of possible use-cases
ECN Probing using STUN/ICE (2/2)

Figure 1: ECN Check Stun Attribute

V: Valid (1 bit) ECN Echo value field is valid when set to 1, and invalid when set 0.

ECF: ECN Echo value field (2 bits) contains the ECN filed value of the STUN packet it echoes back when field is valid. If invalid the content is arbitrary.

Reserved: Reserved bits (29 bits) SHALL be set to 0 and SHALL be ignored on reception.
ECN Probing using RTP/RTCP

• Basic RTP/RTCP probing mechanism:
 – Sender starts by ECT marking small fraction of RTP packets
 • Comfort noise, no-op, or similar
 – Receivers report reception of ECT marked packets
 • New RTCP report blocks sent using AVPF, described later
 – Sender waits for receiver population to stabilise
 – If all receivers reported reception of ECT marked packets, sender may switch to ECT marking all packets

• Per-sender; gracefully supports groups; conservative
ECN Usage with RTP

• Sender ECT-marks all packets
• Receivers send ECN feedback
 – Regular RTCP: indicate continued receipt of ECT-marks
 – AVPF feedback: receipt of ECN-CE packets
• Respond to ECN-CE as-if packet loss occurred; reduce path data rate

• Need to continually monitor, since path may fail
 – Discussion later
RTCP Feedback: Regular

- Use new RTCP XR report
- Initial straw man for the data it should report:
 - Start + end sequence numbers, bitmaps of lost and marked packets, ECN nonce value
 - Considering alternative that avoid ECN nonce

```
+--------+--------+--------+--------+
| 0 1 2 3| 4 5 6 7| 8 9 0 1| 2 3 4 5|
+--------+--------+--------+--------+
 INV | RNV | Z | C | P | Reserved | Chunk 1 |  
+--------+--------+--------+--------+
```
RTCP Feedback: Congestion/Probe

• Need rapid feedback during probing period, or if ECN-CE marked packet received
• Use new AVPF feedback packet
 – Should be small enough to use immediate mode
 – Aim for similar format to regular reports
Congestion Response

• Receipt of ECN-CE indicates congestion
 – Path data rate must be reduced, or packet loss will occur
 – Two options:
 • Sender-based rate reduction: change media encoding options
 • Receiver-driven rate reduction: layered media coding
 – Lots of options for how to adapt; probably not TCP-friendly

• Incentive to react to ECN-CE:
 – If you react, you control how media quality is reduced
 – If you don’t react, network will drop packets – worse quality
Ongoing Verification of ECN

• Why might ECN support change?
 – New receivers join a multicast group
 – Mobility changes the path, putting a new broken middle box on path

• How to detect and fallback?
 – Regular RTCP feedback will show (some) receivers not getting ECT-marked packets
 – Fall-back to occasional ECT-probes for safety
 • This is deliberately conservative for multicast groups
ECN Usage with RTP: Translators

- Translator that doesn’t modify media
 - Multicast ↔ unicast; IPv4 ↔ IPv6
 - Pass ECN and RTCP unchanged

- Translator that combines or splits packets
 - Split → copy ECN marks; combine → pick worst ECN mark
 - Rewrite RTCP ECN feedback to match

- Translator that is a media transcoder
 - Must interpose translator into ECN negotiation
 - Must generate and respond to ECN feedback on each segment → non-trivial
ECN Usage with RTP: Mixers

• Mixer acts as an RTP endpoint for ECN purposes
 – Treats all paths independently
 – For each path:
 • Negotiate capability and check path support
 • Generate RTCP ECN feedback
 • Respond to ECN feedback
 – Possible that some paths support ECN, others don’t
Implementation Experiences

• Host capability to get/set ECN (TOS) bits
 – Set ECN/TOS on most platforms (setsockopt())
 – Get ECN per packet is only possible on Linux
 • setsockopt(IP_RECVTOS,), recvmsg() cmsghdr
 – Design to cope with differing hosts

• Network paths (tunnels, middleboxes, routers etc)
 – Currently most paths reset DSCP bits
 – Currently some paths reset ECN bits
 – Design to cope with differing paths

• Current implementation using UCL PhD’s (Soo Hyun)
 TFWC congestion control
Input and Future Directions

• Any questions or comments?

• Authors working on a combined Internet-Draft

• Desire that this becomes a working group draft
 – Suggest AVT as the formal home for the work, with regular review by TSVWG
 – Target: standards track