Guidelines for Extending the RTP Control Protocol (RTCP)
draft-ietf-avt-rtcp-guidelines-01.txt

Status of this Memo

This Internet-Draft is submitted to IETF in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html.

This Internet-Draft will expire on September 10, 2009.

Copyright Notice

Copyright (c) 2009 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents in effect on the date of publication of this document (http://trustee.ietf.org/license-info). Please review these documents carefully, as they describe your rights and restrictions with respect to this document.

Abstract

The RTP Control Protocol (RTCP) is used along with the Real-time Transport Protocol (RTP) to provide a control channel between media...
senders and receivers. This allows constructing a feedback loop to enable application adaptivity and monitoring, among other uses. The basic reporting mechanisms offered by RTCP are generic, yet quite powerful and suffice to cover a range of uses. This document provides guidelines on extending RTCP if those basic mechanisms prove insufficient.

Table of Contents

1. Introduction ... 3
2. Terminology .. 4
3. RTP and RTCP Operation Overview 4
 3.1. RTCP Capabilities 5
 3.2. RTCP Limitations 7
 3.3. Interactions with Network and Transport Layer
 Mechanisms ... 8
4. Issues with RTCP Extensions 8
5. Guidelines ... 10
6. Security Considerations 13
7. IANA Considerations .. 14
8. Acknowledgements .. 15
9. References .. 15
 9.1. Normative References 15
 9.2. Informative References 16
Authors’ Addresses ... 17
1. Introduction

The Real-time Transport Protocol (RTP) [RFC3550] is used to carry
time-dependent (often continuous) media such as audio or video across
a packet network in an RTP session. RTP usually runs on top of an
unreliable transport such as UDP, DTLS, or DCCP, so that RTP packets
are susceptible to loss, re-ordering, or duplication. Associated
with RTP is the RTP Control Protocol (RTCP) which provides a control
channel for each session: media senders provide information about
their current sending activities ("feed forward") and media receivers
report on their reception statistics ("feedback") in terms of
received packets, losses, and jitter. Senders and receivers provide
self-descriptions allowing to disambiguate all entities in an RTP
session and correlate SSRC identifiers with specific application
instances. RTCP is carried over the same transport as RTP and is
hence inherently best-effort and hence the RTCP reports are designed
for such an unreliable environment, e.g., by making them "for
information only".

The RTCP control channel provides coarse-grained information about
the session in two respects: 1) the RTCP SR and RR packets contain
only cumulative information or means over a certain period of time
and 2) the time period is in the order of seconds and thus neither
has a high resolution nor does the feedback come back
instantaneously. Both these restrictions have their origin in RTP
being scalable and generic. Even these basic mechanisms (which are
still not implemented everywhere despite their simplicity and very
precise specification, including sample code) offer substantial
information for designing adaptive applications and for monitoring
purposes, among others.

Recently, numerous extensions have been proposed in different
contexts to RTCP which significantly increase the complexity of the
protocol and the reported values, mutate it toward an command
channel, and/or attempt turning it into a reliable messaging
protocol. While the reasons for such extensions may be legitimate,
many of the resulting designs appear ill-advised in the light of the
RTP architecture. Moreover, extensions are often badly motivated and
thus appear unnecessary given what can be achieved with the RTCP
mechanisms in place today.

This document is intended to provide some guidelines for designing
RTCP extensions. It is particularly intended to avoid an extension
creep for corner cases which can only harm interoperability and
future evolution of the protocol at large. We first outline the
basic operation of RTCP and constructing feedback loops using the
basic RTCP mechanisms. Subsequently, we outline categories of
extensions proposed (and partly already accepted) for RTCP and
discuss issues and alternative ways of thinking by example. Finally, we provide some guidelines and highlight a number of questions to ask (and answer!) before writing up an RTCP extension.

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14, RFC 2119 [RFC2119] and indicate requirement levels for compliant implementations.

The terminology defined in RTP [RFC3550], the RTP Profile for Audio and Video Conferences with Minimal Control [RFC3551], and the Extended RTP Profile for RTCP-Based Feedback (RTP/AVPF) [RFC4585] apply.

3. RTP and RTCP Operation Overview

One of the twelve networking truths states: "In protocol design, perfection has been reached not when there is nothing left to add, but when there is nothing left to take away" [RFC1925]. Despite (or because of) this being an April, 1st, RFC, this specific truth is very valid and it applies to RTCP as well.

In this section, we will briefly review what is available from the basic RTP/RTCP specifications. As specifications, we include those which are generic, i.e., do not have dependencies on particular media types. This includes the RTP base specification [RFC3550] and profile [RFC3551], the RTCP bandwidth modifiers for session descriptions [RFC3556], the timely feedback extensions (RFC 4585), and the extensions to run RTCP over SSM networks. RTCP XR [RFC3611] provides extended reporting mechanisms which are partly generic in nature, partly specific to a certain media stream.

We do not discuss RTP-related documents that are orthogonal to RTCP. The Secure RTP Profile [RFC3711] can be used to secure RTCP in much the same way it secures RTP data, but otherwise does not affect the behaviour of RTCP. The transport protocol used also has little impact, since RTCP remains a group communication protocol even when running over a unicast transport (such as TCP [RFC4571] or DCCP [I-D.ietf-dccp-rtp]), and is little affected by congestion control due to its low rate relative to the media. The description of RTP topologies [RFC5117] is useful knowledge, but is functionally not relevant here. The various RTP error correction mechanisms (e.g. [RFC2198], [RFC2733], [RFC4588], [RFC5109]) are useful for protecting
RTP media streams, and may be enabled as a result of RTCP feedback, but do not directly affect RTCP behaviour.

3.1. RTCP Capabilities

The RTP/RTCP specifications quoted above provide feedback mechanisms with the following properties, which can be considered as "building blocks" for adaptive real-time applications for IP networks.

- **Sender Reports (SR)** indicate to the receivers the total number of packets and octets have been sent (since the beginning of the session or the last change of the sender’s SSRC). These values allow deducing the mean data rate and mean packet size for both the entire session and, if continuously monitored, for every transmission interval. They also allow a receiver to distinguish between breaks in reception caused by network problems, and those due to pauses in transmission.

- **Receiver Reports (RR) and SRs** indicate reception statistics from each receiver for every sender. These statistics include:
 * The packet loss rate since the last SR or RR was sent.
 * The total number of packets lost since the beginning of the session which may again be broken down to each reporting period.
 * The highest sequence number received so far -- which allows a sender to roughly estimate how much data is in flight when used together with the SR and RR timestamps (and also allows observing whether the path still works and at which rate packets are delivered to the receiver).
 * The moving average of the inter-arrival jitter of media packets. This gives the sender an indirect view of the size of any adaptive playout buffer used at the receiver ([RFC3611] gives precise figures for VoIP sessions).

- **Sender Reports** also contain NTP and RTP format timestamps. These allow receivers to synchronise multiple RTP streams, and (when used in conjunction with Receiver Reports) allow the sender to calculate the current RTT to each receiver. This value can be monitored over time and thus may be used to infer trends at coarse granularity. A similar mechanism is provided by [RFC3611] to allow receivers to calculate the RTT to senders.

RTCP sender reports and receiver reports are sent, and the statistics are sampled, at random intervals chosen uniformly in the range 0.5 ... 1.5 times the deterministic calculated interval, T. The interval T is calculated based on the media bit rate, the mean RTCP packet size, whether the sampling node is a sender or a receiver, and the number of participants in the session, and will remain constant while the number of participants in the session remains constant. The lower bound on the base inter-report interval, T, is five seconds, or
360 seconds divided by the session bandwidth in kilobits/second (giving an interval smaller than 5 seconds for bandwidths greater than 72 kb/s) [RFC3550].

This lower limit can be eliminated, allowing more frequent feedback, when using the early feedback profile for RTCP [RFC4585]. In this case, the RTCP frequency is only limited by the available bitrate (usually 5% of the media stream bit rate is allocated for RTCP). If this fraction is insufficient, the RTCP bitrate may be increased in the session description to enable more frequent feedback [RFC3556]. Ongoing work [I-D.ietf-avt-rtcp-non-compound] may reduce the mean RTCP packet size, further increasing feedback frequency.

The mechanisms defined in [RFC4585] even allow -- statistically -- a receiver to provide close-to-instant feedback to a sender about observed events in the media stream (e.g. picture or slice loss).

RTCP is suitable for unicast and multicast communications. All basic functions are designed with group communications in mind. While traditional (any-source) multicast (ASM) is clearly not available in the Internet at large, source-specific multicast (SSM) and overlay multicast are -- and both are commercially relevant. RTCP extensions have been defined to operate over SSM, and complex topologies may be created by interconnecting RTP mixers and translators. The group communication nature of RTP and RTCP is also essential for the operation of Multipoint Conference Units.

These mechanisms can be used to implement a quite flexible feedback loop and enable short-term reaction to observed events as well as long-term adaptation to changes in the networking environment. Adaptation mechanisms available on the sender side include (but are not limited to) choosing different codecs, different parameters for codecs (spatial or temporal resolution for video, audible quality for audio and voice), and different packet sizes to adjust the bit rate. Furthermore, various forward error correction mechanisms and, if RTTs are short and the application permits extra delays, even reactive error control such as retransmissions. Long-term feedback can be provided in regular RTCP reports at configurable intervals, whereas (close-to-)instant feedback is available by means of the early feedback profile. Figure 1 below outlines this idea graphically.
3.2. RTCP Limitations

The design of RTP limits what can meaningfully be done (and hence should be done) with RTCP. In particular, the design favours scalability and loose coupling over tightly controlled feedback loops. Some of these limitations are listed below (they need to be taken into account when designing extensions):

- RTCP is designed to provide occasional feedback which is unlike, e.g., TCP ACKs which can be sent in response to every (other) packet. It does not offer per-packet feedback (even when using [RFC4585] with increased RTCP bandwidth fraction, the feedback guarantees are only statistical in nature).
- RTCP is not capable of providing truly instant feedback.
- RTCP is inherently unreliable, and does not guarantee any consistency between the observed state at multiple members of a group.
It is important to note that these features of RTCP are intentional design choices, and are essential for it to scale to large groups.

3.3. Interactions with Network and Transport Layer Mechanisms

As discussed above, RTCP flows are used to measure, infer, and convey information about the performance of an RTP media stream.

Inference in baseline RTCP is mainly limited to determining the path RTT from pairs of RTCP SR and RR packets. This inference makes the implicit assumption that RTP and RTCP are treated equally: they are routed along the same path, mapped to the same (DiffServ) traffic classes, and treated as part of the same fair queuing classification. This is true in many cases, however since RTP and RTCP are generally sent using different ports, any flow classification based upon the quintuple (source and destination IP address and port number, transport protocol) could lead to a differentiation between RTP and RTCP flows, disrupting the statistics.

While some networks may wish to intentionally prioritize RTCP over RTP (to provide quicker feedback) or RTP over RTCP (since the media is considered more important than control), we recommend that they be treated identically where possible, to enable this inference of network performance, and hence support application adaptation.

When using reliable transport connections for (RTP and) RTCP [RFC2326] [RFC4571], retransmissions and head-of-line blocking may similarly lead to inaccurate RTT estimates derived by RTCP. (These may, nevertheless, properly reflect the mean RTT for a media packet including retransmissions.)

The conveyance of information in RTCP is affected by the above only as soon as the prioritization leads to RTCP packets being dropped overproportionally.

All of this emphasizes the unreliable nature of RTCP. Multiplexing on the same port number [I-D.ietf-avt-rtp-and-rtcp-mux] or inside the same transport connection might help mitigating some of these effects; but this is limited to speculation at this point and should not be relied upon.

4. Issues with RTCP Extensions

Issues that have come up in the past with extensions to RTP and RTCP include (but are probably not limited to) the following:
o Defined only or primarily for unicast two-party sessions. RTP is inherently a group communication protocol, even when operating on a unicast connection. Extensions may become useful in the future well outside their originally intended area of application, and should consider this. Stating that something works for unicast only is not acceptable, particularly since various flavours of multicast have become relevant again, and as middleboxes such as repair servers, mixers, and RTCP-supporting MCUs [RFC5117] become more widely used.

o Assuming reliable (instant) state synchronization. RTCP reports are sent irregularly and may be lost. Hence, there may be a significant time lag (several seconds) between intending to send a state update to the RTP peer(s) and the packet being received, in some cases, the packet may not be received at all.

o Requiring reliable delivery of RTCP reports. While reliability can be implemented on top of RTCP using acknowledgements, this will come at the cost of significant additional delay, which may defeat the purpose of providing the feedback in the first place. Moreover, for scalability reasons due to the group-based nature of RTCP, these ACKs need to be adaptively rate limited or targeted to a subgroup or individual entity to avoid implosion as group sizes increase. RTCP is not intended or suitable for use as a reliable control channel.

o Commands are issued, rather than hints given. RTCP is about reporting observations -- in a best-effort manner -- between RTP entities. Causing actions on the remote side requires some form of reliability (see above), and adherence cannot be verified.

o RTCP reporting is expanded to become a network management tool. RTCP is sensitive to the size of RTCP reports as the latter determines the mean reporting interval given a certain bit rate share for RTCP. The amount of information going into RTCP reports should primarily target the peer (and thus include information that can be meaningfully reacted upon). Gathering and reporting statistics beyond this is not an RTCP task and should be addressed by out-of-band protocols.

o Serious complexity is created. Related to the previous item, RTCP reports that convey all kinds of data first need to gather and calculate/infer this information to begin with (which requires very precise specifications). Given that it already seems to be difficult to even implement baseline RTCP, any added complexity can only discourage implementers, may lead to buggy implementations (in which case the reports do not serve the purpose they were intended to), and hinder interoperability.

o Architectural issues. Extensions are written without considering the architectural concepts of RTP. For example, point-to-point communication is assumed, yet third party monitors are expected to listen in. Besides being a bad idea to rely on eavesdropping entities on the path, this is obviously not possible if SRTP is
being used with encrypted SRTCP packets.

This list is surely not exhaustive. Also, the authors do not claim that the suggested extensions (even if using acknowledgements) would not serve a legitimate purpose. We rather want to draw attention to the fact that the same results may be achievable in a way which is architecturally cleaner and conceptually more RTP/RTCP-compliant. The following section contains a first attempt to provide some guidelines on what to consider when thinking about extensions to RTP and RTCP.

5. Guidelines

Designing RTCP extensions requires consideration of a number issues, as well as in-depth understanding of the operation of RTP mechanisms. While it is expected that there are many aspects not yet covered by RTCP reporting and operation, quite a bit of functionality is readily available for use. Other mechanisms should probably never become part of the RTP family of specifications, despite the existence of their equivalents in other environments. In the following, we provide some guidance to consider when (and before!) developing an extension to RTCP.

We begin with a short check list concerning the applicability of RTCP in the first place:

- Check what can be done with the existing mechanisms, exploiting the information that is already available in RTCP. Is the need for an extension only perceived (e.g., due to lazy implementers, or artificial constraints in endpoints), or is the function or data really not available (or derivable from existing reports)? It is worthwhile remembering that redundant information supplied by a protocol runs the risk of being inconsistent at some point, and various implementation may handle such situations differently (e.g., give precedence to different values). Similarly, there should be exactly one (well-specified) way of performing every function and operation of the protocol.

- Is the extension applicable to RTP entities running anywhere in the Internet, or is it a link- or environment-specific extension? In the latter cases, local extensions (e.g. header compression, or non-RTP protocols) may be preferable. RTCP should not be used to carry information specific to a particular (access) link.

- Is the extension applicable in a group communication environment, or is it specific to point-to-point communications? RTP and RTCP are inherently group communication protocols, and extensions must scale gracefully with increasing group sizes.
From a conceptual viewpoint, the designer of every RTCP extension should ask -- and answer(!) -- at least the following questions:

- How will this new building block complement and work with the other components of RTCP? Are all interactions fully specified?
- Will this extension work with all different profiles (e.g. the Secure RTP Profile [RFC3711], and the Extended RTP Profile for RTCP-based Feedback [RFC4585])? Are any feature interactions expected?
- Should this extension be kept in-line with baseline RTP and its existing profiles, or does it deviate so much from the base RTP operation that an incompatible new profile must be defined? Use and definition of incompatible profiles is strongly discouraged, but if they prove necessary, how do nodes using the different profiles interact? What are the failure modes, and how is it ensured that the system fails in a safe manner?
- How does this extension interoperate with other nodes when the extension is not understood by the peer(s)?
- How will the extension deal with different networking conditions (e.g., how does performance degrade with increases in losses and latency, possibly across orders of magnitude)?
- How will this extension work with group communication scenarios, such as multicast? Will the extensions degrade gracefully with increasing group sizes? What will be the impact on the RTCP report frequency and bitrate allocation?

For the specific design, the following considerations should be taken into account (they’re a mixture of common protocol design guidelines, and specifics for RTCP):

- First of all, if there is (and for RTCP this applies quite often) an old-style mechanisms from a different networking environment, don’t try to directly recreate this mechanism in RTP/RTCP. The Internet environment is extremely heterogeneous, and will often have drastically different properties and behaviour to other network environments. Instead, ask what the actual semantics and the result required to be perceived by the application or the user are. Then, design a mechanism that achieves this result in a way that is compatible with RTP/RTCP. (And do not forget that every mechanism will break when no packets get through -- the Internet does not guarantee connectivity or performance.)
- Target re-usability of the specification. That is, think broader than a specific use case and try to solve the general problem in cases where it makes sense to do so. Point solutions need a very good motivation to be dealt with in the IETF in the first place. This essentially suggests developing buildings blocks whenever possible, allowing them to be combined in different environments than initially considered. Where possible, avoid mechanisms that
are specific to particular payload formats, media types, link or network types, etc.

- For everything (packet format, value, procedure, timer, etc.) being defined, make sure that it is defined properly, so that independent interoperable implementation can be built. It is not sufficient that you can implement the feature: it has to be implementable in several years by someone unfamiliar with the working group discussion and industry context. Remember that fields need to be both generated and reacted upon, that mechanisms need to be implemented, etc., and that all of this increases the complexity of an implementation. Features which are too complex won't get implemented (correctly) in the first place.

- Extensions defining new metrics and parameters should refer to existing standards whenever possible, rather than try to invent something new and/or proprietary.

- Remember that not every bit or every action must be represented or signalled explicitly. It may be possible to infer the necessary pieces of information from other values or their evolution (a very prominent example is TCP congestion control). As a result, it may be possible to decouple bits on the wire from local actions and reduce the overhead.

- Particularly with media streams, reliability can often be "soft". Rather than implementing explicit acknowledgements, receipt of a hint may also be observed from the altered behaviour (e.g., the reception of a requested intra-frame, or changing the reference frame for video, changing the codec, etc.). The semantics of messages should be idempotent so that the respective message may be sent repeatedly. Requiring hard reliability does not scale with increasing group sizes, and does not degrade gracefully as network performance reduces.

- Choose the appropriate extension point. Depending on the type of RTCP extension being developed, new data items can be transported in several different ways:
 * A new RTCP SDES item is appropriate for transporting data that describes the source, or the user represented by the source, rather than the ongoing media transmission. New SDES items may be registered to transport source description information of general interest (see [RFC3550] section 15), or the PRIV item ([RFC3550] Section 6.5.8) may be used for proprietary extensions.
 * A new RTCP XR block type is appropriate for transporting new metrics regarding media transmission or reception quality (see [RFC3611] Section 6.2).
 * New RTP profiles may define a profile-specific extension to RTCP SR and/or RR packets, to give additional feedback (see [RFC3550] section 6.4.3). It is important to note that while extensions using this mechanism have low overhead, they are not backwards compatible with other profiles. Where compatibility
is needed, it’s generally more appropriate to define a new RTCP XR block or a new RTCP packet type instead.

* New RTCP AVPF transport layer feedback messages should be used to transmit general purpose feedback information, to be generated and processed by the RTP transport. Examples include (negative) acknowledgements for particular packets, or requests to limit the transmission rate. This information is intended to be independent of the codec or application in use (see [RFC4585] sections 6.2 and 9).

* New RTCP AVPF payload-specific feedback messages should be used to convey feedback information that is specific to a particular media codec, RTP payload format, or category of RTP payload formats. Examples include video picture loss indication or reference picture selection, that are useful for many video codecs (see [RFC4585] sections 6.3 and 9).

* New RTCP AVPF application layer feedback messages should be used to convey higher-level feedback, from one application to another, above the level of codecs or transport (see [RFC4585] sections 6.4 and 9).

* A new RTCP APP packet is appropriate for private use by applications that don’t need to interoperate with others, or for experimentation before registering a new RTCP packet type ([RFC3550] section 6.7). It is not appropriate to define a new RTCP APP packet in a standards document; use one of the other extension points, or define a new RTCP packet type instead.

* Finally, new RTCP packet types may be registered with IANA if none of the other RTCP extension points are appropriate (see [RFC3550] section 15).

The RTP framework was designed following the principle of application level framing with integrated layer processing, proposed by Clark and Tennenhouse [ALF]. Effective use of RTP requires that extensions and implementations be designed and built following the same philosophy. That philosophy differs markedly from many previous systems in this space, and making effective use of RTP requires an understanding of those differences.

6. Security Considerations

This memo does not specify any new protocol mechanisms or procedures, and so raises no explicit security considerations. When designing RTCP extensions, it is important to consider the following points:

- Privacy: RTCP extensions, in particular new Source Description (SDES) items, can potentially reveal information considered to be sensitive by end users. Extensions should carefully consider the uses to which information they release could be put, and should be
designed to reveal the minimum amount of additional information needed for their correct operation.

- Congestion control: RTCP transmission timers have been carefully designed such that the total amount of traffic generated by RTCP is a small fraction of the media data rate. One consequence of this is that the individual RTCP reporting interval scales with both the media data rate and the group size. The RTCP timing algorithms have been shown to scale from two-party unicast sessions to group with tens of thousands of participants, and to gracefully handle flash crowds and sudden departures [TimerRecon]. Proposals that modify the RTCP timer algorithms must be careful to avoid congestion, potentially leading to denial of service, across the full range of environments where RTCP is used.

- Denial of service: RTCP extensions that change the location where feedback is sent must be carefully designed to prevent denial of service attacks against third party nodes. When such extensions are signalled, for example in SDP, this typically requires some form of authentication of the signalling messages (e.g. see the security considerations of [I-D.ietf-avt-rtcpssm]).

At the time of this writing there are several proposals for in-band signalling of secure RTP sessions, where the signalling information is conveyed on the media path. These proposals were discussed in the Audio/Video Transport working group session at the 67th IETF meeting, with the consensus being that such signalling is not to be conveyed within RTP data packets, but should instead be sent within some form of control packet, and that it is acceptable to multiplex control and data packets on the same port, provided the packet types can be clearly distinguished. There was no consensus in the working group on the question of whether keying information should be conveyed in RTCP packets multiplexed on the RTP port, or in some other protocol multiplexed on the RTP port. The opinion of the working group chairs and area director was, however, that both approaches are workable, and fit within the RTP architecture, but that it may be cleaner to use a separate keying protocol (modelled after STUN), than to try to fit keying within RTCP.

The security considerations of the RTP specification [RFC3550] apply, along with any applicable profile (e.g. [RFC3551]).

7. IANA Considerations

No IANA actions are necessary.
8. Acknowledgements

This draft has been motivated by many discussions in the AVT WG. The authors would like to acknowledge the active members in the group for providing the inspiration.

9. References

9.1. Normative References

9.2. Informative References

[TimerRecon]

Authors’ Addresses

Joerg Ott
Helsinki University of Technology
Otakaari 5 A
Espoo, FIN 02150
Finland

Email: jo@netlab.hut.fi

Colin Perkins
University of Glasgow
Department of Computing Science
Lilybank Gardens
Glasgow G12 8QQ
United Kingdom

Email: csp@csperkins.org