SDP: Session Description Protocol
draft-ietf-mmusic-sdp-new-17.txt

Status of this Memo

By submitting this Internet-Draft, I certify that any applicable patent or other IPR claims of which I am aware have been disclosed, and any of which I become aware will be disclosed, in accordance with RFC 3668.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html.

This Internet-Draft will expire on November 30, 2004.

Copyright Notice

Copyright (C) The Internet Society (2004). All Rights Reserved.

Abstract

This memo defines the Session Description Protocol (SDP). SDP is intended for describing multimedia sessions for the purposes of session announcement, session invitation, and other forms of multimedia session initiation.

Table of Contents

1. Introduction ... 3
2. Glossary of Terms ... 3
3. Examples of SDP Usage 3
 3.1 Multicast Session Announcement 3
 3.2 Session Initiation 4
1. Introduction
When initiating multimedia teleconferences, voice-over-IP calls, streaming video, or other sessions, there is a requirement to convey media details, transport addresses, and other session description metadata to the participants.

SDP provides a standard representation for such information, irrespective of how that information is transported. SDP is purely a format for session description – it does not incorporate a transport protocol, and is intended to use different transport protocols as appropriate, including the Session Announcement Protocol [8], Session Initiation Protocol [9], Real-Time Streaming Protocol [10], electronic mail using the MIME extensions, and the Hypertext Transport Protocol.

SDP is intended to be general purpose so that it can be used in a wide range of network environments and applications. However, it is not intended to support negotiation of session content or media encodings: this is viewed as outside the scope of session description.

2. Glossary of Terms

The following terms are used in this document, and have specific meaning within the context of this document.

Conference: A multimedia conference is a set of two or more communicating users along with the software they are using to communicate.

Session: A multimedia session is a set of multimedia senders and receivers and the data streams flowing from senders to receivers. A multimedia conference is an example of a multimedia session.

Session Description: A well defined format for conveying sufficient information to discover and participate in a multimedia session.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [1].

3. Examples of SDP Usage

3.1 Multicast Session Announcement

In order to assist the advertisement of multicast multimedia conferences and other multicast sessions, and to communicate the relevant session setup information to prospective participants, a distributed session directory may be used. An instance of such a session directory periodically sends packets containing a description of the session to a well known multicast group. These advertisements are received by other session directories such that potential remote participants can use the session description to start the tools required to participate in the session.

One protocol commonly used to implement such a distributed directory is the Session Announcement Protocol, SAP [8]. SDP provides the
recommended session description format for such session announcements.

3.2 Session Initiation

The Session Initiation Protocol, SIP [9] is an application layer control protocol for creating, modifying and terminating sessions such as Internet multimedia conferences, Internet telephone calls and multimedia distribution. The SIP messages used to create sessions carry session descriptions which allow participants to agree on a set of compatible media types. These session descriptions are commonly formatted using SDP. When used with SIP, the offer/answer model [11] provides a limited framework for negotiation using SDP.

3.3 Streaming media

The Real Time Streaming Protocol, RTSP [10], is an application-level protocol for control over the delivery of data with real-time properties. RTSP provides an extensible framework to enable controlled, on-demand delivery of real-time data, such as audio and video. An RTSP client and server negotiate an appropriate set of parameters for media delivery, partially using SDP syntax to describe those parameters.

3.4 Email and the World Wide Web

Alternative means of conveying session descriptions include electronic mail and the World Wide Web. For both email and WWW distribution, the MIME content type "application/sdp" is used. This enables the automatic launching of applications for participation in the session from the WWW client or mail reader in a standard manner.

Note that announcements of multicast sessions made only via email or the World Wide Web (WWW) do not have the property that the receiver of a session announcement can necessarily receive the session because the multicast sessions may be restricted in scope, and access to the WWW server or reception of email is possible outside this scope.

Handley, et al. Expires November 30, 2004

Internet-Draft SDP June 2004

Session announcements made using SAP do not suffer from this mismatch.

4. Requirements and Recommendations

The purpose of SDP is to convey information about media streams in multimedia sessions to allow the recipients of a session description to participate in the session. SDP is primarily intended for use in an internetwork, although it is sufficiently general that it can describe conferences in other network environments. Media streams can be many-to-many. The times during which the session is active need not be continuous.

Thus far, multicast based sessions on the Internet have differed from many other forms of conferencing in that anyone receiving the traffic can join the session (unless the session traffic is encrypted). In such an environment, SDP serves two primary purposes. It is a means to communicate the existence of a session, and is a means to convey sufficient information to enable joining and participating in the session. In a unicast environment, only the latter purpose is likely
to be relevant.

Thus SDP includes:
- Session name and purpose
- Time(s) the session is active
- The media comprising the session
- Information needed to receive those media (addresses, ports, formats and so on)

As resources necessary to participate in a session may be limited, some additional information may also be desirable:
- Information about the bandwidth to be used by the conference
- Contact information for the person responsible for the session

In general, SDP must convey sufficient information to enable applications to join a session (with the possible exception of encryption keys) and to announce the resources to be used to non-participants that may need to know.

4.1 Media Information

SDP includes:
- The type of media (video, audio, etc)
- The transport protocol (RTP/UDP/IP, H.320, etc)
- The format of the media (H.261 video, MPEG video, etc)

For an IP multicast session, the following are also conveyed:
- Multicast address for media
- Transport port for media

This address and port are the destination address and destination port of the multicast stream, whether being sent, received, or both.

For an IP unicast session, the following are conveyed:
- Remote address for media
- Transport port for media

The semantics of this address and port depend on the media and transport protocol defined. By default, this is the remote address and remote port to which data is sent, however some media types may redefine this behaviour.

4.2 Timing Information

Sessions may either be bounded or unbounded in time. Whether or not they are bounded, they may be only active at specific times.

SDP can convey:
- An arbitrary list of start and stop times bounding the session
- For each bound, repeat times such as "every Wednesday at 10am for one hour"

This timing information is globally consistent, irrespective of local time zone or daylight saving time.

4.3 Private Sessions

It is possible to create both public sessions and private sessions. SDP itself does not distinguish between these: private sessions are typically conveyed by encrypting the session description during distribution. The details of how encryption is performed are dependent on the mechanism used to convey SDP — e.g. mechanisms are
defined for SDP transported using SAP [8] and SIP [9].

If a session announcement is private it is possible to use that private announcement to convey encryption keys necessary to decode each of the media in a conference, including enough information to know which encryption scheme is used for each media.

4.4 Obtaining Further Information about a Session

A session description should convey enough information to decide whether or not to participate in a session. SDP may include additional pointers in the form of Universal Resources Identifiers (URIs) for more information about the session.

4.5 Categorisation

When many session descriptions are being distributed by SAP, or any other advertisement mechanism, it may be desirable to filter session announcements that are of interest from those that are not. SDP supports a categorisation mechanism for sessions that is capable of being automated.

4.6 Internationalization

The SDP specification recommends the use of the ISO 10646 character sets in the UTF-8 encoding [3] to allow many different languages to be represented. However, to assist in compact representations, SDP also allows other character sets such as ISO 8859-1 to be used when desired. Internationalization only applies to free-text fields (session name and background information), and not to SDP as a whole.

5. SDP Specification

An SDP session description is denoted by the MIME content type "application/sdp" (See Section 9).

An SDP session description is entirely textual using the ISO 10646 character set in UTF-8 encoding. SDP field names and attribute names use only the US-ASCII subset of UTF-8, but textual fields and attribute values MAY use the full ISO 10646 character set. Field and attribute values which use the full UTF-8 character set are never directly compared, hence there is no requirement for UTF-8 normalization. The textual form, as opposed to a binary encoding such as ASN.1 or XDR, was chosen to enhance portability, to enable a variety of transports to be used (e.g., session description in a MIME email message) and to allow flexible, text-based toolkits (e.g., Tcl/Tk) to be used to generate and to process session descriptions. However, since SDP may be used in environments where the maximum permissible size of a session description is limited (e.g. SAP announcements), the encoding is deliberately compact. Also, since announcements may be transported via very unreliable means or damaged by an intermediate caching server, the encoding was designed with strict order and formatting rules so that most errors would result in malformed session announcements which could be detected easily and discarded. This also allows rapid discarding of encrypted session announcements for which a receiver does not have the correct key.
An SDP session description consists of a number of lines of text of the form:

\[\text{<type>=<value>} \]

where \(<\text{type}>\) MUST be exactly one case-significant character and \(<\text{value}>\) is structured text whose format depends on \(<\text{type}>\). In general \(<\text{value}>\) is either a number of fields delimited by a single space character, or a free format string. Whitespace MUST NOT be used either side of the "=" sign.

An SDP session description consists of a session-level section followed by zero or more media-level sections. The session-level part starts with a "v=" line and continues to the first media-level section. The media description starts with an "m=" line and continues to the next media description or end of the whole session description. In general, session-level values are the default for all media unless overridden by an equivalent media-level value.

Some lines in each description are REQUIRED and some are OPTIONAL but all MUST appear in exactly the order given here (the fixed order greatly enhances error detection and allows for a simple parser). OPTIONAL items are marked with a "*".

Session description
- \(v=\) (protocol version)
- \(o=\) (owner/creator and session identifier).
- \(s=\) (session name)
- \(i=*\) (session information)
- \(u=*\) (URI of description)
- \(e=*\) (email address)
- \(p=*\) (phone number)
- \(c=*\) (connection information - not required if included in all media)
- \(b=*\) (zero or more bandwidth information lines)

One or more time descriptions (see below)
- \(z=*\) (time zone adjustments)
- \(k=*\) (encryption key)
- \(a=*\) (zero or more session attribute lines)

Zero or more media descriptions (see below)

Time description
- \(t=\) (time the session is active)
- \(r=*\) (zero or more repeat times)

Media description
- \(m=\) (media name and transport address)
- \(i=*\) (media title)
- \(c=*\) (connection information - optional if included at session-level)
- \(b=*\) (zero or more bandwidth information lines)
- \(k=*\) (encryption key)
- \(a=*\) (zero or more media attribute lines)

The set of type letters is deliberately small and not intended to be extensible -- an SDP parser MUST completely ignore any session description that contains a type letter that it does not understand. The attribute mechanism ("a=" described below) is the primary means
media. Some attributes (the ones listed in Section 6 of this memo) have a defined meaning, but others may be added on an application-, media- or session-specific basis. An SDP parser MUST ignore any attribute it doesn’t understand.

An SDP session description may contain URIs which reference external content in the "u=", "k=" and "a=" lines. These URIs may be dereferenced in some cases, making the session description non-self contained.

The connection ("c=") and attribute ("a=") information in the session-level section applies to all the media of that session unless overridden by connection information or an attribute of the same name in the media description. For instance, in the example below, each media behaves as if it were given a "recvonly" attribute.

An example SDP description is:

v=0
o=jdoe 2890844526 2890842807 IN IP4 10.47.16.5
s=SDP Seminar
i=A Seminar on the session description protocol
u=http://www.example.com/seminars/sdp.pdf
e=j.doe@example.com (Jane Doe)
c=IN IP4 224.2.17.12/127
t=2873397496 2873404696
a=recvonly
m=audio 49170 RTP/AVP 0
m=video 51372 RTP/AVP 31
m=application 32416 udp wb
a=orient:portrait

Text fields such as the session name and information are octet strings which may contain any octet with the exceptions of 0x00 (Nul), 0x0a (ASCII newline) and 0x0d (ASCII carriage return). The sequence CRLF (0x0d0a) is used to end a record, although parsers SHOULD be tolerant and also accept records terminated with a single newline character. If the "a=charset" attribute is not present, these octet strings MUST be interpreted as containing ISO-10646 characters in UTF-8 encoding (the presence of the "a=charset" attribute MAY force some fields to be interpreted differently).

5.1 Protocol Version ("v=")

v=0

The "v=" field gives the version of the Session Description Protocol.

This memo defines version 0. There is no minor version number.
5.2 Origin ("o=")

\[
o=\text{<username>} \text{ <sess-id> <sess-version> <nettype> <addrtype> <unicast-address>}
\]

The "o=" field gives the originator of the session (her username and the address of the user’s host) plus a session identifier and version number:

\(<\text{username}>\) is the user’s login on the originating host, or it is "-" if the originating host does not support the concept of user ids. The \(<\text{username}>\) MUST NOT contain spaces.

\(<\text{sess-id}>\) is a numeric string such that the tuple of \(<\text{username}>\), \(<\text{sess-id}>\), \(<\text{nettype}>\), \(<\text{addrtype}>\) and \(<\text{unicast-address}>\) form a globally unique identifier for the session. The method of \(<\text{sess-id}>\) allocation is up to the creating tool, but it has been suggested that a Network Time Protocol (NTP) format timestamp be used to ensure uniqueness [7].

\(<\text{sess-version}>\) is a version number for this session description. Its usage is up to the creating tool, so long as \(<\text{sess-version}>\) is increased when a modification is made to the session data. Again, it is RECOMMENDED that an NTP format timestamp is used.

\(<\text{nettype}>\) is a text string giving the type of network. Initially "IN" is defined to have the meaning "Internet", but other values MAY be registered in future (see Section 9).

\(<\text{addrtype}>\) is a text string giving the type of the address that follows. Initially "IP4" and "IP6" are defined, but other values MAY be registered in future (see Section 9).

\(<\text{unicast-address}>\) is the address of the machine from which the session was created. For an address type of IP4, this is either the fully-qualified domain name of the machine, or the dotted-decimal representation of the IP version 4 address of the machine. For an address type of IP6, this is either the fully-qualified domain name of the machine, or the compressed textual representation of the IP version 6 address of the machine. For both IP4 and IP6, the fully-qualified domain name is the form that SHOULD be given unless this is unavailable, in which case the globally unique address MAY be substituted. A local IP address MUST NOT be used in any context where the SDP description might leave the scope in which the address is meaningful.

In general, the "o=" field serves as a globally unique identifier for this version of this session description, and the subfields excepting the version taken together identify the session irrespective of any modifications.

5.3 Session Name ("s=")

\[
s=\text{<session name>}
\]

The "s=" field is the textual session name. There MUST be one and only one "s=" field per session description. The "s=" field MUST
NOT
be empty and SHOULD contain ISO 10646 characters (but see also the
"a=charset" attribute). If a session has no meaningful name, the
value "s= " SHOULD be used (i.e. a single space as the session
name).

5.4 Session Information ("i=")

 i=<session description>

The "i=" field provides textual information about the session.
There
may be at most one session-level "i=" field per session
description,
and at most one "i=" field per media. If the "a=charset"
attribute is
present, it specifies the character set used in the "i=" field. If
the "a=charset" attribute is not present, the "i=" field MUST
contain
ISO 10646 characters in UTF-8 encoding.

A single "i=" field MAY also be used for each media definition. In
media definitions, "i=" fields are primarily intended for labeling
media streams. As such, they are most likely to be useful when a
single session has more than one distinct media stream of the same
media type. An example would be two different whiteboards, one for
slides and one for feedback and questions.

5.5 URI ("u=")

 u=<uri>

A URI is a Universal Resource Identifier as used by WWW clients [4].
The URI should be a pointer to additional information about the
conference. This field is OPTIONAL, but if it is present it MUST be
specified before the first media field. No more than one URI field is
allowed per session description.

5.6 Email Address and Phone Number ("e=" and "p=")

 e=<email-address>
 p=<phone-number>

The "e=" and "p=" lines specify contact information for the
person
responsible for the conference. This is not necessarily the same
person that created the conference announcement.

Inclusion of an email address or phone number is OPTIONAL. Note that
Phone numbers SHOULD be given in the form of an international public telecommunication number (see ITU-T Recommendation E.164) preceded by a "+". Spaces and hyphens may be used to split up a phone field to aid readability if desired. For example:

\[p=+44-171-380-7777 \quad \text{or} \quad p=+1 \ 617 \ 555 \ 6011 \]

Both email addresses and phone numbers can have an OPTIONAL free text string associated with them, normally giving the name of the person who may be contacted. This MUST be enclosed in parenthesis if it is present. For example:

\[e=j.doe@example.com \ (Jane \ Doe) \]

The alternative RFC 2822 name quoting convention is also allowed for both email addresses and phone numbers. For example:

\[e=Jane \ Doe \ <j.doe@example.com> \]

The free text string SHOULD be in the ISO-10646 character set with UTF-8 encoding, or alternatively in ISO-8859-1 or other encodings if the appropriate session-level "a=charset" attribute is set.

5.7 Connection Data ("c=")

\[c=<\text{nettype}> \ <\text{addrtype}> \ <\text{connection-address}> \]

The "c=" field contains connection data.

A session description MUST contain either at least one "c=" field in each media description or a single "c=" field at the session level. It MAY contain a single session-level "c=" field and additional "c=" field(s) per media description, in which case the per-media values override the session-level settings for the respective media.

The first sub-field ("<nettype>") is the network type, which is a text string giving the type of network. Initially "IN" is defined to have the meaning "Internet", but other values MAY be registered in the future (see Section 9).

The second sub-field ("<addrtype>") is the address type. This allows SDP to be used for sessions that are not IP based. Currently only IP4 and IP6 are defined, but other values MAY be registered in the future (see Section 9).

The third sub-field ("<connection-address>") is the connection address. OPTIONAL sub-fields MAY be added after the connection address depending on the value of the <addrtype> field.

When the <addrtype> is IP4 and IP6, the connection address is defined as follows:

- If the session is multicast, the connection address will be an IP multicast group address. If the session is not multicast, then the connection address contains the unicast IP address of the
expected data source or data relay or data sink as determined by additional attribute fields. It is not expected that unicast addresses will be given in a session description that is communicated by a multicast announcement, though this is not prohibited.

○ Conferences using an IPv4 multicast connection address MUST also have a time to live (TTL) value present in addition to the multicast address. The TTL and the address together define the scope with which multicast packets sent in this conference will be sent. TTL values MUST be in the range 0-255.

The TTL for the session is appended to the address using a slash as a separator. An example is:

c=IN IP4 224.2.36.42/127

IPv6 multicast does not use TTL scoping, and hence the TTL value MUST NOT be present for IPv6 multicast. It is expected that IPv6 scoped addresses will be used to limit the scope of conferences.

Hierarchical or layered encoding schemes are data streams where the encoding from a single media source is split into a number of layers. The receiver can choose the desired quality (and hence bandwidth) by only subscribing to a subset of these layers. Such layered encodings are normally transmitted in multiple multicast groups to allow multicast pruning. This technique keeps unwanted traffic from sites only requiring certain levels of the hierarchy. For applications requiring multiple multicast groups, we allow the following notation to be used for the connection address:

<base multicast address>[/<ttl>]/<number of addresses>

If the number of addresses is not given it is assumed to be one.

Internet-Draft SDP June 2004

Multicast addresses so assigned are contiguously allocated above the base address, so that, for example:

c=IN IP4 224.2.1.1/127/3

would state that addresses 224.2.1.1, 224.2.1.2 and 224.2.1.3 are to be used at a TTL of 127. This is semantically identical to including multiple "c=" lines in a media description:

c=IN IP4 224.2.1.1/127
c=IN IP4 224.2.1.2/127
c=IN IP4 224.2.1.3/127

Similarly, an IPv6 example would be:

c=IN IP6 FF15::101/3

which is semantically equivalent to:

c=IN IP6 FF15::101
c=IN IP6 FF15::102
c=IN IP6 FF15::103

(remembering that the TTL field is not present in IPv6 multicast).
Multiple addresses or "c=" lines MAY be specified on a per-media basis only if they provide multicast addresses for different layers in a hierarchical or layered encoding scheme. They MUST NOT be specified for a session-level "c=" field.

The slash notation described above MUST NOT be used for IP unicast addresses.

5.8 Bandwidth ("b=")

\[b=<\text{bwtype}>:<\text{bandwidth}> \]

This OPTIONAL field denotes the proposed bandwidth to be used by the session or media. The \(<\text{bwtype}>\) is an alphanumeric modifier giving the meaning of the \(<\text{bandwidth}>\) figure. Two values are initially defined, but other values MAY be registered in future (see Section 9):

CT If the bandwidth of a session or media in a session is different from the bandwidth implicit from the scope, a "b=CT:..." line SHOULD be supplied for the session giving the proposed upper limit to the bandwidth used. The primary purpose of this is to give an approximate idea as to whether two or more sessions can co-exist simultaneously. When using the CT modifier with RTP, if several RTP sessions are part of the conference, the conference total refers to total bandwidth of all RTP sessions.

AS The bandwidth is interpreted to be application-specific (it will be the application’s concept of maximum bandwidth). Normally this will coincide with what is set on the application’s "maximum bandwidth" control if applicable. For RTP based applications, AS gives the RTP "session bandwidth" as defined in section 6.2 of [12].

Note that CT gives a total bandwidth figure for all the media at all sites. AS gives a bandwidth figure for a single media at a single site, although there may be many sites sending simultaneously.

A prefix "X-" is defined for <bwtype> names. This is intended for experimental purposes only. For example:

\[b=X-YZ:128 \]

Use of the "X-" prefix is NOT RECOMMENDED: instead new modifiers SHOULD be registered with IANA in the standard namespace. SDP parsers MUST ignore bandwidth fields with unknown modifiers. Modifiers MUST be alpha-numeric and, although no length limit is given, they are recommended to be short.

The <bandwidth> is in kilobits per second by default. Modifiers MAY specify that alternative units are to be used (the modifiers defined in this memo use the default units).

5.9 Timing ("t=")

\[t=<\text{start-time}> <\text{stop-time}> \]
The "t=" lines specify the start and stop times for a session. Multiple "t=" lines MAY be used if a session is active at multiple irregularly spaced times; each additional "t=" line specifies an additional period of time for which the session will be active. If the session is active at regular times, an "r=" line (see below) should be used in addition to, and following, a "t=" line - in which case the "t=" line specifies the start and stop times of the repeat sequence.

The first and second sub-fields give the start and stop times for the session respectively. These values are the decimal representation of Network Time Protocol (NTP) time values in seconds [7]. To convert these values to UNIX time, subtract decimal 2208988800.

NTP timestamps are 64 bit values which wrap sometime in the year 2036. Since SDP uses an arbitrary length decimal representation, this should not cause an issue (SDP timestamps will continue counting seconds since 1900, NTP will use the value modulo the 64 bit limit).

If the <stop-time> is set to zero, then the session is not bounded, though it will not become active until after the <start-time>. If the <start-time> is also zero, the session is regarded as permanent.

User interfaces SHOULD strongly discourage the creation of unbounded and permanent sessions as they give no information about when the session is actually going to terminate, and so make scheduling difficult.

The general assumption may be made, when displaying unbounded sessions that have not timed out to the user, that an unbounded session will only be active until half an hour from the current time or the session start time, whichever is the later. If behaviour other than this is required, an end-time should be given and modified as appropriate when new information becomes available about when the session should really end.

Permanent sessions may be shown to the user as never being active unless there are associated repeat times which state precisely when the session will be active. In general, permanent sessions SHOULD NOT be created for any session expected to have a duration of less than 2 months, and should be discouraged for sessions expected to have a duration of less than 6 months.

5.10 Repeat Times ("r=")

"r=" fields specify repeat times for a session. For example, if a session is active at 10am on Monday and 11am on Tuesday for one hour each week for three months, then the <start-time> in the corresponding "t=" field would be the NTP representation of 10am on the first Monday, the <repeat interval> would be 1 week, the <active duration> would be 1 hour, and the offsets would be zero and 25 hours. The corresponding "t=" field stop time would be the NTP representation of the end of the last session three months later. By default all fields are in seconds, so the "r=" and "t=" fields
might be:

t=3034423619 3042462419
r=604800 3600 0 90000

To make description more compact, times may also be given in units of
days, hours or minutes. The syntax for these is a number immediately
followed by a single case-sensitive character. Fractional units are
not allowed - a smaller unit should be used instead. The following
unit specification characters are allowed:

d - days (86400 seconds)
h - hours (3600 seconds)
m - minutes (60 seconds)
s - seconds (allowed for completeness but not recommended)

Thus, the above session announcement could also have been written:

r=7d 1h 0 25h

Monthly and yearly repeats cannot be directly specified with a single
SDP repeat time - instead separate "t=" fields should be used to
explicitly list the session times.

5.11 Time Zones ("z=")

z=<adjustment time> <offset> <adjustment time> <offset>

To schedule a repeated session which spans a change from daylight-
saving time to standard time or vice-versa, it is necessary to
specify offsets from the base time. This is required because
different time zones change time at different times of day, different
countries change to or from daylight time on different dates, and
some countries do not have daylight saving time at all.

Thus in order to schedule a session that is at the same time winter
and summer, it must be possible to specify unambiguously by whose
time zone a session is scheduled. To simplify this task for
receivers, we allow the sender to specify the NTP time that a time
zone adjustment happens and the offset from the time when the session
was first scheduled. The "z=" field allows the sender to specify a
list of these adjustment times and offsets from the base time.

An example might be:

z=2882844526 -1h 2898848070 0

This specifies that at time 2882844526 the time base by which the
session’s repeat times are calculated is shifted back by 1 hour, and
that at time 2898848070 the session’s original time base is restored.
Adjustments are always relative to the specified start time - they
are not cumulative. Adjustments apply to all "t=" and "r=" lines
in a session description.

If a session is likely to last several years, it is expected that the
session announcement will be modified periodically rather than transmit several years worth of adjustments in one session announcement.

5.12 Encryption Keys ("k=")

k=<method>
k=<method>:<encryption key>

If transported over a secure and trusted channel, the session description protocol MAY be used to convey encryption keys. A simple mechanism for key exchange is provided by the key field ("k=") although this is primarily supported for compatibility with older implementations and its use is NOT RECOMMENDED. Work is in progress to define new key exchange mechanisms for use with SDP [17][16] and it is expected that new applications will use those mechanisms.

A key field is permitted before the first media entry (in which case it applies to all media in the session), or for each media entry as required. The format of keys and their usage is outside the scope of this document, and the key field provides no way to indicate the encryption algorithm to be used, key type, or other information about the key; this is assumed to be provided by the higher-level protocol using SDP. If there is a need to convey this information within SDP, the extensions mentioned previously SHOULD be used. Many security protocols require two keys, one for confidentiality and another for integrity. This specification does not support the transfer of two keys.

The method indicates the mechanism to be used to obtain a usable key by external means, or from the encoded encryption key given. The following methods are defined:

k=clear:<encryption key>
The encryption key is included untransformed in this key field. This method MUST NOT be used unless it can be guaranteed that the SDP is conveyed over a secure channel.

k=base64:<encoded encryption key>

The encryption key is included in this key field but has been base64 encoded because it includes characters that are prohibited in SDP. This method MUST NOT be used unless it can be guaranteed that the SDP is conveyed over a secure channel.

k=uri:<URI to obtain key>

A Universal Resource Identifier is included in the key field. The URI refers to the data containing the key, and may require additional authentication before the key can be returned. When a request is made to the given URI, the reply should specify the encoding for the key. The URI is often a secure HTTP URI, although this is not required.

k=prompt

No key is included in this SDP description, but the session or media stream referred to by this key field is encrypted. The user should be prompted for the key when attempting to join the session, and this user-supplied key should then be used to decrypt the media streams. The use of user-specified keys is NOT RECOMMENDED, since such keys tend to have weak security properties.

The key field MUST NOT be used unless it can be guaranteed that the SDP is conveyed over a secure and trusted channel. An example of such a channel might be SDP embedded inside an S/MIME message or a TLS protected HTTP or SIP session. It is important to ensure that the secure channel is with the party that is authorized to join the session, not an intermediary: if a caching proxy server is used, it is important to ensure that the proxy is either trusted or unable to access the SDP. Definition of appropriate security measures is beyond the scope of this specification, and should be defined by the users of SDP.

5.13 Attributes ("a=")

a=<attribute>

a=<attribute>::<value>

Attributes are the primary means for extending SDP. Attributes may be defined to be used as "session-level" attributes, "media-level" attributes, or both.

A media description may have any number of attributes ("a=" fields) which are media specific. These are referred to as "media-level" attributes and add information about the media stream. Attribute fields can also be added before the first media field; these "session-level" attributes convey additional information that applies to the conference as a whole rather than to individual media; an
Attribute fields may be of two forms:

- **property attributes:**
 A property attribute is simply of the form "a=<flag>". These are binary attributes, and the presence of the attribute conveys that the attribute is a property of the session. An example might be "a=recvonly".

- **value attributes:**
 A value attribute is of the form "a=<attribute>:<value>". For example, a whiteboard could have the value attribute "a=orient:landscape"

Attribute interpretation depends on the media tool being invoked. Thus receivers of session descriptions should be configurable in their interpretation of session descriptions in general and of attributes in particular.

Attribute values are octet strings, and MAY use any octet value except 0x00 (Null), 0x0A (LF), and 0x0D (CR). By default, attribute values are to be interpreted as in ISO-10646 character set with UTF-8 encoding. Unlike other text fields, attribute values are NOT normally affected by the "charset" attribute as this would make comparisons against known values problematic. However, when an attribute is defined, it can be defined to be charset-dependent, in which case its value should be interpreted in the session charset rather than in ISO-10646.

Attributes MUST be registered with IANA (see Section 9). If an attribute is received that is not understood, it MUST be ignored by the receiver.

5.14 Media Descriptions ("m=")

```
  m=<media> <port> <proto> <fmt>
```

A session description may contain a number of media descriptions. Each media description starts with an "m=" field, and is terminated by either the next "m=" field or by the end of the session description. A media field has several sub-fields.

The first sub-field ("<media>") is the media type. Currently defined media are "audio", "video", "text", "application", "data" and "control", though this list may be extended in future (see Section 9). The difference between "application" and "data" is that the former is a media flow such as whiteboard information, and the latter is bulk-data transfer such as multicasting of program executables which will not typically be displayed to the user. "control" is used to specify an additional conference control channel for the session.

The second sub-field ("<port>") is the transport port to which the
media stream is sent. The meaning of the transport port depends on the network being used as specified in the relevant "c=" field, and on the transport protocol defined in the third sub-field. Other ports used by the media application (such as the RTCP port [12]) MAY be derived algorithmically from the base media port or MAY be specified in a separate attribute (e.g. "a=rtcp:" as defined in [14]).

For applications where hierarchically encoded streams are being sent to a unicast address, it may be necessary to specify multiple transport ports. This is done using a similar notation to that used for IP multicast addresses in the "c=" field:

m=<media> <port>/<number of ports> <transport> <fmt list>

In such a case, the ports used depend on the transport protocol. For RTP, the default is that only the even numbered ports are used for data with the corresponding one-higher odd ports used for the RTCP belonging to the RTP session, and the <number of ports> denoting the number of RTP sessions. For example:

m=video 49170/2 RTP/AVP 31

would specify that ports 49170 and 49171 form one RTP/RTCP pair and 49172 and 49173 form the second RTP/RTCP pair. RTP/AVP is the transport protocol and 31 is the format (see below). If non-contiguous ports are required, they must be signalled using a separate attribute (e.g. "a=rtcp:" as defined in [14]).

Handley, et al. Expires November 30, 2004
Internet-Draft SDP June 2004

If multiple addresses are specified in the "c=" field and multiple ports are specified in the "m=" field, a one-to-one mapping from port to the corresponding address is implied. For example:

c=IN IP4 224.2.1.1/127/2
m=video 49170/2 RTP/AVP 31

would imply that address 224.2.1.1 is used with ports 49170 and 49171, and address 224.2.1.2 is used with ports 49172 and 49173.

The third sub-field ("<proto>") is the transport protocol. The transport protocol values are dependent on the address type field in the "c=" fields. Thus a "c=" field of IP4 defines that the transport protocol runs over IP4. For IP4, it is normally expected that most media traffic will be carried as RTP over UDP. The following transport protocols are defined, but may be extended through registration of new protocols with IANA (see Section 9):

RTP/AVP - the IETF’s Realtime Transport Protocol using the Audio/Video profile carried over UDP.
udp - User Datagram Protocol

If an application uses a single combined proprietary media format and transport protocol over UDP, then simply specifying the transport protocol as udp and using the format field to distinguish the combined protocol is recommended. If a transport protocol is used
over UDP to carry several distinct media types that need to be distinguished by a session directory, then specifying the transport protocol and media format separately is necessary. RTP is an example of a transport-protocol that carries multiple payload formats that must be distinguished by the session directory for it to know how to start appropriate tools, relays, mixers or recorders.

The main reason to specify the transport-protocol in addition to the media format is that the same standard media formats may be carried over different transport protocols even when the network protocol is the same - a historical example is vat PCM audio and RTP PCM audio. In addition, relays and monitoring tools that are transport-protocol-specific but format-independent are possible.

For RTP media streams operating under the RTP Audio/Video Profile [13], the protocol field is "RTP/AVP". Should other RTP profiles be defined in the future, their profiles will be specified in the same way. For example, the protocol field "RTP/XYZ" would specify RTP operating under a profile whose short name is "XYZ".

The fourth and subsequent sub-fields ("<fmt>") are media formats. For audio, text and video, these SHOULD reference a MIME sub-type describing the format under the "audio", "text" and "video" top-level MIME types.

When a list of payload formats is given, this implies that all of these formats may be used in the session, but the first of these formats SHOULD be used as the default format for the session.

For media whose transport protocol is not RTP or UDP the format field is protocol specific. Such formats should be defined in an additional specification document.

For media whose transport protocol is RTP, SDP can be used to provide a dynamic binding of media encoding to RTP payload type. The encoding names in the RTP AV Profile do not specify unique audio encodings (in terms of clock rate and number of audio channels), and so they are not used directly in SDP format fields. Instead, the payload type number should be used to specify the format for static payload types and the payload type number along with additional encoding information should be used for dynamically allocated payload types.

An example of a static payload type is u-law PCM coded single channel audio sampled at 8kHz. This is completely defined in the RTP Audio/Video profile as payload type 0, so the media field for such a stream sent to UDP port 49232 is:

```
m=audio 49232 RTP/AVP 0
```

An example of a dynamic payload type is 16 bit linear encoded stereo audio sampled at 16 kHz. If we wish to use dynamic RTP/AVP payload type 98 for such a stream, additional information is required to decode it:

```
m=audio 49232 RTP/AVP 98
a=rtpmap:98 L16/16000/2
```
The general form of an rtpmap attribute is:

```
a=rtpmap:<payload type> <encoding name>/<clock rate>
[/<encoding parameters>]
```

For audio streams, <encoding parameters> may specify the number of audio channels. This parameter may be omitted if the number of channels is one provided no additional parameters are needed.

For video streams, no encoding parameters are currently specified.

Additional parameters may be defined in the future, but codec-specific parameters SHOULD NOT be added. Parameters added to an rtpmap attribute SHOULD only be those required for a session directory to make the choice of appropriate media to participate in a session. Codec-specific parameters should be added in other attributes (for example, "a=fmtp:").

Up to one rtpmap attribute can be defined for each media format specified. Thus we might have:

```
m=audio 49230 RTP/AVP 96 97 98
a=rtpmap:96 L8/8000
a=rtpmap:97 L16/8000
a=rtpmap:98 L16/11025/2
```

RTP profiles that specify the use of dynamic payload types MUST define the set of valid encoding names and/or a means to register encoding names if that profile is to be used with SDP.

Note that RTP audio formats typically do not include information about the number of samples per packet. If a non-default (as defined in the RTP Audio/Video Profile) packetisation is required, the "ptime" attribute is used as given below.

For more details on RTP audio and video formats, see [13].

Predefined application formats for the UDP protocol with non-RTP media are as below:

```
wb: LBL Whiteboard (transport: udp)
nt: UCL Network Text Editor (transport: udp)
```

6. Suggested Attributes

The following attributes are defined. Since application writers may add new attributes as they are required, this list is not exhaustive.

```
a=cat:<category>
```

This attribute gives the dot-separated hierarchical category of the session. This is to enable a receiver to filter unwanted sessions by category. It is a session-level attribute, and is not dependent on charset.

```
a=keywds:<keywords>
```
Like the cat attribute, this is to assist identifying wanted sessions at the receiver. This allows a receiver to select interesting session based on keywords describing the purpose of the session. It is a session-level attribute. It is a charset dependent attribute, meaning that its value should be interpreted in the charset specified for the session description if one is specified, or by default in ISO 10646/UTF-8.

a=tool:<name and version of tool>

This gives the name and version number of the tool used to create the session description. It is a session-level attribute, and is not dependent on charset.

a=ptime:<packet time>

This gives the length of time in milliseconds represented by the media in a packet. This is probably only meaningful for audio data, but may be used with other media types if it makes sense. It should not be necessary to know ptime to decode RTP or vat audio, and it is intended as a recommendation for the encoding/packetisation of audio. It is a media attribute, and is not dependent on charset.

a=maxptime:<maximum packet time>

The maximum amount of media which can be encapsulated in each packet, expressed as time in milliseconds. The time SHALL be calculated as the sum of the time the media present in the packet represents. The time SHOULD be a multiple of the frame size. This attribute is probably only meaningful for audio data, but may be used with other media types if it makes sense. It is a media attribute, and is not dependent on charset. Note that this attribute was introduced after RFC 2327, and non updated implementations will ignore this attribute.

a=rtpmap:<payload type> <encoding name>/<clock rate> /[<encoding parameters>]

See Section 5.14. This is a media level attribute that is not dependent on charset.

a=recvonly

This specifies that the tools should be started in receive only mode where applicable. It can be either a session or media attribute, and is not dependent on charset. Note that recvonly applies to the media only, not to any associated control protocol (e.g. an RTP based system in recvonly mode
SHOULD still send RTCP packets).

a=sendrecv

This specifies that the tools should be started in send and receive mode. This is necessary for interactive conferences with tools that default to receive only mode. It can be either a session or media attribute, and is not dependent on charset.

If none of the attributes "sendonly", "recvonly", "inactive", and "sendrecv" is present, "sendrecv" SHOULD be assumed as the default for sessions which are not of the conference type "broadcast" or "H332" (see below).

a=sendonly

This specifies that the tools should be started in send-only mode. An example may be where a different unicast address is to be used for a traffic destination than for a traffic source. In such a case, two media descriptions may be use, one sendonly and one recvonly. It can be either a session or media attribute, but would normally only be used as a media attribute, and is not dependent on charset. Note that sendonly applies only to the media, and any associated control protocol (e.g. RTCP) SHOULD still be received and processed as normal.

a=inactive

This specifies that the tools should be started in inactive mode. This is necessary for interactive conferences where users can put other users on hold. No media is sent over an inactive media stream. Note that an RTP based system SHOULD still send RTCP, even if started inactive. It can be either a session or media attribute, and is not dependent on charset.

a=orient:<whiteboard orientation>

Normally this is only used in a whiteboard media specification. It specifies the orientation of a the whiteboard on the screen. It is a media attribute. Permitted values are "portrait", "landscape" and "seascape" (upside down landscape). It is not dependent on charset.

a=type:<conference type>

This specifies the type of the conference. Suggested values are "broadcast", "meeting", "moderated", "test" and "H332". "recvonly" should be the default for "type:broadcast" sessions, "type:meeting" should imply "sendrecv" and "type:moderated" should indicate the use of a floor control tool and that the media tools are started so as to mute new sites joining the conference.

Specifying the attribute "type:H332" indicates that this
loosely coupled session is part of a H.332 session as defined in the ITU H.332 specification [15]. Media tools should be started "recvonly".

Specifying the attribute "type:test" is suggested as a hint that, unless explicitly requested otherwise, receivers can safely avoid displaying this session description to users.

The type attribute is a session-level attribute, and is not dependent on charset.

a=charset:<character set>

This specifies the character set to be used to display the session name and information data. By default, the ISO-10646 character set in UTF-8 encoding is used. If a more compact representation is required, other character sets may be used. For example, the ISO 8859-1 is specified with the following SDP attribute:

a=charset:ISO-8859-1

This is a session-level attribute and is not dependent on charset. The charset specified MUST be one of those registered with IANA, such as ISO-8859-1. The character set identifier is a US-ASCII string and MUST be compared against the IANA identifiers using a case insensitive comparison. If the identifier is not recognised or not supported, all strings that are affected by it SHOULD be regarded as octet strings.

Note that a character set specified MUST still prohibit the use of bytes 0x00 (Nul), 0x0A (LF) and 0x0d (CR). Character sets requiring the use of these characters MUST define a quoting mechanism that prevents these bytes appearing within text fields.

a=sdplang:<language tag>

This can be a session level attribute or a media level attribute. As a session level attribute, it specifies the language for the session description. As a media level attribute, it specifies the language for any media-level SDP information field associated with that media. Multiple sdplang attributes can be provided either at session or media level if multiple languages in the session description or media use multiple languages, in which case the order of the attributes indicates the order of importance of the various languages in the session or media from most important to least important.

In general, sending session descriptions consisting of multiple languages is discouraged. Instead, multiple descriptions SHOULD be sent describing the session, one in each language. However this is not possible with all transport mechanisms, and so multiple sdplang attributes are allowed although NOT RECOMMENDED.
The "sdplang" attribute value must be a single RFC 3066 language tag in US-ASCII [6]. It is not dependent on the charset attribute. An "sdplang" attribute SHOULD be specified when a session is of sufficient scope to cross geographic boundaries where the language of recipients cannot be assumed, or where the session is in a different language from the locally assumed norm.

a=lang:<language tag>

This can be a session level attribute or a media level attribute. As a session level attribute, it specifies the default language for the session being described. As a media level attribute, it specifies the language for that media, overriding any session-level language specified. Multiple lang attributes can be provided either at session or media level if the session description or media use multiple languages, in which case the order of the attributes indicates the order of importance of the various languages in the session or media from most important to least important.

The "lang" attribute value must be a single RFC 3066 language tag in US-ASCII [6]. It is not dependent on the charset attribute. A "lang" attribute SHOULD be specified when a session is of sufficient scope to cross geographic boundaries where the language of recipients cannot be assumed, or where the session is in a different language from the locally assumed norm.

a=framerate:<frame rate>

This gives the maximum video frame rate in frames/sec. It is intended as a recommendation for the encoding of video data.

Internet-Draft SDP June 2004

Decimal representations of fractional values using the notation "<integer>.<fraction>" are allowed. It is a media attribute, defined only for video media, and is not dependent on charset.

a=quality:<quality>

This gives a suggestion for the quality of the encoding as an integer value. The intention of the quality attribute for video is to specify a non-default trade-off between frame-rate and still-image quality. For video, the value in the range 0 to 10, with the following suggested meaning:

10 - the best still-image quality the compression scheme can give.
5 - the default behaviour given no quality suggestion.
0 - the worst still-image quality the codec designer thinks is still usable.

It is a media attribute, and is not dependent on charset.

a=fmtp:<format> <format specific parameters>

This attribute allows parameters that are specific to a
particular format to be conveyed in a way that SDP doesn’t have to understand them. The format must be one of the formats specified for the media. Format-specific parameters may be any set of parameters required to be conveyed by SDP and given unchanged to the media tool that will use this format.

It is a media attribute, and is not dependent on charset.

7. Communicating Conference Control Policy

There is some debate over the way conference control policy should be communicated. In general, the authors believe that an implicit declarative style of specifying conference control is desirable where possible.

A simple declarative style uses a single conference attribute field before the first media field, possibly supplemented by properties such as 'recvonly' for some of the media tools. This conference attribute conveys the conference control policy. An example might be:

```
a=type:moderated
```

In some cases, however, it is possible that this may be insufficient to communicate the details of an unusual conference control policy. If this is the case, then a conference attribute specifying external control might be set, and then one or more "media" fields might be used to specify the conference control tools and configuration data for those tools. An example is an ITU H.332 session:

```
...  
c=IN IP4 224.5.6.7  
a=type:H332  
m=audio 49230 RTP/AVP 0  
m=video 49232 RTP/AVP 31  
m=application 12349 udp wb  
m=control 49234 H323 mc  
c=IN IP4 134.134.157.81
```

In this example, a general conference attribute (type:H332) is specified stating that conference control will be provided by an external H.332 tool, and a contact addresses for the H.323 session multipoint controller is given.

In this document, only the declarative style of conference control declaration is specified. Other forms of conference control should specify an appropriate type attribute, and should define the implications this has for control media.

8. Security Considerations

SDP is a session description format that describes multimedia sessions. A session description SHOULD NOT be trusted unless it has been obtained by an authenticated transport protocol from a trusted
source. Many different transport protocols may be used to distribute session description, and the nature of the authentication will differ from transport to transport.

One transport that will frequently be used to distribute session descriptions is the Session Announcement Protocol (SAP). SAP provides both encryption and authentication mechanisms but due to the nature of session announcements it is likely that there are many occasions where the originator of a session announcement cannot be authenticated because they are previously unknown to the receiver of the announcement and because no common public key infrastructure is available.

On receiving a session description over an unauthenticated transport mechanism or from an untrusted party, software parsing the session should take a few precautions. Session descriptions contain information required to start software on the receivers system. Software that parses a session description MUST NOT be able to start other software except that which is specifically configured as appropriate software to participate in multimedia sessions. It is normally considered inappropriate for software parsing a session description to start, on a user’s system, software that is appropriate to participate in multimedia sessions, without the user first being informed that such software will be started and giving their consent. Thus a session description arriving by session announcement, email, session invitation, or WWW page MUST NOT deliver the user into an interactive multimedia session unless the user has explicitly pre-authorized such action. As it is not always simple to tell whether a session is interactive or not, applications that are unsure should assume sessions are interactive.

In this specification, there are no attributes which would allow the recipient of a session description to be informed to start multimedia tools in a mode where they default to transmitting. Under some circumstances it might be appropriate to define such attributes. If this is done an application parsing a session description containing such attributes SHOULD either ignore them, or inform the user that joining this session will result in the automatic transmission of multimedia data. The default behaviour for an unknown attribute is to ignore it.

Session descriptions may be parsed at intermediate systems such as firewalls for the purposes of opening a hole in the firewall to allow the participation in multimedia sessions. It is considered inappropriate for a firewall to open such holes for unicast data streams unless the session description comes in a request from inside the firewall. For multicast sessions, it is likely that local administrators will apply their own policies, but the exclusive use of "local" or "site-local" administrative scope within the firewall and the refusal of the firewall to open a hole for such scopes will provide separation of global multicast sessions from local ones.

Use of the "k=" field poses a significant security risk, since it conveys session encryption keys in the clear. SDP MUST NOT be used to convey key material, unless it can be guaranteed that the channel over which the SDP is delivered is both private and authenticated.
9. IANA Considerations

9.1 The "application/sdp" media type

One MIME type is to be registered, as defined below. This updates the previous definition from RFC 2327.

To: ietf-types@iana.org
Subject: Registration of MIME media type application/sdp

MIME media type name: application
MIME subtype name: sdp
Required parameters: None.
Optional parameters: None.
Encoding considerations:
See section 5 of RFC XXXX
Security considerations:
See section 8 of RFC XXXX
Interoperability considerations:
See RFC XXXX
Published specification:
RFC XXXX
Applications which use this media type:
Voice over IP, video teleconferencing, streaming media, instant messaging, etc. See also section 3 of RFC XXXX.

Additional information:

Magic number(s): None.
File extension(s): The extension ".sdp" is commonly used.
Macintosh File Type Code(s): "sdp"

Person & email address to contact for further information:
Colin Perkins <csp@csperkins.org>
IETF MMUSIC working group

Intended usage: COMMON

Author/Change controller:
Authors of RFC XXXX
IETF MMUSIC working group

9.2 Registration of Parameters

There are seven field names that may be registered with IANA. Using
the terminology in the SDP specification BNF, they are "media", "proto", "fmt", "att-field", "bwtype", "nettype" and "addrtype".

9.2.1 Media types ("media")

The set of media types is intended to be small and SHOULD NOT be extended except under rare circumstances. The same rules should apply for media names as for top-level MIME content types, and where possible the same name should be registered for SDP as for MIME. For media other than existing MIME top-level content types, a standards-track RFC MUST be produced for a new top-level content type to be registered, and the registration MUST provide good justification why no existing media name is appropriate (the "Standards Action" policy of RFC 2434 [5].

This memo registers the media types "audio", "video", "text", "application", "data" and "control".

9.2.2 Transport protocols ("proto")

The "proto" field describes the transport protocol used. This SHOULD reference a standards-track protocol RFC. This memo registers three values: "RTP/AVP" is a reference to RTP [12] used under the RTP Profile for Audio and Video Conferences with Minimal Control [13] running over UDP/IP and "udp" indicates an unspecified format over UDP.

New transport protocols MAY be registered with IANA. Registrations MUST reference an RFC describing the protocol. Such an RFC MAY be Experimental or Informational, although it is preferable if it is Standards-Track. Registrations MUST also define the rules by which their "fmt" namespace is managed (see below).

9.2.3 Media formats ("fmt")

Each transport protocol, defined by the "proto" field, has an associated "fmt" namespace that describes the media formats which may be conveyed by that protocol. Formats cover all the possible encodings that might want to be transported in a multimedia session.

RTP payload formats under the "RTP/AVP" protocol that have been assigned static payload types MUST use the static payload type as their "fmt" value. For payload formats under "RTP/AVP" that have a dynamic payload type number, the dynamic payload type number is given as the "fmt" and an additional "rtpmap" attribute specifies the format name and parameters as defined by the MIME type registration for the payload format.

For the "udp" protocol, new formats SHOULD be registered. Use of an existing MIME subtype for the format is encouraged. If no MIME subtype exists, it is RECOMMENDED that a suitable one is registered through the IETF process (RFC 2048) by production of, or reference
to, a standards-track RFC. If a MIME subtype is for some reason inappropriate, an RFC publication describing the format MUST be referenced in the registration, but it may be Informational or Experimental if the protocol is not deemed to be of widespread deployment.

For other protocols, formats MAY be registered according to the rules of the associated "proto" specification.

Registrations of new formats MUST specify which transport protocols they apply to.

9.2.4 Attribute names ("att-field")

Attribute field names ("att-field") MUST be registered with IANA and documented, because of noticeable issues due to conflicting attributes under the same name. Unknown attributes in SDP are simply ignored, but conflicting ones that fragment the protocol are a serious problem.

New attribute registrations are accepted according to the "Specification Required" policy of RFC 2434, provided that the specification includes the following information:
- contact name, email address and telephone number
- attribute-name (as it will appear in SDP)
- long-form attribute name in English
- type of attribute (session level, media level, or both)
- whether the attribute value is subject to the charset attribute.
- a one paragraph explanation of the purpose of the attribute.
- a specification of appropriate attribute values for this attribute.

The above is the minimum that IANA will accept. Attributes that are expected to see widespread use and interoperability, SHOULD be documented with a standards-track RFC that specifies the attribute more precisely.

Submitters of registrations should ensure that the specification is in the spirit of SDP attributes, most notably that the attribute is platform independent in the sense that it makes no implicit assumptions about operating systems and does not name specific pieces of software in a manner that might inhibit interoperability.

IANA is requested to register the following initial set of attribute names ("att-field" values), with definitions as in Section 6 of this memo (these definitions update those in RFC 2327):

<table>
<thead>
<tr>
<th>Name</th>
<th>Session or Media level?</th>
<th>Dependent on charset?</th>
</tr>
</thead>
<tbody>
<tr>
<td>cat</td>
<td>Session</td>
<td>No</td>
</tr>
<tr>
<td>keywds</td>
<td>Session</td>
<td>Yes</td>
</tr>
<tr>
<td>tool</td>
<td>Session</td>
<td>No</td>
</tr>
<tr>
<td>ptime</td>
<td>Media</td>
<td>No</td>
</tr>
<tr>
<td>maxptime</td>
<td>Media</td>
<td>No</td>
</tr>
<tr>
<td>rtpmap</td>
<td>Media</td>
<td>No</td>
</tr>
<tr>
<td>recvonly</td>
<td>Either</td>
<td>No</td>
</tr>
<tr>
<td>sendrecv</td>
<td>Either</td>
<td>No</td>
</tr>
</tbody>
</table>
9.2.5 Bandwidth specifiers ("bwtype")

A proliferation of bandwidth specifiers is strongly discouraged.

New bandwidth specifiers ("bwtype" fields) MUST be registered with IANA. The submission MUST reference a standards-track RFC specifying the semantics of the bandwidth specifier precisely, and indicating when it should be used, and why the existing registered bandwidth specifiers do not suffice.

IANA is requested to register the bandwidth specifiers "CT" and "AS" with definitions as in Section 5.8 of this memo (these definitions update those in RFC 2327).

9.2.6 Network types ("nettype")

New network types (the "nettype" field) may be registered with IANA if SDP needs to be used in the context of non-Internet environments. Whilst these are not normally the preserve of IANA, there may be circumstances when an Internet application needs to interoperate with a non-Internet application, such as when gatewaying an Internet telephony call into the PSTN. The number of network types should be small and should be rarely extended. A new network type cannot be registered without registering at least one address type to be used with that network type. A new network type registration MUST reference an RFC which gives details of the network type and address type and specifies how and when they would be used. Such an RFC MAY be Informational.

IANA is requested to register the network type "IN" to represent the Internet, with definition as in Sections 5.2 and 5.7 of this memo (these definitions update those in RFC 2327).

9.2.7 Address types ("addrtype")

New address types ("addrtype") may be registered with IANA. An address type is only meaningful in the context of a network type, and any registration of an address type MUST specify a registered network type, or be submitted along with a network type registration. A new address type registration MUST reference an RFC giving details of the syntax of the address type. Such an RFC MAY be Informational. Address types are not expected to be registered frequently.

IANA is requested to register the address types "IP4" and "IP6" with definitions as in Sections 5.2 and 5.7 of this memo (these
9.2.8 Registration Procedure

In the RFC documentation that registers SDP "media", "proto", "fmt", "bwtype", "nettype" and "addrtype" fields, the authors MUST include the following information for IANA to place in the appropriate registry:

- contact name, email address and telephone number
- name being registered (as it will appear in SDP)
- long-form name in English
- type of name ("media", "proto", "fmt", "bwtype", "nettype", or "addrtype")
- a one paragraph explanation of the purpose of the registered name.
- a reference to the specification (e.g. RFC number) of the registered name.

IANA may refer any registration to the IESG Transport Area Directors for review, and may request revisions to be made before a registration will be made.

9.3 Encryption Key Access Methods

The IANA currently maintains a table of SDP encryption key access method ("enckey") names. This table is obsolete and SHOULD be removed, since the "k=" line is not extensible. New registrations MUST NOT be accepted.

Appendix A. SDP Grammar

This appendix provides an Augmented BNF grammar for SDP. ABNF is defined in [2].

; SDP Syntax
session-description = proto-version
origin-field
session-name-field
information-field
uri-field
email-fields
phone-fields
connection-field
bandwidth-fields
time-fields
key-field
attribute-fields
media-descriptions

proto-version = "v=" 1*DIGIT CRLF
; this memo describes version 0

origin-field = "o=" username SP sess-id SP sess-version

SP
nettype SP addrtype SP unicast-address CRLF

session-name-field = "s=" text CRLF
information-field = "i=" text CRLF
uri-field = "u=" uri CRLF
email-fields = *("e=" email-address CRLF)
phone-fields = *("p=" phone-number CRLF)
connection-field = ["c=" nettype SP addrtype SP
connection-address CRLF]
; a connection field must be present
; in every media description or at the
; session-level
bandwidth-fields = *("b=" bwtype ":" bandwidth CRLF)
time-fields = 1*("t=" start-time SP stop-time
*(CRLF repeat-fields) CRLF)

Internet-Draft SDP June 2004

[zone-adjustments CRLF]
repeat-fields = "r=" repeat-interval SP typed-time
 1*(SP typed-time)
zone-adjustments = "z=" time SP ["-"] typed-time
 *(SP time SP ["-"] typed-time)
key-field = ["x=" key-type CRLF]
attribute-fields = *("a=" attribute CRLF)
media-descriptions = *(media-field
 information-field
 *connection-field
 bandwidth-fields
 key-field
 attribute-fields)
media-field = "m=" media SP port ["/" integer]
 SP proto 1*(SP fmt) CRLF

; sub-rules of 'o='
username = non-ws-string
; pretty wide definition, but doesn’t
; include space
sess-id = 1*DIGIT
; should be unique for this username/host
sess-version = 1*DIGIT
; 0 is a new session
nettype = token
; typically "IN"
addrertype = token
; typically "IP4" or "IP6"
uri = URI-reference; see RFC1630 and RFC2732

email-address = email *SP "(" 1*email-safe ")" /
 1*email-safe "<" email ">" / email

email = addr-spec; defined in RFC2822

Internet-Draft SDP June 2004

; modified to remove CFWS

phone-number = phone *SP "(" 1*email-safe ")" /
 1*email-safe "<" phone ">" / phone

phone = "+" POS-DIGIT 1*(SP / "-" / DIGIT)

collection-address = multicast-address / unicast-address

bwtype =

bandwidth = 1*DIGIT

start-time = time / "0"

stop-time = time / "0"

time = POS-DIGIT 9*DIGIT

; 10-digit NTP time represents times between
; 1931 and 5068 AD. 9* allows times after
; that as well.

repeat-interval = POS-DIGIT *DIGIT [fixed-len-time-unit]

typed-time = 1*DIGIT [fixed-len-time-unit]

fixed-len-time-unit = "d" / "h" / "m" / "s"

key-type =

"prompt" /
"clear:" text /
"base64:" base64 /
"uri:" uri /

key-method [":" text]

base64 = *base64-unit [base64-pad]
base64-unit = 4base64-char
base64-pad = 2base64-char "=" / 3base64-char "="
base64-char = ALPHA / DIGIT / "+" / "/"
attribute = (att-field ":" att-value) / att-field
att-field = token
att-value = byte-string
media = token
fmt = token
proto = token "/" token
port = 1*DIGIT
unicast-address = IP4-address / IP6-address / FQDN / extn-addr
multicast-address = IP4-multicast / IP6-multicast
IP4-multicast = ml 3("." decimal-uchar)
"/" ttl ["/" integer]
IP6-multicast = hexpart ["/" integer]
.ttl = POS-DIGIT *2DIGIT) / "0"
FQDN = 4*(alpha-numeric / "/" / ".")
 ; typically "audio", "video", "text",
 ; "application" or "data"
 ; typically an RTP payload type for audio
 ; and video media
 ; should be either "0" or in the range "1024"
 ; to "65535" inclusive for UDP based media
 ; (a value of "0" is used to signal special
 ; conditions in some uses of SDP)
 ; IPv4 multicast addresses may be in the
 ; range 224.0.0.0 to 239.255.255.255
 ; IPv6 address starting with FF
 ; fully qualified domain name as specified
 ; in RFC1035
IP4-address = b1 3("." decimal-uchar) / "0.0.0.0"

b1 = decimal-uchar
; less than "224"; not "0" or "127"

; The following is from RFC2373 Appendix B. It is a direct copy.
IP6-address = hexpart [":" IP4-address]

hexpart = hexseq / hexseq ":" [hexseq] / ":" [hexseq]

hexseq = hex4 *(":" hex4)

hex4 = 1*4HEXDIG

; Generic for other address families
extn-addr = non-ws-string

generic sub-rules: datatypes
text = byte-string
;default is to interpret this as UTF8 text.
;ISO 8859-1 requires "a=charset:ISO-8859-1"
;session-level attribute to be used

byte-string = 1*(%x01-09/%x0B-0C/%x0E-FF)
;any byte except NUL, CR or LF

non-ws-string = 1*(VCHAR/%x80-FF)
;string of visible characters

token-char = %x21 / %x23-27 / %x2A-2B / %x2D-2E /
%x30-39
/ %x41-5A / %x5E-7E

token = 1*(token-char)

token-char = %x01-09/%x0B-0C/%x0E-27/%x2A-3B/%x3D/%x3F-FF
;any byte except NUL, CR, LF, or the quoting
;characters ()<>

integer = POS-DIGIT *DIGIT

generic sub-rules: primitives

alpha-numeric = ALPHA / DIGIT

POS-DIGIT = %x31-39 ; 1 - 9

decimal-uchar = DIGIT
/ POS-DIGIT DIGIT

Internet-Draft SDP June 2004

/ ("1" 2*(DIGIT))
/ ("2" ("0"/"1"/"2"/"3"/"4") DIGIT)
/ ("2" "5" ("0"/"1"/"2"/"3"/"4"/"5"))

; external references:
; ALPHA, DIGIT, CRLF, SP, VCHAR: from RFC 2234
; URI-reference: from RFC1630 and RFC2732
Appendix B. Acknowledgments

Many people in the IETF MMUSIC working group have made comments and suggestions contributing to this document. In particular, we would like to thank Eve Schooler, Steve Casner, Bill Fenner, Allison Mankin, Ross Finlayson, Peter Parnes, Joerg Ott, Carsten Bormann, Steve Hanna, Jonathan Lennox and Keith Drage.

10. References

10.1 Normative References

10.2 Informative References

Authors’ Addresses

Mark Handley
University College London
Gower Street
London WC1E 6BT
UK
EMail: M.Handley@cs.ucl.ac.uk

Van Jacobson
Packet Design
2465 Latham Street
Mountain View, CA 94040
USA
EMail: van@packetdesign.com

Colin Perkins
University of Glasgow
17 Lilybank Gardens
Glasgow G12 8QQ
UK
EMail: csp@csperkins.org
Intellectual Property Statement

The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the IETF's procedures with respect to rights in IETF Documents can be found in BCP 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at ietf-ipr@ietf.org.

Disclaimer of Validity

This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Copyright Statement

Copyright (C) The Internet Society (2004). This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights.

Acknowledgment

Funding for the RFC Editor function is currently provided by the Internet Society.