A Changing Internet in 2024

Colin Perkins
Four Internet technology shifts
#1 TCP/IP
#1

TCP/IPv4
#1

TCP/IPv6

Worldwide 45%
India 72%
Thailand 42%
Australia 30%
HTTP and other protocols running over TCP/IPv6
HTTP and other protocols running over QUIC/IPv6
HTTP displaces the other protocols
HTTP moves to delivery via CDNs

#3
HTTP moves to delivery via CDNs

while other on-premise services move to cloud datacentres

centralising the infrastructure
#3

HTTP moves to delivery via CDNs while other on-premise services move to cloud datacentres centralising the infrastructure and encouraging direct interconnection to hyper-giants and the death of transit
#4 DNS provided by network operators
mapping of site names to IP, insecurely
and accidentally provides a control point

DoH per application
decoupled from operators
secure
and incidentally removes the control point
These changes are invisible for the users of the network.
What didn’t change?

Accessible infrastructure with a common protocol
Open architecture of interoperable and reusable building blocks
Decentralised management
Common global identifiers
A technology neutral general-purpose network
Multistakeholder governance of the common infrastructure
A technology neutral general-purpose network

25x traffic growth in 1 week
March 2020

Not hyper-optimised for any particular use case so had flexibility to support the shift in use
Protocols have evolved, but we still (mostly) have a common global infrastructure

Performance, security, and privacy have all massively improved – due to centralisation or better protocols?

The infrastructure proved flexible and secure enough to support society during COVID lockdowns – design/policy lessons?
Challenges

Managing centralisation – hyper-giants have too much power; barriers to entry are high

Managing fragmentation to increase diversity of provision without splintering the network – there is value in having common infrastructure underlying content distribution

Balancing these with maintaining security and privacy – hyper-giants have too much visibility into data, but interoperability introduce security challenges
Challenges

Content moderation, taming social media, mis- and disinformation

Control points in the infrastructure ineffective – lead to ossification that hinders innovation and interoperability

Distinguish uses of the Internet from the Internet

Artificial intelligence

Distinguish AI using training data from the Internet; as a network management tool, as a content moderation tool, and as an application running over the Internet
Uninteresting
uses of the Internet that don’t change the Internet

Blockchain and web3 – a solution in search of a problem?

Metaverse, industrial IoT – can run on existing infrastructure; QoS requirements overblown
What can we learn?
The Internet is Continually Evolving

There is a steady flow of new work into IETF and IRTF

• New protocols are developed to address new challenges
• Existing protocols are extended and improved

This is normal work, **incremental continuous improvement**, unplanned and ad-hoc

Example: TCP was published as RFC 793 in 1981

• RFC 7414 (“A Roadmap for TCP Specification Documents”), from 2015, lists >100 RFCs that extend the original specification – and excludes more recent extensions like CUBIC and BBR congestion control and multi-path support
• The same type of evolution happens to **every** protocol
The Internet is Infrastructure

• Because the Internet is an infrastructure component, protocol evolution tends to happen in ways that are non-obvious to end-users
 • Over time, it just gradually appears to work better, to support new applications
 • Changes are supposed to be invisible to other parts of the system
 • The network architecture evolves – it is not designed

• Leads some to make claims of Internet stagnation – but today’s Internet protocols are far removed from the original Internet protocol suite, even when they share a name
The Internet Was Not Designed

• Radical proposals are interesting to explore the design space, but **there is little top-down architecture or design in the Internet** – innovations succeed when co-opted into the network and incorporated in a bottom-up manner

• The community is very good at incorporating new ideas into the network

• Components can, and do, change in significant ways, but you don’t notice and the network just works a little better

• There are limits – not every idea can, or should, be incorporated into the network – but there are few design principles that are not violated somewhere in the Internet

• **Limited architectural vision is a strength** – it permits long-term evolution of the network
IETF Cannot Enact Radical Change

• The IETF has no mechanism to enact top-down architectural changes
• This is a feature – no-one controls the global Internet
• The only feasible route to change the network is incremental bottom-up deployment of new and updated protocols

distrust
those that suggest
radical change
without a deployment plan
To sustain the Internet’s value we must let it develop while recognising and protecting what makes it unique

Accessible infrastructure with a common protocol
Open architecture of interoperable and reusable building blocks
Decentralised management
Common global identifiers
A technology neutral general-purpose network
Multistakeholder governance of the common infrastructure