Un1vers1ty ‘ School of
0 G asgow | Computing Science

Post Sockets - A Modern Systems Network API
Mihail Yanev (2065983)
April 23, 2018

ABSTRACT

The Berkeley Sockets API has been the de-facto standard
systems API for networking. However, designed more than
three decades ago, it is not a good match for the networking
applications today. We have identified three different sets of
problems in the Sockets API. In this paper, we present an
implementation of Post Sockets - a modern API, proposed by
Trammell et al. that solves the identified limitations. This
paper can be used for basis of evaluation of the maturity of
Post Sockets and if successful to promote its introduction as
a replacement API to Berkeley Sockets.

1. INTRODUCTION

Over the years, writing networked applications has be-
come increasingly difficult. In part, this is because the ap-
plications have become more complex; the demands they
place on the network are not the same as they were 30 years
ago. It is also because the network has changed, and of-
fers more features with more complexity. And, finally, it is
because the de-facto standard API (Berkeley Sockets) was
designed more than three decades ago, to match the network
state at the time, and has not kept up with the evolution of
the network and applications.

Modern applications’ requirements demand for different
features compared to applications from three decades ago.
As a result, network administrators have introduced middle-
boxes, such as remote cache servers or firewalls, that inter-
cept and change the exchanged information. On the other
hand, new network techniques and protocols have been in-
troduced by network standards organisations, such as IETF
and IEEE . in an attempt to solve that same network com-
plexity problem. The combined result from both of these
interactions is that we are now left with a network, which is
extremely hard to evolve, referred as the ‘high-ossification
problem’ [10].

Communication using strongly typed data, choosing a re-
mote address, when multiple are present and transport pro-
tocol selection are some of the issues with todays network.
One way to address them is to revise the network program-
ming API, making it aware of the specific problems and work
towards their resolution. An example for such activity in the
recent years is the concept of connection racing, as described
in ‘Happy Eyeballs: Success with Dual-Stack Hosts’[21] and
updated by [15]. The technique allows for choosing the opti-
mal address with respect to latency, in cases where multiple
addresses are provided by a server.

In this paper, we present a new look of what we hope to
be the new network programming API which incorporates
solutions to the aforementioned problems in its core. The
idea is based on the IETF Post Sockets draft [18].

In addition to providing native solutions for problems, es-
tablishing optimal connection with a Remote point or struc-
tured data communication, we have identified that a com-
mon issue with many of the previously provided networking
solutions has been leaving the products vulnerable to code
injections and/or buffer overflow attacks. The root cause
for such problems has mostly proved to be poor memory
or resource management. For this reason, we have decided
to use the Rust programming language to implement the
new APIL. Rust is a programming language, that provides
data integrity and memory safety guarantees. It uses region
based memory, freeing the programmer from the responsibil-
ity of manually managing the heap resources. This in turn
eliminates the possibility of leaving the code vulnerable to
resource management errors, as this is handled by the lan-
guage’s runtime. The language’s strongly typed system also
allows for better modeling the requirements and the inter-
face of the new API, as restricting certain functionality to a
particular type class (trait), ensures that any item, willing
to use that functionality will implement the required type
and expose the expected interface.

The remainder of this paper is structured as follows. Sec-
tion 2 introduces limitations identified with the Berkeley
Sockets and gives further details on our motivation for in-
troducing Post Sockets as systems network API. Section 3
describes the Post Sockets idea as defined by Trammell et
al. [18] and suggests how it solves the limitations, described
in section 2. Section 4 presents evaluations conducted using
a sample implementation of Post that we created. Section
5 outlines existing work, related to Post Sockets and over-
coming the Berkeley Sockets’ limitations in general. Finally
section 6 wraps up and concludes the paper.

2. MOTIVATION AND CONTEXT

In this chapter, we open with a brief introduction of Berke-
ley Sockets, followed by a discussion of how its components
interact. Then based on the discussion, we present the three
different limitations identified with the current network. Fi-
nally, the chapter concludes with our motivation on why new
APIT is needed.

Berkeley Sockets, also known as POSIX Sockets or BSD
Sockets is the current de-facto standard network systems
API. It provides simple interface, that exposes sockets ab-
straction as handles for the local and remote endpoints in
a communication. These handles are treated as regular
UNIX file descriptors. This design decision made the API
extremely popular when it was released, as essentially any
developer that knew how to operate files was able to easily
get some sort of network communication going. The main
components of the Berkeley API are presented in Figure 1,

where the items with solid border are exposed structures
while the dotted border items are logical representations of
entities in the system.

accept()

listen()
bind()
<

connect()

Socket

A%

n {1

<ol
) = select()

Policies
RTT, Interface,

‘ Sockaddr ‘

Figure 1: Main Components of the POSIX API

The API is centered around the Socket entity. The main
operations for a Socket are: creation, configuration, connec-
tion, communication and termination. Following, we inspect
each operation in detail.

Socket creation, is performed by specifying three argu-
ments - address family (Internet protocol version), type for
the data over the socket (usually datagram or stream) and
transport protocol to be used (TCP/UDP/SCTP[17] ,etc).

After a socket is created, it must be bound to two “Sock-
addr”s, representing the local and remote addresses used for
the communication. Additionally, developers might wish to
express preference for specific network options to be pro-
vided, if the underlying operating system supports them.
These options might influence the policies for choosing when
to send a packet, whether to fragment a packet, what route
to use for packet transmission, for how long the connection
should be kept alive ,etc. Notable such options are: ‘NODE-
LAY’, used to disable Nagle’s algorithm[9][3], ‘KEEPALIVE’,
used to send periodic liveness pings to prevent connection
termination, ‘IP6_LDONTFRAGMENT"’, used to instruct that
large packets should be dropped, instead of fragmented and
‘DONTROUTE’, used to bypass the lookup table when trans-
mitting packets.

Finally, after a socket is created and configured with the
correct addresses and options, it must be connected to an-
other socket via the connect routine, or set in a state that
expects connections. The latter is done using one of the lis-
ten or select functions, followed by an accept, to establish
the connection.

When two sockets are connected, they can initiate a com-
munication process via the send() and recv() methods. Both
of these operations work with byte array abstractions. For
example in send() you provide a buffer with information to
be send and you get returned a value of how many bytes
were actually send. Similarly for recv() you need to provide
an empty buffer and state its length as an additional param-

eter, which effectively acts as an upper bound of the bytes
that can be received in that buffer. Since, both of these
operations work with raw byte structures, they do not pro-
vide any guarantees about message framing. If supporting
framing was desired, then it has to be added on top of the
sockets send() and recv() methods.

After no communication is expected over the socket it is
closed with a call to the close function. Whenever this hap-
pens, only the interface to the socket is destroyed and it is
the kernel’s responsibility to destroy the socket internally[8].

In terms of the OSI model, the Sockets API goes as high
as layer 4, as shown in Figure 2

OSI| Model

Application

Berkeley Sockets Model

- Sockets
Application
Upper Session
Lepers Sockets
Lower API
Transport
Layors |_Transport | Protoc| Stack (TCP/
IP
MNetwork) T
o
Syst
‘ DataLink | | Network Driver | PRI
‘ Physical | | MNetwork Interface |

Figure 2: Sockets API in the OSI model. Image
modified from [1]

The consequence of going as high as the transport layer is
that some widely used network services are not directly sup-
ported and require additional application logic to be added.
Examples for such services are: adding security to the trans-
port, performing domain name resolution and packet fram-
ing. For example, when a socket is created, the IP version
number needs to be specified, as well as the address to be
used for this connection. This essentially means that you
cannot create a socket and configure it to communicate with
a domain name, such as ‘google.co.uk’. Instead, for such a
connection DNS lookup needs to be performed first, which
would most likely result in multiple addresses being resolved
and then a connection must be opened with one of those ad-
dresses.

As a result of the reach of POSIX in the OSI stack, we
identify three key problems with the POSIX networkings
APIs: lack of support for connection racing, lack of sup-
port for multipath communication, and inability to support
structured data transfer. Following, we introduce each one
in a more formal way and relate them to the discussion of
POSIX, presented so far.

We first consider connection racing. “Happy Eyeballs:
Success with Dual-Stack Hosts”[21] updated by [15] intro-
duce a straight-forward idea of racing multiple connections
to improve optimality and reduce network latency. The con-
cept is: try to open multiple connections using different op-
tions, and use the connection that is fastest. This reduces
latency, as it finds the optimal connection, but it does so at

the expense of increased network traffic, generated by the
simultaneous connections. An example of that could be a
server, which offers both an IPv4 and an IPv6 addresses for
a single task.

Implementing connection racing has proven to be a chal-
lenging task with the current interface provided. This is be-
cause the POSIX API requires a single address to be given
when creating a network socket, which makes supply of mul-
tiple such instances impossible. This idea made sense, when
the POSIX API was emerging, as initially the network de-
mands were not latency critical, so there was no need of
multiple instances to serve the same resources.

Another limitation, related to the transport protocols do-
main is multipath promotion and support. As defined in
MPTCP [5] multipath connections, allow more than one
channels to be used for communication between two end
points. In theory, any device with more than one network
controller should be able to leverage this functionality, for
example, mobile device with celluar and wifi capabilities.
There have been reports that Apple is using this technol-
ogy, in order to provide better service for Siri[4]. However,
porting most of the internet applications would once again
prove to be a challenge given the current API. This is partly
because the developers are forced to pick a transport proto-
col when creating a socket. The choice of picking a transport
protocol that has large network support (TCP/UDP) would
seem very natural. However, this limits the need of support
of any other protocol over the network, so a large portion of
the middleboxes, such as firewalls, block any other traffic.
Which in turn reduces the possibility of any new protocols
emerging.

Finally, a core, well-known issue with the design of POSIX
is the inability to support structured data transfer. The is-
sue here is motivated by the fact that technologies using the
API have evolved and have started to leverage higher-level
abstractions for communication within the given process.
However, carrying the same communication practices over
the network is not directly supported, as the POSIX API,
only provides functionality for transmitting byte sequences.
For example, if a programmer wants to transmit a struc-
tured object, they have to resort to their language’s serial-
ization framework to make the item transmittable over the
network. However, providing that functionality at systems
level would eliminate the need for such solutions. It would
also be more flexible and friendly to other technologies that
have been newly introduced or have not added the custom
functionality on their own.

One way to address these limitations would be to intro-
duce a new systems API with the outlined issues in mind.
For example, this new API could perform connection trans-
parent to the user, offer connections to be opened with a
set of transport protocols in mind and perform the neces-
sary abstraction needed, in order to expose structured data
for communications. In order to provide strongly structured
types to be transmitted, it would make sense that the new
APT uses a technology that supports type classes as defined
in Haskell or an alternative of that [19][2].

The requirement for type class support, eliminates the
standard systems language, C, or at least in its standard
form as an option for the new API, since C has a weak type
system and is memory unsafe. An alternative to this tech-
nology could be Rust, which has been introduced recently,
but makes a strong candidate for an adequate choice for any

systems application. Rust is a recent, expressive language
with strong type system [14]. The Type Classes, or Traits,
as referred by Rust is a mechanism to support ad hoc poly-
morphism and so to define constraints on certain variable
types. These constraints may be a minimal set of methods,
required by the variable type, or concrete fields, etc.

In addition, using a strongly typed language, such as Rust,
would make protocols modeling an easier task. In essence,
this means that the language could be made to define a
minimum set of features that any transport protocol should
implement in order to be valid and ready for exploitation[20].

On another note, some of the limitations presented have
clear resolution plans, for example: Happy Eyeballs. How-
ever, plans others are less clear, or not well defined, for ex-
ample, protocol independent connections. And finally, there
has been an effort to resolve part of the limitations given
the current technologies. For example, MPTCP’s push for
enabling multipath connections or different languages pro-
viding abstractions to support structured data communica-
tions.

Given all of that, we have observed that fundamental ideas
in the POSIX API limit the design space for future network
protocols and make solving the current problems harder.
As an example, we refer to the practice of initially choos-
ing an IP address for socket communications. Introducing
connection racing, as defined by Happy Eyeballs, in such an
environment would require changes to the core API func-
tions. Alternatively it can make use of several sockets to
race the connections and would then proceed closing all but
the winner from the race. Nonetheless, whichever solution
is picked, it is evident that the POSIX limits the ways how
the problem could be approached.

The introduction of MPTCP was a brilliant idea, that
again, would perhaps be hard to tailor with the existing
systems API. For example, making use of any transport pro-
tocol that is not TCP or UDP is a real challenge for pro-
grammers using POSIX. Perhaps another API would allow
selecting a set of protocols to be attempted: MPTCP, for
example, and if it fails then fallback to regular TCP.

Finally, POSIX fails to provide support for modern de-
mands such as structured data communication (objects/struc-
tures/primitive types). As it only exposes an interface for
managing byte transfers. This then resulted in each tech-
nology adding their own abstraction layer on top of POSIX,
in order to provide the required communication. However,
this means that any new technology would also need to add
their own version of the same abstraction on top of POSIX,
if aimed to gain the benefits from higher abstracted commu-
nication.

In conclusion, we believe that a new API, which accounts
for the given limitation at its implementation core would
be a better option than modifying POSIX to address them.
This belief is based on the fact that it is already hard to im-
plement solutions for some of the problems in POSIX. Fur-
thermore, when future network evolution is taken in mind,
it is natural that new sets of limitations will emerge. In
such cases, we would not want to integrate “clumsy and
error-prone”[18] solutions. Instead, a new API that ad-
dresses the current limitations and exposes flexible interface,
through methods and hooks, ready to address future limita-
tions should be used.

3. POST SOCKETS

Post Sockets, as introduced by Trammell et al. [18] is an
alternative to the Berkeley Sockets API. Designed with the
identified so far problems in the network in mind, Post Sock-
ets offers an elegant solution to them. It does so by raising
the abstraction of the transport layer and presenting an al-
ternative view on the communication process. The system
builds on trends in network API for programming languages
and systems. Its expressiveness makes it easy to support all
IETF transport protocols or to model future ones.

Post Sockets is a richer API than POSIX, but does little
that is not part of the existing applications. For example,
it introduces new abstractions items, such as Locals, Re-
motes, Messages, Message Carriers, Associations, Policies
and Transients. With a few exceptions, these are not new
concepts to the applications, but rather logically defined and
group abstractions that have been used so far.

Post Sockets’ manifesto promotes solving the current prob-
lems by raising the abstraction layer all at once. As opposed
to ‘relying on education and incremental software updates to
slowly bring over a period of many years’[18]. Following, we
introduce the main components of the system and present
an example of how they interact.

Trammell et al. internet draft provides a diagram, which
illustrates the system and how it interacts, displayed in Fig-
ure 3.

Message
bau wnit of
HEE
gl | & accept{)
listen()
Message Carrier initiate()
carries messages for an associacion
- n
: @l
Local
: Association o
PDlI'Ef : durable smre berwoen
¥ two endpoints
: aver multiple paths
! A Remote
'

n

Figure 3: Components interaction in Post Sockets.
Appears in [18]

The API is centered around Message Carriers, which log-
ically group messages for transmission and receipt. Message
Carriers are transport protocol-stack independent abstrac-
tions for sending and receiving messages between an appli-
cation and a remote end point.

Messages are atomic units of communication between ap-
plications. Messages can represent structures of arbitrary
size - both relatively small, such as HTPP Request/Re-
sponse objects or relatively large, such as files. There is
no strict mapping between a message and the packets sent
by the underlying protocol stack on the wire. That is, mul-

tiple messages can be amalgamated into packets. Also, a
single message might be segmented over multiple packets.

Associations store information, needed to maintain a long
term state between local and remote endpoints. Such in-
formation includes - cryptographic state, required for fast
connection resumption, session parameters as well as infor-
mation on resolved names. For example, URL might be used
for communication. The first time this URL is resolved by
the DNS, the information would be kept in the association,
in order to improve any subsequent requests.

Remotes represent information information required to es-
tablish and maintain connection with a far end of an asso-
ctation.

Analogous to Remote, Local abstractions store all the in-
formation about the local endpoint, such as interface, port
or transport protocol stack information.

Finally, Transients are an active binding between an ac-
tive carrier and an instance of the transport protocol stack
that implements it. Transients contain ephemeral state for
a single transport protocol stack over a single path at given
point of time.

The terms described so far provide the necessary abstrac-
tion required, in order to solve the problems, identified ear-
lier. For instance, transients could help in implementing
multipath. To achieve this, multiple transients would serve
a single carrier at a given time, where each transient would
be bound to a separate path. This would grant that the
multiple paths are exposed to the API by the underlying
transport protocol stack. In addition, multiple transients
may share the same protocol stack, achieving multistream
capabilities that way. Multiple transients may also be active
in for short period of time in the event of connection racing.

In order to achieve connection racing, the logic that per-
forms it needs to be added to the specific carrier’s imple-
mentation init method(this decision is later discussed and
justified in section 4.3). For example, in a case where con-
nection racing is performed for a HTTP client, the code
might be similar to the one suggested in Listing 1

Listing 1: Connection Racing
impl ICarrier for HttpClient {

fn init(mut self) -> Self {
// Race multiple addresses
, contained in self
// Remember fastest connection for
future use

self

In the example above, the necessary operations, required
to achieve connection racing are: firstly, gather the mul-
tiple addresses from the Remote instance contained in the
Carrier(self). Then create Transients from the obtained
addresses and simultaneously try to establish connections
with each one. Finally remember the fastest for future use.

For completeness, we supply the main components of the
Local, Remote and Transient instances, respectively in List-
ings 2, 3, 4

Listing 2: Local Structure

pub struct Local {
pub addr: String,
pub port: i32

Currently in the implementation, Local is a minimalistic
wrapper that only contains address and port of the local in-
stance. In future iterations the Local structure would hold
protocol stack information as well as certificates and associ-
ated with its private keys.

Listing 3: Remote Structure

pub struct Remote {
pub preferred: Option<String>,
alternatives: Vec<(String, String)
>

pub port: Option<i32>

The Remote structure holds preferred pair of address and
port, if such are provided, as well as alternative addresses
and ports associated with this remote. Support for public
keys and certificate authorities is to be added. The interface
exposed by the Remote allows an instance to be created by
either providing the necessary parameters or by providing a
name to be resolved.

Listing 4: Transient Structure

pub struct Transient {
address_family: IpAddr,
transport: Transport

Finally, Transients are very lightweight structures, that
hold empirical state about a given transport stack for a con-
nection at a given state of time. The implemented fields
store information about the remote address and address fam-
ily in address_family and the type of transport. TcpStream
and UdpSocket are the currently supported types of trans-
port for stream and datagram connections respectively.

On another note, to address strongly typed data exchange,
we have defined a Carrier type class(trait) as shown in List-
ing 5. Where Item is the type of the structured data and
Transmitter is always a byte sequence.

Listing 5: Carrier Type Class
pub trait ICarrier {
type Item; // Type of messages the
carrier will work with
type Transmitter;

fn init(self) -> Self;

fn data_recv<T>(received: T) ->
Option<Self::Item>
where T: IReceivable<Self
::Item>;

fn msg_recv(message: &Self::Item)

>

fn send_msg<T>(&mut self, message:
T) where T: ISendable<Self::
Transmitter >;

These traits ensure that any item, sent over the network,
has encode method defined for itself (granted by the ISend-
able trait) and any byte sequence received over the net-
work can be composed back to the original item via a de-
code method, or indicate that reassembly was not possible
(granted by the IReceivable trait).

For completeness, the ISendable(shown in Listing 6) and
IReceivable(shown in Listing 7) traits are presented below
in Listing 6 and 7 respectively.

Listing 6: ISendable Type Class
pub trait ISendable<T> {

fn encode (&self) -> T;

Listing 7: IReceivable Type Class
pub trait IReceivable<T> {

fn decode (&mut self) -> Option<T>;

The process of sending an item over the network now be-
comes - the item is passed to the Carrier via the send_msg()
method, referred to as send() in Figure 3. The method then
calls the encode function on the item (this why self is present
as argument in Listing 6), which converts it to a byte se-
quence and sends it over the network.

For receiving, we have a longer process. We first receive a
byte sequence from the network, via the recv_data function.
Then we try to reassemble that data into a structured object,
explained in detail in Section 4.1. If the item cannot be
reassembled, it is assumed that insufficient data is provided,
in which case the failed data must be prepeneded to the
next bulk that arrives and the process should be repeated.
When a structured item is fully reassembled, the msg recv
function is called, referred to as ready in Figure 3.

There have also been a number of items from Figure 3
that are currently missing from the provided implementa-
tion. Mostly, our motivation for not including these compo-
nents has been that, we have not added any cryptographic
support, as these tend to be quite large and could make
a project of their own. Also, this first iteration focused on
providing the user-space abstractions that are to be exposed
by the API and most of the unreflected items would ideally
be placed in the Kernel. Following, we present each item
individually along with a brief justification on it not being
reflected.

Firstly, we have seen the Path abstraction as a non-critical
system component, as it essentially stores address informa-
tion and provision domain for the local interface. The former
is already contained in other parts of the system. The latter,
would most likely require support for ICE[11] or STUN[12]
to be added, which we think is not as important for demon-
strating the principles of the API.

Secondly, Associations and Policies have also been omit-
ted from the implementation. The items are closely related,
the draft suggests that creating an Association requires a set
of Policies to be provided. Furthermore, as connection rac-
ing and fragmentation are supported by default if present,
we have not added an option to exclude those by configur-

ing a Policy. This further reduces the options exposed by
the Policy and essentially limits it to requesting that the
connection is kept alive until explicitly closed or expressing
preference of one address family over another.

From the introduction of the Post Sockets idea and com-
ponents, so far, we can see that it adds an additional ab-
straction layer on top of the currently provided services by
POSIX, as shown in Figure 4.

OSI Model

Application
Socket
Presentation 0‘? e.s
Application
Unper Session
Layers

Lower
T rt
Layers ranspo Protocl Stack (TCP{
P
Network)

| DataLink ‘

Berkeley Sockets Model

Sockets
APl

Metwork
System

| Network Driver ‘

| Physical ‘ | Network Interface ‘

Figure 4: Post Sockets as an Abstraction Layer over
POSIX

In comparison, this additional layer of abstraction, pro-
vides access to services, that were not present in POSIX,
as discussed in Section 2. For example, a Remote may be
created by supplying its URL. The Post Sockets API will
then take care of performing the necessary DNS resolution
operations and establishing a connection. Furthermore, the
intended design (not present in this implementation) allows
for providing the required cryptographic information, such
as certificates, associated private keys, etc. directly to the
Remote and Local abstractions and letting them establish
secure channels. In other words, providing security to the
transport requires minimal changes to the codebase and is
directly supported and does not need external libraries or
modules to be added on top. Finally, by providing an inter-
face that ensures items send over the network can be seri-
alized and reassembled, grants that message framing is also
handled by the API.

In summary, we have introduced the Post Sockets idea and
presented its capabilities to address the issues, we have ear-
lier introduced with POSIX. In addition, we have seen that
the richer nature of Post Sockets exposes wider spectrum of
services, freeing developers from the need to manually add
them. The next chapter presents a closer look of the process
we took, to provide resolution for the issues identified with
POSIX in the Post Sockets implementation.

4. EVALUATION AND CASE STUDY

In this section, we support our claims about Post Sockets,
made in Section 3 by providing the results from their imple-
mentation. Additionally, we provide a discussion about how
the items showcased here can be generalized. Furthermore,
we provide a mapping from the items here to the internal
concepts and architecture of the Post Sockets.

4.1 Minimal Set of Transport Services

We first consider the API’s flexibility and ease to model
current and future protocols. To support this, we refer to the
ITEF’s Transport Services (TAPS) draft of minimal set of
transport features [20]. According to this draft, a transport
service must cover the following cases. For flows - creation,
configuration, connection and destruction. For frames (units
of the transfer) send and receipt.

In terms of Post Sockets, flow operations are handled by
Carriers, Policies and Transients and Paths. Flow creation
is done by requesting a message carrier, configuration is han-
dled via the policies given to that carrier and finally when
a connection is established, the carrier is bound to a spe-
cific transport protocol stack and a transient is created to
record that. The distinction between Transient and Carrier
is present, since in some cases, there is no one to one map-
ping between the two. For example, multiple transients may
compete to serve a given carrier in case of connection rac-
ing, or multiple transients may simultaneously serve a single
carrier, in case of multipathing.

On another note, framing operations are supported by
the Carrier’s data_recv and send_msg functions as shown in
Listing 5 and the IReceivable and ISendable traits.

Providing framing guarantees, proved to be a challenging
task, that required multiple iterations. The first iteration
achieved framing but violated the backwards compatibility
criteria. The second iteration provided framing and back-
wards compatibility but excluded direct support for the mes-
sage interface (setting priority, dependency, deadlines, etc.)

Initially, fragmentation relied on modifying the transmit-
ted data and added an extra bit that indicated whether a
message has been fragmented. This bit was set, when the
data to be transmitted was bigger than the path’s maxi-
mum data transmission unit. On the receiver side, when-
ever a fragmented message had been detected, the data was
passed to the data_recv function, and if a message could
not be reassembled it was awaiting for future such calls, to
eventually reconstruct the message. Whenever a message
was reconstructed, the carrier’s msg _rcv function was called
(referred to as ready in 3) and a on_msg rcv event was fired.
However, as stated above, this approach relied on modifying
the data and transmitting the whole message abstraction
over the network. In turn, this meant that communication
would be possible only if both the receiver and the sender
were using this implementation.

The limitations of the initial approach, demanded revis-
iting the implementation of the framing. The revision, in-
troduced the idea that the recv_data function might fail,
not succeed if given insufficient data to reassemble the ob-
ject. This reflected on returning ‘Option’ results from the
de-serialization method(decode in IReceivable) and the Car-
rier’s data receipt method (recv_data in ICarrier). These
functions return the reassembled item, or indicate that re-
assembly was not possible. In the latter case, the when the
next batch of bytes arrives it has to be appended to the
bytes that failed and the function should be invoked again.
This is a refined approach for handling message framing,
although it also contains a number of limitations. Such lim-
itations include: the developer has to manually append the
new data to the data that failed to be reassembled and call
the receipt function. A better approach would be that the
function stashes the bytes that failed to construct an item.
Then upon subsequent calls of the function, if not empty, the

stash would automatically be perpended to the input data
and then reassembly would be attempted. Another limita-
tion of the function is that it does not account for other
errors with the reassembly and only assumes that the bytes
were insufficient.

The last limitation that comes to our mind with this type
of framing is that the implementation does not clearly define
what the message that Post Sockets operates with is. This
means that any type, which has ISendable defined for it can
be send over the network. However, since ISendable does not
provide any information about deadlines, impotency, imme-
diacy, etc. The items sent cannot be prioritized for example.
This grants easier definition of the item transmitted over the
network, but relies on the developer to handle the behaviour
exposed to the message. For example, an item might look
as shown in Listing 8.

Listing 8: Message Type Class
pub struct Message<T> {

uid: i64,

successors: Vec<i64d>,

is_partial: bool,

chunks: Vec<i64>,

is_immediate: bool,

is_idempotent: bool,

lifetime: u32,

data: T,

extra_fields: Value

But then the developer should only send the data field
over the network and use the rest of the fields to fulfill the
message requirements. Another approach would be to define
a new type class for the messages and restrict that items sent
over the network should implement this type class (trait).
An example of such trait might be as shown in Listing 9

Listing 9: Message Type Class

pub trait IMessage {
fn is_immediate (&self) -> bool;
fn is_idempotent (&self) -> bool;
fn get_deadline (&self) -> u64;
fn depends_on(&self) -> Vec<Self>;

Such a trait can be used to restrict the input parameters
of send_msg, which would allow for the logic for operations
such as ordering and dropping to be handled internally.

To reinforce the ideas made in this section, we provide
the codebase, containing concrete implementation for the
examples provided here [22]. It contains HTTP server and
client, as well as a DNS based on the interfaces explained.
The reasoning behind choosing the concrete technologies is
that the HTTP modules use the streams abstraction and
TCP as transport protocol, while the DNS resolver leverages
datagrams and UDP.

4.2 Event Driven Interactions

The Post Sockets main document suggests that some mes-
sage events should be done asynchronously. Such events in-
clude, message receipt, message’s failure for transmission,
message’s acknowledgement from the far end in an associa-
tion, etc. This makes sense, since many of today’s applica-
tions cannot or should not allow for these events to happen
in sequential order. For example, a hypothetical applica-
tion, which needs to perform an HTTP request, in order to

display some information. It would not make sense for the
whole product to be unresponsive, while a response comes
back. This is where asynchronous events become useful.
Another benefit of having such events is that they increase
customization of the product. For example, letting users
subscribe for a particular hooks or events, alleviates that re-
sponsibility from the systems developers and shifts it to the
users, so that they can perform whatever actions they like.

Another use-case for event driven operations would be to
define custom behaviour on when packets start to be frag-
mented, such as, sending smaller packets. Also, for events
where too many of the items expire and cannot meet their
conditions, the deadlines could be extended or the send
queue may have to be depleted.

Other types of events, suggested by the Post Sockets draft
trigger when a specific action for a given transient has hap-
pened. For example, specific types of messages may be sent
when a particular type of connection is established, or al-
ternatively, messages transmission might stop as soon as a
given connection is stopped.

To demonstrate the capability of firing asynchronous events,
the implementation provides a mean for subscription to mes-
sage receipt events. As previously mentioned, such events
are fired upon successful reassembly of an item over the net-
work. In order to subscribe for message receipt events, devel-
opers need to implement the MessageHandler trait, shown
in Listing 10

Listing 10: MessageHandler Type class
pub trait MessageHandler {
type Item; // Item transmitted
over the network

fn on_msg_recv(message: &Self::
Item) ;

Support for other types of events is not currently present
in this iteration. Although, for particular classes of events
providing support would be trivial. An example of that is
connection establishment, such event would be fired as soon
as a transient is created. On the other hand, support for
other events such as message expiry would require changes to
the API, such as the ones suggested in Section 4.1. However,
providing support for all types of events has not been marked
as critical for such an early iteration of the implementation,
instead attention should be drawn on the fact that support
for such events is possible and has been demonstrated.

4.3 Connection Racing

As discussed, connection racing is a technique, made to
reduce latency at the cost increased network traffic. Such
nature makes it extremely useful for long lived connections,
since the initial overhead of an increase in the data trans-
ferred would be negligible. However, for connectionless pro-
tocols, such as UDP, or for connections that only exchange
a low number of messages and then abandon the commu-
nication, connection racing does not make sense. It would
delay the establishment and the trade-off will not be worth.

This is why we recommend connection racing to take place
in Carrier’s init function but do not enforce it. Following,
we present a sample implementation of connection racing,
that we created for the HI'TP Client structure with relevant
fields as shown in Listing 11

Listing 11: HTTP Client Structure

struct HttpClient<’a> {
r: &’a Remote,
query_addrs: Vec<(String, String)
>’
preferred_addr: Option<IpAddr>,

The client contains a Remote reference. The Remote
might consist of address port tuples, or alternatively may
contain a name to be resolved. After resolution occurs,
the resolved address port tuples are stored in. Addition-
ally, the client will keep track of the fastest address in the
preferred_addr field.

In order to achieve the connection racing, we must put
the relevant logic in the Carrier’s setup (the init function
as shown in Figure 3 and Listing 5). In essence, connection
racing would simply take all addresses from the query_addrs
collection and try to establish a connection with each one
simultaneously, finally it will keep track of the fastest one
and use it later.

Following, we present the effect of having implemented
connection racing for our client. First, we setup our local
HTTP Server on an IPv4 and IPv6 interfaces. Then, we
create the carrier for the client as shown in Listing 12.

Listing 12:
client

Sending multiple messages from the

fn main ()

{
let alternatives = vec![(String::
from("[::1]"), String::from
("3006"))1];
let remote = Remote::new(Some (
String::from("127.0.0.1")),
alternatives, 3005) ;
let mut http_client = HttpClient::
new (&¥remote) ;
}

When the client’s new method is called, it does the resolu-
tion if required from the remote and then calls the Carrier’s
init method internally. Finally it returns the fully initialised
client. Connection racing takes place when the Carrier’s init
method is called. The result from the instantiation process
is displayed in Figure 5

addrs to race: [("[::1]1", "3@@6"), ("127.0.0.1", "3805")]
Racing ("[::1]", "3006")

Racing ("127.8.0.1", "3085")
Winner addr: V6(::1)
Setting preferred addrs to: Some(V6(::1))

Figure 5: Connection Racing in Practice

By only adding the racing logic to the Carrier’s init method
when the trade-off is worth, grants greater flexibility to the
developers, as for connectionless protocols or where it does
not make sense to include racing, it simply is not. How-
ever, providing such flexibility firstly relies on developers be
aware that connection racing is possible and secondly know

where to add it. An alternative approach might have the
init function calling a race function in the trait’s implemen-
tation. This way, we would ensure that race has to be im-
plemented, in order to initiate a carrier and for cases where
it does not make sense to add it, developers would simply
choose the first and in many cases only address as preferred.
On the other hand, providing a fixed implementation for
the init does not allow for it to be easily changed. For this
reason, we have decided to give the developers the freedom
of adding the racing logic to the init function, without en-
forcing it, perhaps at a later iteration, when all the actions
which should happen in the init function are well defined, a
fixed implementation might be the better choice.

When discussing the implementation of connection racing,
it is also important that it also came with a number of chal-
lenges. Firstly, as it turns out almost none of the current
Rust libraries for HT'TP provide support for IPv6 addresses.
A resolution for this was to use a wrapper cURL library to
handle the HTTP communication.

Another challenge was getting the concept right, as in
earlier iterations, rather than connection racing, we had im-
plemented request racing. This raced the connection, as
soon as the first request was made, rather than where it
should be done, in a much earlier state. The result from
this wrong implementation was that much more network
traffic had been generated in order to discover the less la-
tent connection. That traffic was a result of sending both
the initial packets with the handshake as well as a request.
Not only it was generating more traffic, but this behaviour
could have easily introduced unforeseen bugs. For example,
when a non-idempotent request is submitted multiple times
to a server, the replies generated for that request will almost
certainly be different. For example, supposed we wanted to
upload a file to a server. If not done correctly, the server
might end up with two copies of that same file.

Furthermore, since racing was taking place at the send_msg
function, it would have only used the faster connection for
every request, after the first one. An example output from
that previous behaviour is given in Figure 6.

ons. ..
"127.0.0.1", "3005")]

successors: [], =
data: Poin 5, y: 42 }, extra_fields: Object({}) }

, is_immediate: false, is idempotent:

: Object({}) }
: Messag
winner addr: RaceResult { ad
Setting preferred addrs to:
Sending second message
preferred addr is Some(V4(127.0.0.1))
on msg recv called

Message { uid: 8, successors: [1, is partial: false, chunks: @, is immediate: false, is idempotent:

false, lifetim data: Pain
Type of message: Message<Point<

. y: 42 }, extra_fields: Object({}) }

Figure 6: Request Racing. Bad Interpretation of
Connection Racing

4.4 Adding New Protocols

The additional abstractions, provided by Post Sockets and
the interface provided make creating new protocols an easy
task. Suppose we were to design a HTTP based protocol
with timing constraints for the items that are sent over the
network. Such a protocol would be helpful for real time
streaming applications. Justification for this would be that,
whenever an item cannot be delivered within a given time-

rtial: false, chunks: 8, is immediate: false, is idempotent:

frame, there is no point in even attempting to transmit other
related items.

The first step in creating the new protocol would be to
define how an individual transmission unit would look like.
It would probably contain some data and have meta data
about its timing constraints.

After designing the item, if we have chosen the approach
where the Message type is a trait, we would have to imple-
ment the it for the object. Then, we would have to provide a
mechanism for that object to be serialized and de-serialized
with the encode and decode functions in ISendable and IRe-
ceivable.

Next, we would have to implement a new Carrier type
that will serve our object, this is the most involved part. To
help make the following explanation clearer, we provide the
flowchart in Figure 7.

Carrier Implementation

Initialize: ltem Transmission Item Receipt

N 1 Sending an ltem | + Receive bytes |
. N b ~ L
4 S Mo Seep--

“Connection * {
a PR SR
R@img sup’pg

hVid
{ Yes
I
'

1 opytecand |

'
' '
h "") Dappendnewly 1w amqa-as !
h - ! Received | l
DN RN '
res

'
Add logicin |
int) . N
.7 Support RN

Hccessiully, Ves

»* Support *

S framing "
l Yes o N0t
s o
,

Figure 7: Request Racing. Bad Interpretation of
Connection Racing

In the Carrier’s implementation process we have several
decisions to make. Firstly, would our protocol benefit from
connection racing? If the answer is yes, then we would have
to add this functionality in the Carrier’s init method.

Next, we would have to decide whether fragmented mes-
sages would be of any use and whether we would attempt to
reassemble fragmented pieces. If the answer is yes, we would
have to account for failures for de-serialization of the Car-
rier’s data_recv method. Whenever the method received an
insufficient amount of data and did not reassemble the data,
we would have to store it, append any new data arrived over
the link and try de-serializing again.

Finally, we would have to define behaviour that would
happen when we receive a message (done via the Message-
Handler’s on_msg_rcv method).

By following the above steps, we can now create a Carrier
for our protocol. Instantiate it and begin data transmission.

4.5 Syntax and Semantic Comparison with
POSIX
In POSIX applications, if a developer wanted to create a
HTTP client, they would have to create a STREAM socket
and add the necessary tooling to transmit HTTP objects

e S, ves
' . —_—
______ < femtoonig 3 raming
RN S “Gonstructed ay
~ N [t e,
HNo } No 1 ospit 1 s
. ' ,
U AU - - 1Bt ! ¥
[© Done) oo
v pene) N _/ J’ AN

' |
! Call msg_recv !

over the socket. In contrast, if a developer wanted to per-
form the same task, using Post Sockets, all they have to do
is request a HTTP carrier to be opened. This results in
applications, written using Post Sockets to be much more
concise, as Post hides a lot of common repetitive function-
ality, which would otherwise be needed. However, there are
some limitations in choosing this approach. For example,
the current implementation of the HTTP carrier performs
connection racing and uses the fastest link, but developers
might prefer to make a decision based on another criterion,
rather than speed. This is currently not supported and the
alternatives would be to either fall back to using POSIX or
to create a new carrier that fits the developers needs.

Another semantic difference between the two systems is
how they establish connections with far ends. For exam-
ple, the POSIX API requires an IP address with which it
establishes a connection. Post Sockets, on the other hand,
require a Remote structure. This Remote structure might
contain a single IP address, an IP address and a collection
of alternative IPs or a string representing the public domain
name of the remote server (e.g. www.dcs.gla.ac.co.uk)

When discussing the APT differences, it is also important
to note that POSIX requires external modules and code
modification in order to support transport layer security.
While Post Sockets can optionally take information required
to establish such secure channels in its data abstractions,
such as policies, locals, remotes, etc.

Finally, POSIX does not provide native support for giving
transmission items different priorities or expressing prefer-
ence of a type of link over the other. Post Sockets on the
other hand lets the developer manipulate both inputs.

As presented, Post Sockets provides support for a greater
number of services, making it easier for application develop-
ers to communicate with remote applications and promoting
transport evolution with its well defined abstractions. Al-
though the benefits of using Post Sockets as API may be
evident for a wide range of applications, there are specific
circumstances, in which a developer might prefer POSIX.
An example of such case might be when a developer would
not benefit by any of the additional services. Another exam-
ple may be when a developers wants support for raw sockets,
which is currently not possible in this iteration of the Post
Sockets implementation.

S. RELATED WORK

Post Sockets is not the first project that attempts to mod-
ernize or replace the POSIX API. The concept of expressing
preference for a certain type of connection over another ex-
isted in ‘Intentional networking’ and was first realized in
Multi-Sockets[6] and Socket Intents [16].

SCTP exposed connecting to multiple IP addresses and
multi-streaming to the Sockets API. It also enabled signal-
ing for certain transport-specific events, such as changes to
connection status.

Another API, proposed as a replacement for Berkeley Sock-
ets is NEAT[7]. Implemented as a user space library, it al-
lowed applications to express preference of specific transport
features and other policies. This enabled transport protocol
selection to take place at runtime.

The tools explained so far target mainly the deployability
issue in POSIX. Other frameworks exist and target differ-
ent limitations of the API. For example, Stackmap[23] and
Netmap[13] address the performance limitations. Netmap

is a high speed packet processing tool, which leverages the
so called ‘kernel-bypassing’ technique. It performs zero-
copying by taking over the Network Interface Controller and
passing pointers to the data read. Stackmap, on the other
hand is a full featured TCP Stack implementation that uses
Netmap as its dataplane and the POSIX API as a control
plane.

6. CONCLUSIONS

This paper presented how Post Sockets can be used to ad-
dress limitations of Berkeley Sockets systems network API.
It also proposed and evaluated a sample implementation
of Post Sockets in Rust. Furthermore, the implementation
demonstrated that deployability might be promoted as mod-
eling new protocols is made easy by the new API. In addi-
tion, we have compared the API, identifying specific types
of services that Post Sockets provides on top of Berkeley
Sockets.

The implementation provided in this paper is but a single
point in a much larger plan for deployment of Post Sockets
as a new systems API. We identify three major categories
for future work: stylistic, functional and innovative. The
stylistic future work would involve improving consistency in
the existing codebase, this includes - naming conventions,
providing documentation for the public interface, leveraging
more canonical Rust practices with respect to the imple-
mentation, etc. The functional future work would involve:
adding the missing components of the system (Policies, As-
sociations, etc.), providing better support for existing func-
tionality (e.g. message framing) and experimenting with
alternative designs for current implementation, as suggested
for the message abstraction in section 4, for example. Fi-
nally, the innovative work would aim to provide a Kernel re-
placement for the POSIX components in the transport layer,
such as path information (RT'T, route, etc.). Lastly, another
field to be considered is providing support for security in the
transport layer, by adding the necessary abstractions for cer-
tificates, public and private keys, etc.

Acknowledgements

Thank you to Colin Perkins, for the initial project idea, the
constant flow of feedback, support and guidance throughout.

7. REFERENCES

[1] Sockets concepts.
http://diranieh.com/SOCKETS/Concepts. (Accessed
on 04/17/2018).

[2] Why type systems matter.
http://pcwalton.blogspot.co.uk/2010/10/
rust-features-i-type-inference.html.

[3] L. E. A. Zimmermann, W. Eddy. Rfc 7805 - moving
outdated tcp extensions and tcp-related documents to
historic or informational status.
https://tools.ietf.org/html/rfc7805, 2016.
(Accessed on 04/20/2018).

[4] O. Bonaventure and S. Seo. Multipath tcp
deployments. IETF Journal, 2016, November 2016.
http://www.ietfjournal.org/
multipath-tcp-deployments/.

[5] A. Ford, C. Raiciu, M. J. Handley, O. Bonaventure,
and C. Paasch. TCP Extensions for Multipath

10

Operation with Multiple Addresses. Internet-Draft
draft-ietf-mptcp-rfc6824bis-10, Internet Engineering
Task Force, Mar. 2018. Work in Progress.

[6] B. D. Higgins, A. Reda, T. Alperovich, J. Flinn, T. J.
Giuli, B. Noble, and D. Watson. Intentional
networking: Opportunistic exploitation of mobile
network diversity. In Proceedings of the Sizteenth
Annual International Conference on Mobile
Computing and Networking, MobiCom ’10, pages
73-84, New York, NY, USA, 2010. ACM.

[7] N. Khademi, D. Ros, M. Welzl, Z. Bozakov,

A. Brunstrom, G. Fairhurst, K.-J. Grinnemo,

D. Hayes, P. Hurtig, T. Jones, S. Mangiante,

M. TAijxen, and F. Weinrank. Neat: A platform- and
protocol-independent internet transport api. IEEE
Communications Magazine, 55(6):46-54, 6 2017.

[8] S. E. Laboratory. Programming unix sockets in ¢ -
frequently asked questions: Writing server applications
(tcp/sock_stream). https://www.softlab.ntua.gr/
facilities/documentation/unix/unix-socket-faq/
unix-socket-faq-4.html. (Accessed on 04/21/2018).

[9] J. Nagle. Rfc 896 - congestion control in ip/tcp

internetworks.

https://tools.ietf.org/html/rfc896. (Accessed on

04/20/2018).

G. Papastergiou, G. Fairhurst, D. Ros, A. Brunstrom,

K. J. Grinnemo, P. Hurtig, N. Khademi, M. TAijxen,

M. Welzl, D. Damjanovic, and S. Mangiante.

De-ossifying the internet transport layer: A survey

and future perspectives. IEEE Communications

Surveys Tutorials, 19(1):619-639, Firstquarter 2017.

C. Perkins and M. Westerlund. TANA Registry for

Interactive Connectivity Establishment (ICE)

Options. RFC 6336, July 2011.

M. Petit-Huguenin and G. Salgueiro. Datagram

Transport Layer Security (DTLS) as Transport for

Session Traversal Utilities for NAT (STUN). RFC

7350, Aug. 2014.

L. Rizzo. netmap: a novel framework for fast packet

1/0. Proceeding USENIX ATC’12 Proceedings of the

2012 USENIX conference on Annual Technical

Conference, 2012.

rust lang. Papers influenced rust (rust’s background).

https://github.com/rust-lang/rust-wiki-backup/

blob/master/Note-research.md#type-system.

D. Schinazi and T. Pauly. Happy Eyeballs Version 2:

Better Connectivity Using Concurrency. RFC 8305,

Dec. 2017.

P. S. Schmidt, T. Enghardt, R. Khalili, and

A. Feldmann. Socket intents: Leveraging application

awareness for multi-access connectivity. In Proceedings

of the Ninth ACM Conference on Emerging

Networking Experiments and Technologies, CONEXT

’13, pages 295-300, New York, NY, USA, 2013. ACM.

R. Stewart and C. Metz. Sctp: new transport protocol

for tcp/ip. IEEE Internet Computing, 5(6):64-69, Nov

2001.

B. Trammell, C. Perkins, and M. KAijhlewind. Post

sockets: Towards an evolvable network transport

interface. In 2017 IFIP Networking Conference (IFIP

Networking) and Workshops, pages 1-6, June 2017.

[19] P. Wadler and S. Blott. How to make ad-hoc

(10]

(1]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

http://diranieh.com/SOCKETS/Concepts
http://pcwalton.blogspot.co.uk/2010/10/rust-features-i-type-inference.html
http://pcwalton.blogspot.co.uk/2010/10/rust-features-i-type-inference.html
https://tools.ietf.org/html/rfc7805
http://www.ietfjournal.org/multipath-tcp-deployments/
http://www.ietfjournal.org/multipath-tcp-deployments/
https://www.softlab.ntua.gr/facilities/documentation/unix/unix-socket-faq/unix-socket-faq-4.html
https://www.softlab.ntua.gr/facilities/documentation/unix/unix-socket-faq/unix-socket-faq-4.html
https://www.softlab.ntua.gr/facilities/documentation/unix/unix-socket-faq/unix-socket-faq-4.html
https://tools.ietf.org/html/rfc896
https://github.com/rust-lang/rust-wiki-backup/blob/master/Note-research.md#type-system
https://github.com/rust-lang/rust-wiki-backup/blob/master/Note-research.md#type-system

polymorphism less ad hoc. In Proceedings of the 16th
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 89, pages 60-76, New
York, NY, USA, 1989. ACM.

M. Welzl and S. Gjessing. A Minimal Set of Transport
Services for TAPS Systems. Internet-Draft
draft-ietf-taps-minset-03, Internet Engineering Task
Force, Mar. 2018. Work in Progress.

D. Wing and A. Yourtchenko. Happy Eyeballs:

Success with Dual-Stack Hosts. RFC 6555, Apr. 2012.

11

[22] x. Sample post sockets implementation. https:
//github.com/2065983Y/POST-Implementation.
(Accessed on 04/18/2018).

[23] K. Yasukata, M. Honda, D. Santry, , and L. Eggert.
StackMap: Low-Latency Networking with the OS
Stack and Dedicated NICs. Proceedings of the 2016
USENIX Annual Technical Conference (USENIC ATC

GAZ16), 2016.

https://github.com/2065983Y/POST-Implementation
https://github.com/2065983Y/POST-Implementation

	Introduction
	Motivation and Context
	Post Sockets
	Evaluation and Case Study
	Minimal Set of Transport Services
	Event Driven Interactions
	Connection Racing
	Adding New Protocols
	Syntax and Semantic Comparison with POSIX

	Related Work
	Conclusions
	References

