Department of Computing Science

University of Glasgow
UNIVERSITY

of
GLASGOW MScI PROJECT REPORT

Peer-to-Peer Audio Conferencing

Stephen Strowes

Class: CS5M

Session: 2004/2005

Department of Computing Science,
University of Glasgow,

Lilybank Gardens,

Glasgow, G12 8QQ.

Education Use Consent

| hereby give my permission for this project to be shown tceottiniversity of Glasgow students and to be
distributed in an electronic formalRlease note that you are under no obligation to sign this deatation,
but doing so would help future students.

Stephen Strowes

Abstract

The intention of IP Multicast as a service provided by netwiafrastructure was to allow groups of hosts to
share similar data, leaving the network to deal with the dexifies of group membership and routing issues.
One natural use for IP Multicast was group conferencing.

Adoption of IP Multicast has not been swift, however, legveonferencing applications designed for use
with the service unusable over significant parts of the traer

This dissertation presents Orta, a new peer-to-peer nktoxarlay which is designed to allow group con-
ferencing. The implementation is presented as a reusafil@ase library, and is not tied to any existing
application; one application, the Robust Audio Tool, is iified to use this library rather than IP Multicast as
a proof-of-conceptimplementation. Presented are imphtation details and evaluation results detailing the
characteristics of the overlay, with some focus on its usefs for real-time applications.

Acknowledgements

Thanks must go to Ladan Gharai and Tom Lehman at the Uniyes&iBouthern California’s Information
Sciences Institute (ISI) in Los Angeles for the use of onehiree; kame.isi.edu, for the purposes of testing.
To have one machine on the other side of the Atlantic wasedntiseful.

Likewise, the Support staff here at Glasgow; Douglas foratditional machines and extra bits, Stewart
for putting up with my persistent emails about sound supparthe MSci lab machines, and Naveed for
making the printers work so many times through the year.

Finally, Colin, for dreaming up the project in the first plaead for the nudge | needed to finally try out,
install, and keep FreeBSD running at home, and all those @ivitBici team who were willing to extend my

project deadline after the few weeks of downtime | experehauring this term.

Cheers!

Contents

Education Use Consent
Abstract
Acknowledgments

1 Introduction
1.1 Group Conferencing and IP Multicast

1.2 Dissertation Outline e
2 Background and Related Work

2.1 Conferencingand Real-Time Audio uur ...
211 IPMulticast. e
212 RTPandConferencing i i

2.2 Peer-to-peer systems for object lookup and routing L
221 CAN
222 Tapestry
2.2.3 Pastryand Related Systems
224 GnuStream L e
225 SUMMANY

2.3 Peer-to-peer systems for streaming contentdistobuti oL
2.3.1 CollectCast e
2.3.2 SplitStream e
2.3.3 BitTorrent e
234 ZIGZAG
235 NICE
2.3.6 Overcast
237 SUMMANY e

2.4 Peer-to-peer systems for the purposes of conferencing..
2.4.1 Tree-basedapproaches
2.4.2 Mesh-based approaches e

2.5 SUMMANY . . . o e e e

3 Research Approach

m@(ﬂmm

(o]

10
11
11
11
12
12
12
13
13
13
14
14
16
18

20

4 The Narada Protocol

4.1 Propertiesof Narada e
4.2 Overlay Construction e e
4.3 Terminology o o o e e
4.4 Group Membership and Overlay Maintenanceo
441 MembersJoining
442 MembersLeaving e
443 MemberFailure.
4.5 Improving the Quality oftheMesh oo o
451 Addingalink e
452 Removingalink
4.6 DataDelivery e
A7 SUMMAIY . . . ot e e e e e e e e

Constraints

The Orta Protocol
6.1 How Ortadiffers e e
6.2 Overlay Construction e e
6.3 Group Membership and Overlay Maintenanceo . o ..
6.3.1 MembersJoining e
6.3.2 MemberslLeaving
6.3.3 MemberFailure
6.4 Improvingthe QualityoftheMesh
6.4.1 AddingLinks e
6.4.2 RemovingLinks
6.4.3 Calculationofthe Threshold au.
6.5 DataDelivery e
6.6 SUMMArY e e

Implementation Details

7.1 Overview of Software Structure e
7.2 ControlPlane e e e
7.2.1 NeighbourState e
7.2.2 MemberState e e
723 LinkState e e
7.3 Communicating Control State e
7.3.1 One-timeFloods e
7.3.2 RegularFloods e
7.3.3 ControlDataoverUDP e e
7.3.4 Miscellaneous Control Traffic
7.4 ControlPacket Types e e
7.5 CalculatingRoutingTables e
7.6 DataPlane e
7.6.1 DataChannels

7.7 Known Issues & Potential Improvements. oL

22
22
22
23
24
24
25
25
25
25
27
28
28

29

31
31
32
32
33
34
34
35
35
35
36
37
38

7.8 Integration into RAT .

8 Evaluation Approach
8.1 Testing Environments
8.2 Evaluation Metrics . .

8.21 WorstCase Stress e e
8.2.2 AbsoluteRound TripTime e
8.2.3 Adaptability of Mesh to Changing Network Conditions
8.2.4 Normalised ResourceUsage i e
8.2.5 Relative Delay Penalty e
8.2.6 Time Taken to Repair a PartitonedMesh
8.2.7 \Volumesof Control TrafficSent
8.2.8 Reliability of Overlay: Lost & Duplicated Packets

8.3 Summary

9 Evaluation

9.1 Analysisofdummynetnetworks L e

9.1.1 UK Dummynet

9.1.2 Cross-AtlanticDummynet e e

9.2 Worst Case Stress . .

9.3 Absolute Round Trip Time e
9.4 Adaptability of Mesh to Changing Network Conditions
9.5 Normalised ResourceUsage i i it mmn

9.6 Relative Delay Penalty

9.7 Time Taken to Repair a Partitoned Mesh
9.8 \olumesofControl TrafficSent
9.9 Reliability of Overlay: Lost & Duplicated Packets
9.10 Discussion of the ThresholdValue

9.11 Summary

10 Conclusions & Future Work
10.1 FutureWork

10.2 Conclusions

Appendices
A The net.udp API
B The Orta API

C Modifications made to RAT

C.1 DataStructuresand Constants i i i e e e

C.2 Patches
C.2.1 ratpatch. ...
C.2.2 common patch

Vi

47

49
49
50
50
52

53

53
54
54
55

55

56

57
57
58
59
60
61
61
64
66
67
69
69
72
73

74
74
75

77

77

80

D Project Management
D.1 ResourcesandTools @ e
D.2 Division of Labour

D.3 Project Log

Bibliography

Vii

88
88
88
90

92

List of Figures

1.1 Screenshotof the RAT application. o oo 2
1.2 Packet distribution over IP Unicast, IP Multicast, netikvoverlays. 3
2.1 lllustrative example of CAN Space. e e 7
2.2 lllustration of a Tapestry network and routing acrosd tietwork. 8
2.3 Example of routing across a Pastry substrate. 9
2.4 Example ALMIStructures. e 14
2.5 Examplesof Fathemotrees. e e 15
4.1 lllustration of Naradaterminology.o 23
6.1 Networkdisruptiononpeerexit. 34
7.1 Conceptual view of the overlay implementation. 40
7.2 lllustration of the data structure used to maintain Btete. 42
7.3 lllustrative diagram for discussion of routingtables. 46
7.4 Screenshotof multiple RAT clients. 48
8.1 Dummynetgraphs. e 51
8.2 Physical topologies which will be used to discuss thestMBase Stress metric. 52
9.1 UK Dummynet — Resulting mesh, and distribution treesfemch peer. 58
9.2 Cross Atlantic Dummynet — Resulting mesh, and distidoutrees from each peer. 59
9.3 Logical structure of two dummynet networks, for the digion of Worst Case Stress. 60
9.4 Graphs of Round Trip Times from/to all hosts over both Bbymets. 62
9.5 \Variability of mesh under changing conditions on the Unimynet. 63
9.6 \Variability of mesh under changing conditions on the 88-Dummynet. 65
9.7 Artificial network structure for discussion of normalisresource usage. 66
9.8 Diagrams detailing the fix partiton mechanismworking. 67
9.9 \Variation in volumes of control traffic sent at varyinggp sizes during the lifetime of the

mesh at various group SIizes. e e 70
9.10 Packets lost and duplicated for varying group sizépealrs sendingdata. 71
9.11 Packets lost and duplicated over the lifetime of varigimes groups. 72
D.1 Ganttcharts charting projecttimeline. o 89

viii

Chapter 1

Introduction

Peer-to-Peer systems have been used for many years in m@ioatipn areas. Many Internet protocols such
as FTP were designed to be peer-to-peer, though now theyiararpy used for client-server style systems.
Applications of peer-to-peer (P2P) have been thrust baoklire limelight in recent years with the widespread
use of Napster, a file sharing system intended for the solegserof sharing MP3 audio files. Napster, how-
ever, was only a P2P application with respect to file trassfgiven that the acts of joining the network and
performing a search for a file were coordinated with a cestaler.

Fully distributed P2P systems can also be created, allofdngystem structures to be built which avoid

the need for centralised centres of control, thus removirggpotential bottleneck and point of failure. Peers
which communicate directly with other peers should theéca#ly be able to improve performance in many

cases by not having to coordinate with some central poinbofrol responsible for governing all hosts in a

group communication. Applications of peer-to-peer systane quite diverse, from file sharing [1], to media
streaming [10, 30], to game playing [31].

This aim of this project was to build a P2P system on top of Witould run an existing real-time group
communication tool, the Robust-Audio Tool shown in Figurgé (RAT, [4]); where RAT currently uses IP
Multicast for communication between group members, thiB Bgstem would be substituted. This disserta-
tion covers previous work in this area, the approach takehibyroject to tackle the problem, and the design,
implementation, testing, and evaluation techniques useidglthe course of the project.

1.1 Group Conferencing and IP Multicast

Given the many-hosts attached to many-hosts nature of tamgt, the possibility of group conferencing in

real time using audio and video streams would seem to be aahatnclusion. However, there are many
problems inherent in designing a system to disseminatelsdteeen many recipients given the structure of
unicast links between hosts on the Internet, and of howengifplementations of a group communication
application might be implemented.

The original design for the IP layer, responsible primafdy routing packets from source to destination,
saw it as a stateless layer; it kept no knowledge of the pagkatsing through it, merely processing and
forwarding on a packet-by-packet basis. The concept of ecions, keeping orderings on packets, etc, is a

| RAT w4,1,7: Untitled seszion =
M Listen B4.7 kb/s| | Talk 0.0 his
1 Headphone B4 Microphone]
T T
| “¢JpColin Perkins

¢J»Simon Lockhart

<|>Diederik van Diggelen (AUCE)

{J»Rabert Stane (JANET)

@Sturle Sunde {Lniversity of Osla)

{J>chyelong
{JEspen Jendahl

4
“Untitled session”
Address: 224.2.220.62 Port: 31708 TTL: 15
B B @ optons. | sbout | oui |

Figure 1.1: Screenshot of the RAT application.

higher level concern generally dealt with by the TCP lay&8][To naively forward data to multiple clients
only using standard unicast IP links requires that multgalekets be sent, one per recipient for every packet
to be sent, introducing an obvious bandwidth limitation lo@ $izes of groups.

IP Multicast required additions to the original IP specifica, and new routing protocols, some of which are
covered in [18]. The introduction of multicasting modifidgktinitial specification by requiring that routers
maintain per-group state in addition to the standard uhicasing table. In essence, members of a multicast
group all share one multicast address (more information ohicast addressing can be found in [6]). Data
sent to that multicast address is routed through the Intewith packets replicated where required, to be
delivered to all members of that group. The source need oahsinit one packet for numerous recipients.
This allows for larger groups to receive the same streanomgent simultaneously.

Multicasting, despite showing early promise — in [35], faample — is unfortunately not as widespread as it
was anticipated it would become. The main factor holdindBdMulticast is generally considered to be the
cost of replacing existing infrastructure, the routerstmmlnternet responsible for dealing with the multicast
traffic. There are also concerns about the scalability ofhdulticast system (with the routers storing state
for potentially many small groups, issues of time compleaiise when performing routing operations), and
of higher level concerns with IP Multicast such as error &ir&g, encryption, etc, [15]. Subscribing to a mul-

ticast group is usually not authenticated, so any host caulidcribe to any group (to then receive information
it is not authorised to receive, or send random data to otleeniners of that group); indeed, any host could
subscribe to all dynamically allocated IP multicast adsessflooding the network with the influx of data to

that one host [33].

One of the application types initially conceived as beingblé over multicast was conferencing applica-
tions, and indeed any applications which require a levebiboration between participants. To this end, a
variety of audio conferencing applications, video confieirg applications, electronic whiteboards, etc, have
been built which use IP Multicast for transmission of groaped by multicasting to all participants.

® 200,."‘."

——
7 Ato D

35 / 35+200+30 = 265

@ (b) © (d)

Figure 1.2: (a) shows underlying network structure, thk R1 to R2 being a link with substantial latency.
(b) demonstrates naive unicast from A to all other nodgsdémonstrates IP Multicast. (d) demonstrates a
possible overlay multicast configuration.

One of these conferencing applications is the Robust-Atidm (RAT), developed by the UCL Network
and Multimedia Research Group, [3]. RAT is an audio confeirenapplication which uses the RTP protocol,
[44], over IP Multicast, for transmission of audio data inohust manner. Further discussion of difficulties
in providing reliable audio over the Internet, particWaolver the multicast-capable part of the Internet (the
“MBone”), is provided in [24]. As it stands, the RAT softwadleals with two distinct situations: direct com-
munication between two hosts, or group communication betmmaembers of a common multicast group.
Given the slow uptake of multicast functionality mentioredabve, the group conferencing features of RAT
are usable primarily on research networks such as JANEt generally not on commercially owned net-
works, rendering scope for usage significantly smaller iharight be. To allow for use of RAT over more
parts of the Internet, it makes sense to replace true IP dagtifunctionality by pushing multicast up to an
application level overlay, the end-to-end argument [43]ning the day.

This is not a new idea. There are numerous different systamBsped which push multicast functional-
ity to the endpoints of the group session ([7, 9, 10, 11, 1220525, 26, 29, 30, 33, 34, 38, 41, 47, 52]),
each of which tackles a slightly different intended apglaafrom a slightly different angle; these alterna-
tives are discussed in-depth in Section 2. These systerbsikllsome form of overlay multicast distribution
network, which is almost always much more efficient than gi$h unicast alone, but less efficient than IP
multicast; overlay multicast incurs duplication of packat hosts where IP multicast would duplicate at the
routers between the source and the recipients, but reghaésar less than the one packet per recipient be
sent per cycle when using IP unicast. Figure 1.1 demonsttlageconcept: Figure 1.1(a) shows the example
network topology; Figure 1.1(b) shows the situation whex@enA is sending the same data to nodes B, C and
D over IP unicast, and is forced to transmit 3 separate psckigure 1.1(c) demonstrates IP Multicast being
used to achieve the same effect, with network routers dafjig packets where necessary; Figure 1.1(d) is a
potential overlay multicast system, where node A transtaitspackets, one bound for B, one bound for C,
with C duplicating and retransmitting the packet bound for D

While some of the works ([15, 9, 38, 33]) attempt to addresKiraaurce multicast using an overlay structure,
none of the papers covering these systems provide any afetaatelated to the performance of the systems
when running in the multi-sender case, as they would be whening a conferencing application such as

thttp://ww. ja. net/

RAT. Indeed, all of [13] is discussion of the experience gfldging a single-source overlay multicast system,
borne out of work from [14] and [15], which aimed to design faulti-source overlay multicast.

Given the lack of numerical results in the area of group comigation applications over overlay multicast, it

is difficult to discuss the performance of overlay multidagine setting which IP multicast was originally de-
signed for. We know, however, that such systems are pogsibigld — Skype, [2], is a group communication
tool which builds some form of overlay multicast structurghwwvhich to send/receive data. This software is
closed-source commercial software encased within an Erdllsense Agreement (EULA), which offers no
technical discussion on what techniques were used to théldnderlying data structures, and is not standards
compliant.

It seems then that there is no single solution with code abkdlfor constructing a many-to-many overlay
multicast system which could be used with RAT, though somglémentations of such things have been
done in Java (notably [38], [20]). The aim of this projectrisiefore to build a system capable of application
level, peer-to-peer multicast of data in a many-to-manymearusing RAT as a proof of concept. Clearly, the
ideal outcome would be to produce a generic overlay multigstem which similar applications could use
to multicast data when IP Multicast functionality is not gable.

1.2 Dissertation Outline

The remainder of this dissertation is organised as foll@®extion 2 is an in-depth literature survey and goes
into detail on the background reading surrounding thisgmipjcovering such topics as conferencing and
similar projects designed for conferencing-style appiices; Section 3 presents the research approach taken
through the course of the project; Section 4 describes thraddaprotocol on which this project is based,
with Section 5 covering concerns related to audio trafficiedrby this protocol. Section 6 covers how the
Orta protocol presented here varies from the original Nafadtocol, with implementation details presented
separately in Section 7; Section 8 then 9 cover the evaluapproach and metrics to be considered, then the
actual evaluation results respectively. Section 10 cateduhe dissertation, and covers potential future work
from this project.

Chapter 2

Background and Related Work

The literature on peer-to-peer systems, particularlyahfosussing on multicasting, is varied. There have
been many attempts at tackling peer-to-peer overlay nasticg, for various different applications in differ-
ent environments (for example, the difference betweereasting video application with some infrastructure
behind it, compared to a fully distributed conferencinglaggtion with no pre-existing network infrastructure
to speak of).

This chapter subdivides the wealth of information ava#aipito some broad categories. Initially, in Sec-
tion 2.1, some background discussion is provided aroundwbedistinct areas of IP Multicast and of RTP
and conferencing applications. In Section 2.2, peer-&r-fmokup systems are considered, as these research
networks are generally reasonably widely known by reseascifi not the public at large. Attempts at over-
lay multicast systems built on top of these lookup and ra@usinbstrates have been constructed, and so are
relevant to the project. Further, these substrates prawideesting background into the organisation of peers
within an overlay. There are a number of multicast systeragae which are concerned with the streaming
of data, but do not make use of these lookup substrates, nbieggompose real-time constraints on delivery
of data as tight as those expected of a conferencing applicathe ideas presented are still interesting and
potentially useful, and are discussed in 2.3. Finallyyfdlistributed multi-source multicast systems which
aim to tackle conferencing applications are discussed dti@e2.4.

The systems presented in this section have been implemantktested to some extent, but not all have
been tested by experimentation in a real network envirommekewise, code is freely available for some
projects, and not for others.

2.1 Conferencing and Real-Time Audio

On the surface, the Internet, as a carrier of data betweenspwould appear to be ideal for the possibility of
providing group conferencing abilities between hosts.

2.1.1 IP Multicast

IP Multicast was intended to extend IP beyond just offeriopto point communications as was the case
with standard IP unicast, to allow for group communicatifier®d by the network, the obvious application
for this functionality being group conferencing. Protac@r multicasting include PIM-DM, protocol inde-

pendent multicast, dense mode [5], which works by floodirtg,daith routers sending ‘prune’ messages back
up to the source to signal routers to stop forwarding if tfageeno listeners attached that part of the network,
with PIM-SM sparse mode designed for the scaling over therhat [19]. Other protocols are DVMRP [48],
and MOSPF [36].

2.1.2 RTP and Conferencing

The Real-time Transport Protocol, RTP [44], is a protocdligieed for the end-to-end carrying of real-time
data. RTP can be used over IP Multicast, or over normal ungmamections. what it is, what it does. While
RTP was initially designed with IP Multicast in mind, it doest require that it be run over IP Multicast.

Audio conferencing applications, such as RAT, are availatthich use the RTP protocol for carrying real-
time audio. This application is naturally suited for an IP INbast environment, but can be used to initiate
a conference with just one other person over a single po#pisint link. Other tools available allow for
video conferencing whiteboard applicatiods and shared text editctsare all concepts for conferencing
applications. The natural network environment for thegaiegtions is that of a network with IP Multicast
functionality present.

RAT allows for a certain level of redundancy in the packetsied via RTP, such that the application can
tolerate certain levels of packet loss [24].

2.2 Peer-to-peer systems for object lookup and routing

There are numerous research P2P systems which have begrsitichl as CAN [39], Tapestry [51], Chord
[46], and Pastry [42], which propose naming schemes andadstbf routing from one location in a names-
pace to other nodes in that namespace. A goal shared by hltsé projects is that of scalability; being able
to route a message from one host in the P2P system to any oithér some reasonable number of overlay
hops in relation to the number of nodes connected in the ayerttwork. This goal has been proven to be
achievable.

The basic idea that these schemes are exploiting is thatisfribdted hash table (DHT) to efficiently arrive

at the location of the required data. Nodes in a network fonrovaerlay network, sharing some namespace.
Nodes joining the overlay are inserted in the namespacediogato the algorithm employed, and are able to
leave the overlay. Nodes will also provide some routing nme@m for passing messages on to another node
closer to the destination of that message.

In the following sections, several substantially diffar®iT schemes are reviewed. For each of these, at-
tempts to incorporate some multicasting functionalitpitite group is also discussed.

221 CAN

The idea of a Content Addressable Network, a CAN, is present§39]. CAN presents @-dimensional
Cartesian coordinate space constructed drt@rus. Objects are placed in the CAN space deterministical

Ihttp://www mi ce. cs. ucl . ac. uk/ mul ti medi a/ sof t war e/ vi ¢/
2http: // ww i ce. cs. ucl . ac. uk/ mul ti medi a/ sof t war e/ whd/
Shttp: //wwe i ce. cs. ucl . ac. uk/ mul ti medi a/ sof t war e/ nt e/

0,2) 11) 0,2) 11)

/£ -« -“— ® —»

(0,0) 0,1) (0,0) 0,1)
(a) Lookups in CAN space. (b) Multicasting data over a mini-CAN.

Figure 2.1: lllustration of the hops taken to route from opndeto another, and of multicasting over a mini-
CAN. Rectangular regions are sections of the CAN-spaceatial to a peer.

according to a uniform hash function over some k&y, An example CAN space is shown in Figure 2.1;
nodes are allocated sections of the CAN space, with any ladlsd into their space belonging to them.
CAN nodes need then only know of their immediate neighbauf@AN space, i.e.: any node in CAN space
adjacent to its own. This means that unlike IP routing proksconly knowledge of neighbouring nodes is
required, rather than some knowledge of the topology of tite#eenetwork. Routing a message from one
location in the CAN to another involves attempting to take shortest path toward the destination (in essence
attempting to draw a straight line from source to destimgtémd similarly at each intermediate overlay hop),
so the neighbouring node closest to the destination is chas¢he next hop for the message. The average
path length between any two nodes in a CAN syste®(ig(N''/¢)), whered is the number of dimensions in
CAN space, andV is the number of nodes in the system.

Multicasting data over a CAN is presented in [41], where ttadle, fault-tolerant platform of the CAN is
used as a vehicle for multi-source application-level neali to large groups of receivers (in the order of
thousands, or more). Multicasting in CAN space is a simpléenaf flooding the CAN, if all nodes in the
CAN are members of the multicast group. If only some subsabdgs in the CAN are members of the mul-
ticast group, a mini-CAN is created over the existing CANJ #men the mini-CAN is flooded with multicast
information. The coordinate space of the CAN allows for éffit flooding algorithms to be implemented
which reduces the number of duplicated packets to (almdsfyee Figure 2.1(b)). This feature of routing
through the CAN space is cited as a reason why multi-sourdeaasting over a CAN is possible, as packets
can naturally be duplicated only when required. Howevegdagroups will require that packets sent through
the overlay are routed through more overlay nodes, foraihgtntially increased latencies to nodes on the
other side of the CAN space from a given source.

The work presented in [40] provides a method of adding prityimwareness to the CAN system, termed
“binning” nodes into areas, the process of binning boils daa pinging known servers and assuming that

Figure 2.2: lllustration of a Tapestry network and routilcgoss it.

two machines with similar outcomes from these pings aretoesach other. Simulation of binning new nodes
into areas of the CAN space close to each other based on #reyabetween those nodes appears to offer
cross-overlay latency within the same bounds as otherayenllticast systems. This system of organising
the overlay does imply that nodes near to each other in the §gdde will be reasonably near to each other
in physical world, but it cannot take into account shiftirgfwork patterns. It is entirely possible for a node
to be placed in the wrong bin due to unusually heavy netwaKitrat some known servers. Further, the
formation of mini-CANs within CANs, [41], seems terribly eassive for the purpose of forwarding audio
data. The lack of experimental results does not encouragfdence in a system which does not observe
network conditions when considering a real-time appl@asuch as audio conferencing.

There does not appear to be any publically available codéhiBICAN system, so this would have to be
built from scratch, following the outline of the system preted in [39] and [41].

2.2.2 Tapestry

Tapestry, [51], offers similar benefits to CAN, in that it is averlay network capable of routing traffic
efficiently through the overlay; it is completely decensatl, scalable, and fault-tolerant. Tapestry is self-
organising in that it will respond to unicast links betweemponents in the Tapestry infrastructure becoming
busier, quieter, or being dropped completely or reinsta®aliting in a Tapestry system is a matter of match-
ing as much of the destination ID to an neighbouring ID froniveig node, similar to longest prefix matching
used by IP routers. Neighbour maps are, however, of consitemtand each node in the path between source
and destination only has to match one further digit of theesayy ID; an example is shown in Figure 2.2 with
peer 0325 routing a message to 4598, with matching takinge@ebitrarily from right to left. The distance

a packet travels in Tapestry is proportional to the the distdravelled in the underlying network, suggesting
that Tapestry is at least reasonably efficient.

Bayeux is a system implemented on top of Tapestry, to all@ypthssibility of single-source multicast over a
distribution tree built using the Tapestry substrate fautirtg purposes, [52]. The trees can be built naturally
enough — a node wishing to join a multicast group asks thenodé for that group to join; the response from
the root sends a speci@REE message which sets up forwarding state in intermediatestigp®uters, thus

O | 21%-1
’.\.\
* d471f1
°\. d467c4

d462ba
d4213f

d46alc

°\. Route(d46alc) d13da3

65alfc ‘o\'_/O/.

Figure 2.3: Example of routing across a Pastry substrate.

allowing for routers to duplicate packets only when neagssBesults borne from simulation have shown
Bayeux capable of scaling to multicast groups in the ordéhafisands of members, with respect to overlay
latency, and redundant packet duplication. However, theréssues with this scheme as proposed: the tree is
fixed once created, it cannot be modified to take into acconarlying traffic conditions and network traffic
patterns, and it is designed for multicast operation witly ome source. The simplest way to achieve multi-
source multicast using Bayeux would be to build numerousibigion trees, each one rooted at a different
multicast source. Significant modification of the design lddae required to allow many-to-many multicast-
ing in Bayeux, notably of how to inform numerous sources efriew receiver, and to allow efficient sending
of TREE messages - in a large enough group with enough senders, imloaverhead initiated when a
member joins or leaves the group could easily flood and teatippdisrupt the overlay.

It is worth noting that while Java source code for Tapestravailable for download, the source code for
Bayeux does not seem to be available, so an implementatitred®ayeux system would have to be built
from scratch and modified to work from multiple sources. Tegnate this into RAT then, difficult decisions
would have to be taken in terms of which parts of the existmgtode to convertto C, and indeed if sections
of the code could be left as they are, communicating betwesmdCava code sections using network sockets.
This might result in a system too complex for a small confeiregapplication such as RAT, especially given
the lack of a widespread Tapestry network to route packets.

2.2.3 Pastry and Related Systems

Pastry [42] is another peer-to-peer object location andimgisubstrate, where nodes each have a 128-bit
node ID, node IDs define the node’s position in a 1-dimengsicneular node ID space. Pastry is capable of
routing a message from one node in this ID space to anoth@(lisy V) overlay steps by keeping track of
nodes at certain points around the namespace (e.g.: at tfned@quarter, one eighth of the way around
the namespace, etc), demonstrated in Figure 2.3. Pastmeisdied as a general substrate on top of which
different applications can be built; an example of this gality is the fact that while Pastry nodes keep a track
of nodes which are closer to them in a neighbourhood setottadity metric used to determine just how close
two nodes are is left as an implementation decision for th@ieation itself. It is worth noting that Pastry

10

nodes don't actually use the locality table when routingsagss, though it is used to maintain the property
that all entries in a node’s routing table point to a node Wligmearby, according to the locality metric.

Scribe is an example of multicasting over the Pastry sutestfal]. Scribe aims to use the Pastry layer
to allow for large numbers of groups, each with a potentilhge number of members. Pastry is used to
build trees rooted at multicast sources to disseminateicasttdata. The distribution tree in Scribe is formed
by using theJO N messages routed from new receivers to the root of the msiltsegssion to set up forward-
ing tables back down the tree to those receivers.

Pastry allows for application specific metrics to be defireeddtermine which nodes are close to each other
on the physical network for building routing tables acrdssaverlay network. Scribe can perform multicas-
ting of data over Pastry, observing the “short-routes” proypto determine the distance between two nodes
in terms of overlay nodes, and the “route convergence” ptgpeoncerning the distance two packets sent
to the same key will travel before their routes converges(tiresumably makes a difference when routing
data toward the rendezvous point to be multicast). Whilergnraent could be made against still having an
additional layer of abstraction in terms of node naming,gabr hit in most application level routing systems
in terms of time spent in transit by packets would be in thet@drswitches required to pass data up from
the network stack to the application and more importantliaténcies across network links; an additional,
probably minor, layer of computation probably would not&asgerious performance difficulties even for an
application with real-time constraints. The problem wittriBe as a system for multicasting data from any
node in the group to all others efficiently is that any nodehivig to multicast to the group must transmit to
the rendezvous node, where the rendezvous node can be ¢haseamber of ways (to have the rendezvous
node being the node in the namespace closest to the grouplimethod suggested in [11]). This allows
for one distribution tree to be built out from that rendezspoint to all members of a group. Issues with this
method are obvious: adding this extra step between sendetearivers increases latency; the rendezvous
node could easily become a bottleneck especially if netweskurces are not taken into consideration; the
rendezvous node also becomes a potential point of failutee aluthors of Scribe provide results through
simulation showing promise for their system; these resarisdifficult to accept without real-world testing,
however.

Chord is a system similar to Pastry, in the sense that nodesmapped onto a 1-dimensional coordinate
space, [46]. Chord, like Pastry, achieves routing acrassterlay network irO(logN') hops.

2.2.4 GnuStream

While the above have been research networks which haveressarily seen widespread deployment outside
of academia, one interesting system called GnuStream [88]amnstructed using the widely deployed file-
sharing network, Gnutetfa GnuStream uses Gnutella as its lookup substrate, andvesrportions of a
file for streaming from different sources in the Gnutellawsk. The GnuStream layer is responsible for
collecting required data, and reordering all pieces in®dbrrect order before passing that data up to the
media player. This scheme requires buffering at the receam also relies on the media source being
duplicated across a number of hosts in the network to acla@ppeopriate transfer rates to stream the file
reliably.

4http: // ww. gnut el | a. coml

11

2.2.5 Summary

All of these systems offer some form of multicasting funotity. However, there are issues with the systems
as proposed. CAN and Chord don't take into account undeglggtwork conditions, so cannot be trusted
to provide a reliable medium with which to transfer data wihl-time constraints, no matter the number of
overlay hops exist between any two nodes. These systembexeddre not suitable for this application of
group communication due to the fact that they do not make amglation between overlay distance and the
actual number of unicast hops between hosts, while TapasttyPastry do have some concept of the under-
lying network topology [51]. Results from experimentatioran environment as diverse as the Internet are
not available, so real-world behaviour of these systemshviriake no correlation between overlay distance
and network distance is not available. Furthermore, thesiesis aren’t application specific to conferencing
applications, and the naming schemes used are designddwdat efficient lookups and routing across the
overlay, and not the physical, network when dealing with ynthiousands of nodes.

2.3 Peer-to-peer systems for streaming content distributin

As well as the systems already mentioned which all genedalyyf with looking up data in large peer-to-peer
systems and efficient routing across the overlay to this, tlaae are a number of projects which deal specif-
ically with the issue of content distribution within an olar multicast setting. Discussion of the feasibility
of streaming data to large receiver groups using peer-to-peerlays is presented in [45], and covers the
distribution of large streaming media.

Sections 2.3.1 and 2.3.2 cover peer-to-peer systems @esfgn media streaming, with BitTorrent in 2.3.3
capable of doing the same with little modification. Sectidrg4, 2.3.5 and 2.3.6 then look at similar systems
designed for streaming from one source, and as such perktpsduited to a real-time conferencing system.

2.3.1 CollectCast

CollectCast, [26], is geared toward streaming content,sand designed to select peers from a candidate set
of peers holding the content to be distributed, based onedlaibandwidth and packet loss rate. CollectCast
was built on Pastry but should be able to use any of the lookbptsates mentioned previously. The active
sender set then, is the subset of those in the candidate eetamtprovide the highest quality playback for the
receiver. Topology aware selection is presented as a méaadeating peers from the candidate set having
inferred the underlying network topology. Network tomagmg techniques which involve passively monitor-
ing unicast links to determine the underlying network dinee, such as in [17], are used to build a model of
the network structure, after which CollectCast determhnms useful each link is to that receiver, generating
a “goodness topology”. Collectcast utilises the lookupsttdte beneath it to fetch locations of required con-
tent; the implementation of Pastry used by CollectCast wagified to return multiple references to a given
object, rather than just one.

PROMISE, presented in [25], is the name of the actual impleat®n of the CollectCast system, and demon-
strates high levels of performance, and reliability.

12

2.3.2 SplitStream

SplitStream, [10], is an overlay multicast system alsoglesil for content distribution, and attempts to max-
imise throughput by utilising the upload/download bandhédbof all participating nodes evenly (while taking
into account the differing capacities of different node®litStream works by splitting the content to be dis-
tributed into a number of stripes, with each stripe havingasate distribution tree. In the ideal situation,
SplitStream organises those distribution trees such #edt aode is only an interior node in one, and a leaf
node in all others. The reasoning for this approach was tiserohtion that tree-based systems will often
generate trees which contain a core of nodes which carryutkeoh any data transfer, with a number of leaf
nodes who contribute no outgoing bandwidth back into thelayeSplitStream uses Scribe to build its dis-
tribution trees. While this system provides a very inténgstvay of sharing ingoing and outgoing bandwidth
usage fairly at all nodes (where ‘fair’ is proportional te ttonnection type used by that host), it is not directly
useful for conferencing applications. Splitting the stnég content from one source would not be feasible,
this system requires that content is pre-striped acrosesodthe overlay. With the natural situation in a
conferencing application being that most nodes will cémiié something during the conference, nodes are
naturally contributing upload bandwidth anyway. The umiguay in which SplitStream deploys its overlay
multicast trees could be utilised by a conferencing appicahowever, to overcome the potential issue of
some nodes being interior nodes through which all traffioiged.

Work presented in [50] tackles the problem of media stregrinira similar fashion to that of SplitStream, of-
fering algorithms for optimal data assignments from seg\yirers, and admission control mechanisms based
on the available incoming and outgoing bandwidth of connggteers.

2.3.3 BitTorrent

Like Gnustream mentioned in Section 2.2, Bittorrent, [$]ah example of a widely used peer-to-peer system
for distribution of data. Bittorrent is not intended as al+tgae streaming platform, but the ideas presented
are interesting in their own right. Bittorrent provides aans of minimising upload bandwidth used at some
file’s host, by utilising the upload bandwidth of those whedalready downloaded (part of) that file. Groups
of users downloading the same file at the same time (and suksthy sharing different parts of the same
file with each other) form what is called a ‘swarm’ in Bittonteterminology. Utilising the bandwidth of
many hosts for uploading maximises download rates achjeviedst which is unable to upload (for whatever
reason) should achieve particularly low download ratesshering is heavily encouraged in the Bittorrent
networks. Swarms of Bittorrent clients downloading the edite generally won't last very long, so the
benefits of Bittorrent can be felt by the file provider when tie has only recently been advertised as a
‘torrent’, and relative interest is still high. Informati@oes not appear to be available on the technicalities of
how Bittorrent peers organise themselves whilst in the sw#nough the implementation, written in Python,
is open and available.

2.3.4 ZIGZAG

ZIGZAG is a peer-to-peer system designed for single-sonredia streaming, [47]. ZIGZAG uses a tech-
nigue called chaining to ensure that data keeps moving adistribution tree. The idea is that ZIGZAG be
used to cater for streaming live media; clients need onlfelbaf certain amount before playback, but can pass
data further down the distribution tree once it has arrivdaining is merely the term used by ZIGZAG to
describe data passing through the distribution tree. ZIG@#ganises peers into a hierarchy of bounded-size

13

clusters. One member of each cluster becomes the head afubtdr, and a member of a cluster at the next
highest level. The multicast tree is built using this hiels, following a simple set of rules: a peer can only
have incoming or outgoing links in the highest level clustéich it is a member of; peers at their highest
layer can only link to “foreign subordinates”, i.e.: peemsciusters in the layer directly below the current
layer, where that peer is not head of that cluster; otherspegreive information from foreign head nodes.
Proofs that this organisation leads to a tree structurenateded in [47].

2.3.5 NICE

NICE is a project with the same goal of single-source mudticay, [7]. NICE constructs its trees in a very
similar manner to ZIGZAG, though multicast forwarding isnéadifferently: in NICE, the head of a cluster
is responsible for forwarding data to that cluster, unlik&ZAG. It seems that ZIGZAG outperforms NICE,
according to the results presented in [47].

2.3.6 Overcast

Overcast, [29], is similar in style to BitTorrent, and alezfises on content distribution. It attempts to do so
in a more transparent manner; nodes connect to the mulgcagp without knowledge of it's existence — a
normal URL is used to connect to the server, at which pointibg becomes a part of the data distribution
tree. The tree itself adapts to network conditions, and lees lused successfully for distributing streaming
video (though this is an example of streaming video with saowsiderable pre-buffering before playback
in an attempt to tolerate unpredictable network conditidusng the download, and not streaming of real-
time video). This method of distributing data reduces theant of outgoing bandwidth required at the
source of data, provided there are numerous hosts downigatiihe same time. Nodes which join the group
evaluate their position in the tree according to bandwititan latency (when reported bandwidth difference
between parents falls within 10%), always trying to movétfar down the tree away from the root, while not
sacrificing too much in terms of bandwidth.

2.3.7 Summary

It seems that while all these systems are good examplesro$fofpeer-to-peer overlay multicast, they are not
directly relevant to the task at hand. CollectCast (andetloee PROMISE), SplitStream and BitTorrent are
concerned with achieving the highest throughput possiftleeareceiver by spreading the upload bandwidth
requirements across a number of hosts in the peer-to-pedagvThis clearly is not useful for a conferenc-
ing application. These protocols are entirely useful foeaming file transfers, perhaps even TV-on-demand
scenarios, to help save bandwidth at the source of suchrtonte

ZIGZAG and NICE form multicast trees from one source to maggipients, so the protocols would have
to be modified to allow for the creation of multiple distritort trees. Overcast offers a single-source tree-
based method of distributing data, but is concerned withlkd transmission of data and not transmission of
real-time data. The protocol, however, is geared towamglsisource multicast, and the rounds of bandwidth
tests could become overbearing if multiple trees, one parceowere to be attempted for a conference group.
These protocols, to contrast the others in this section, Ineayore suitable for ‘live’ data streams, perhaps
for the streaming of live sporting events or concerts.

14

(a) ALMI data distribution (b) ALMI control structure
structure.

Figure 2.4: Example ALMI structures.

2.4 Peer-to-peer systems for the purposes of conferencing

The most interesting and closely related work to multi-seunulticast using P2P overlays is generally split
between two approaches for achieving this end-goal: tesedh approaches, and mesh-based approaches.
Tree-based approaches involve directly constructingibigton trees from any source to all other group
members, with members explicitly choosing their parerasfthe other hosts in the system of which they
are aware. Mesh-based approaches instead have nodespaildalner mesh structure consisting of many
connections between different nodes, on top of which digtidbn trees are constructed. The use of multiple
connections allows some level of redundancy when nodesiféglave the group; further, redundant connec-
tions require that a routing protocol be run in the applarato construct loop-free forwarding paths between
group members [49].

2.4.1 Tree-based approaches

ALMI (Application Level Multicast Infrastructure) is anteresting project which also aims to directly solve
the problem of multi-source multicast, [38]. ALMI builds ewlistribution tree between group members and
aims for group sizes in the order of 10s of members. An exampMI group can be seen in Figure 2.4.
ALMI builds a minimum spanning tree (MST) between all mensbef the multicast group, which is then
used to carry multicast data (Figure 2.4(a)). As well asdhtmmnections, each node has a connection to a
session controller node; this controller can be run alategan ALMI client when initiating the group. It is
the controller that is responsible for organising treecttrre based on information returned by group mem-
bers, and deals with members joining and leaving. This odlatris obviously then a single point of failure,
and after such a failure it prevents nodes from joining anakenimportantly, from leaving the group safely.
Back-up controllers would be required to build in a leveledundancy, and all group members would have to
be aware of the location(s) of these back-up controllerguifé 2.4(b)). In the event of failed communication
with the session controller, a back-up controller can betetbas new session controller. The implication is
that group members must be kept informed not only of parerdshildren within the tree, but also of where
back-up controllers are located. Further, the sessionraitertmust ensure that back-up controllers are kept
up to date so that if it should fail, state held within the bagkcontroller is consistent with the system itself.

15

A Leader
A\ Co-leader
(O Ordinary member

(a) Fatnemo tree, demonstrating wider bandwidths (b) The logical organisation of a FatNemo group,
nearer to the root of the tree. showing the the role of a leader in the group.

Figure 2.5: Examples of Fatnemo trees; diagram taken fr¢m [9

Another tree-based multi-source multicast system is knasvRatNemo, which aims to build fat-trees rooted
at sources in the group communication, [9]. A fat-tree is whéh links with higher bandwidths are nearer
the root of the tree, with lower bandwidth links appeariraselr to the leaf nodes. This is an interesting idea,
and is specifically geared toward allowing multi-sourcertayemulticast over the tree. Nodes in a FatNemo
system are organised into clusters, with clusters clostirtooot of the tree being larger (Figure 2.5(a)); one
member of each cluster is elected as leader, and becomes bemefra higher cluster, closer to the root
(Figure 2.5(b)). Co-leaders are elected to allow some rednicy in the tree mechanism. FatNemo presents
particularly good performance for multi-source overlayitisast, though no source code appears to be avail-
able for the project. The FatNemo literature unfortunatielgs not provide much concrete information which
would be useful enough to implement this protocol.

Yoid, [20], is another tree-first approach to offering oagrinulticast, but attempts to offer overlay multi-
cast for a multitude of applications. Yoid aims to bridge tap between IP Multicast and the abundance
of overlay multicast systems developed to date. It offergvke API similar to that which IP Multicast
offers, and will use IP Multicast if it is available and appriate; otherwise, it will organise hosts into a
distribution tree, creating an overlay multicast systenamad when required. This functionality is hidden
behind the aforementioned API. Yoid is designed to be usalilén the infrastructure used by content dis-
tributors, to smaller scenarios where the only members aflicast group at the end hosts themselves. Yoid
source code has been released and is written in C, thoughdhedifferent versions available which are not
compatible with each other. Yoid also requires the usag@e€ialised URLS to join groups, for example:
“yoi d: // rendevous. host . nane: port/ group. nanme”, which could solve the problem of locating
groups. One criticism which could be made of Yoid is actualig of the reasons for the birth of the project: it
attempts to offer one single, large solution to a vast rafigeablems. While this idea might seem appealing,
there is little in terms of level of uptake of the software,numerical data available to suggest that Yoid is
useful in the multitude of settings it aims to be suitable for

16

2.4.2 Mesh-based approaches

Work at Carnegie Mellon University has produced the End@yd¥lulticast (ESM) architecture — [13], [14],
[15] — based on the Narada protocol. ESM is interesting itithitially aimed to target multi-source multi-
cast group situations, such as those that would be expertesktRAT. Narada employs a two stage process
to building distribution trees: the first stage constructeesh between members of the group (more fully
connected than a tree, less so than a fully connected gridgghdecond stage constructs spanning trees from
the mesh, each tree rooted at a source within the group. Btativfor this approach was the observation that
one single tree with no backup connections is more susdeptailure, as any node failing partitions the
tree, disconnecting potentially high numbers of sendecsivers from each other.

The Narada protocol calls for better links being kept in theshy and poorer links being rejected over time.
This allows for incremental optimisation of the mesh, aret¢ifiore links available for spanning tree links to
distribute data. What links are chosen depends on the nadtasen; latency is a reasonable metric for this
sort of application as for conversational audio to soundnata round trip time (RTT) of less than approx-
imately 400ms is required [27]. Construction of spannireg$ris managed by a distance vector protocol.
Trees are constructed in an identical manner to DVMRP [48]avioid the situation that packets are dropped
when a node has left the group but routing tables have notgeat bpdated, a “transient forward” routing cost
is advertised by the leaving node to any nodes which it a valite to. Nodes then avoid routes involving the
leaving node, but the leaving node continues to forward gisdor a fixed amount of time.

Narada requires that a considerable amount of controldreffsent regularly, to ensure the mesh contin-
ues to reorganise itself to improve performance, and to etsure that partitions in the mesh are detected
and resolved quickly. The amount of control traffic is theiling factor on deploying Narada for use with
larger groups beyond around 100 members. The results byimqre demonstrate group sizes of around
128 experiencing 2.2 - 2.8 times the average receiver dslayoald be experienced over IP Multicast, using
around twice the network bandwidth as IP Multicast would:stn figures are significantly lower for smaller
group sizes. Experimental results in [14] show that Narddags a 10-15% network traffic overhead for
groups consisting of 20 members.

The source code for implementations of Narada has not béessesl. However, [15] provides pseudocode
for some algorithms used by the system, and much descripfiblarada’s functionality. This information,

it seems, is enough to implement the Narada protocol, asibban used for comparison in experiments in
other projects, such as the FatNemo project.

It is interesting to note that FatNemo states that it outprers Narada, because the mesh approach in Narada
will neglect how many trees are making use of that one fat lifikere are a number of possible ways of
resolving this. It might be possible to make the algorithnmaeof how many overlay links it is placing on
each branch in the mesh (perhaps by using something likeldgp@ware Grouping (TAG), seen in [32]).
Audio applications also open up the possibility of mixingesims together while in transit, if destined for the
same host in the overlay. Beyond this, it would be fair to &y in the average case, only one group member
will be transmitting, and so the number of tree branchesgaam one link in the mesh does not necessarily
matter; obviously the worst-case scenario where all groembrers are transmitting will perform poorly as
[9] suggests.

There are numerous other approaches other than Narada fehicha mesh structure over which to route

17

data. Of note is the protocol described in [33], in that itates the basic mesh structure, but does not go
on to generate distribution trees within that mesh. This@més the possibility of a more naive, brute-force
implementation of connecting multiple participants in afewence, and is limited to group sizes of around
10 members.

Scattercast, [12], uses a protocol called Gossamer, bastd &SM work, which attempts to cut down con-
trol overhead, to expand to larger multicast groups. Thegsae of Scattercast is to provide a large multicast
infrastructure which uses SCXs (ScatterCast proXies) atvknlocations; these SCXs are application-level
software components, often replicated allow load balapaimd redundancy, which form an overlay network
over IP Unicast. Clients can then connect to SCXs using IPtibadt if it's locally available, or by using
normal IP Unicast links if not. Since Scattercast uses aaimrotocol to ESM for organising unicast links
between SCXs, control overhead is cut down by only havingeeaehich are sources of information actively
advertising routing information to the system — if a nodehgis to transmit, it advertises a distance of zero
to itself, and does so for the rest of the session; neighbgBICXs will pick up on this information and
propagate it outward.

Scattercast could be implemented, upon which RAT sessiounlsl e run. While this is a possibility, the
description of the SCXs sees them as semi-permanent setitilein the network; even if this is not the case
and the SCXs can adapt to a quickly changing network, thesglisome disparity between the SCXs and
the actual endpoints, and the implication is that a RAT seswiould rely on pre-existing SCXs. This is not
necessarily the case — RAT sessions could create SCXs foothe use, but then each SCX is an endpoint
using the ESM algorithms, since all members are possiblessiand so the control overhead gain of Scat-
tercast is lost. The Scattercast solution can only ever baléq or greater than ESM, in terms of the amount
of effort to be put in to obtain a working system.

Work presented in [28] offers another method of deploying esimbased overlay multicast solution, by
generating a hierarchy of meshes. The aim of the work waslaw dbr self-organising overlay networks
to scale to the order of tens of thousands of hosts, and déésakaat the possibility of massive conferencing
applications where all of those thousands are entitledaalspT he hierarchy formed generates a mesh of lead
nodes, those lead nodes being elected within a clustdf,atgmnised into a mesh. This form of organisation
cuts down the amount of control overhead substantially floencase of one single mesh encompassing all
nodes, as would happen in the Narada case.

Some form of the work on End System Multicast at CMU has beiaiied on the Internet; indeed, confer-
ences and lectures have been broadcast over the Interngttheisystems they have built, though obviously
this is single-source multicast model rather than the fulltirsource multicast they initially set out to achieve.
Skype on the other hand, is an example of a peer-to-peerremtiag and messaging system currently in use
on the Internet, which also offers lookup capabilities oarasvithin the system. An analysis of the protocols
Skype uses are presented in [8]. One interesting point te ootthe analysis of the Skype system is that
hosts forwarding separate data streams onto other hogitefutown the overlay structure will mix together
data streams, thus reducing packets which have to be seodé&s further from sources of a distribution tree.
Much of the previous overlay multicast work discussed alyeaorks on the idea of replicating a packet as
and when necessary for it to reach all endpoints on the oydnldaudio applications do offer this opportunity
to combine data streams together, thus combining two or pexckets of data into one.

18

HyperCast, [34], is one other addition to the multitude o$teyns tackling multicast groups with many-
to-many semantics. HyperCast forms a hypercube from graemlvers, group members becoming vertices
in the hypercube. Spanning trees are embedded into thedulpeeasily, while control traffic is transmitted
along the edges of the hypercube.

Of these systems designed for multi-source overlay muitideen, ALMI and FatNemo appear to both pro-
vide the functionality required, and despite attackingghablem from very different directions, are both tree-
based methods of constructing the overlays required. Ydide being a nice idea, unfortunately appears too
large and all-encompassing. The Narada protocol seemdeovdfat is required of a multi-source overlay
multicast system for conferencing applications, thougdrdhis no source code available. The mesh-based
approach to building the overlay is, however, one which &hpuove incredibly robust when considering
groups with high join/leave rates. Progression beyond dhara the form of ScatterCast the hierarchical
method of managing meshes should allow for the mesh to seéde karger groups, but these are approaches
to attempt after building the basic Narada protocol. Thehy@dy approach seen in [33] is, unfortunately,
too simplistic, only allowing for very small group sizes.

2.5 Summary

Of the related work discussed in this chapter, little is diseapplicable to the problem of audio conferencing
applications being tackled by this project.

The systems which implement some form of distributed habte tbor the purposes of object lookup and
routing are not directly relevant, but could be used as a vi&ycating peers in an existing overlay multicast
group in order to join that group. This is outwith the scopéhi project, and it will be assumed that nodes
connecting to the overlay system already have some way ofsing existing group members. The method
of looking up group names could be similar to the methods bge@ollectCast to locate data, being able to
use any appropriate lookup substrate.

The systems which deal with bulk data transfer or streamiadianoffer some very interesting ways of pro-
viding sustained high-bandwidth data transfers over a-fzepeer overlay, but these are simply not suitable
for the distribution of real-time data from many sources.

The projects which seem to be directly relevant are ESM (Aed\tarada protocol), ALMI, and FatNemo.
Skype is obviously directly relevant, but its closed-s@urature, and lack of technical specifications detailing
the protocols, renders it of little use.

Narada, ALMI and FatNemo each have their own advantagesiaadvintages, and each could potentially
form the basis for this project. In brief then:

e Narada has been implemented, and has been used on the titddyreadcast lectures, etc. The authors
of Narada & ESM are, however, attempting to push ESM as a tpdnd have not released any actual
code for the project, the only details of implementatiomigehose in the papers released (in particular,
[15]). The Narada protocol is fully distributed, and no hiesa running system is more privileged than
any other, though group size can be limited by the amount pfrobtraffic required to maintain the
mesh.

19

e ALMI, on the other hand, has released code under the GPL,eirfdtm of a Java package, but its
homepageno longer exists. ALMI essentially contains one node in treug communication which
is also a controller host, through which all control traffiovils. Data traffic remains peer-to-peer.
Redundancy has to be built into the overlay network to allomttie possibility of the controller host
leaving the group, as is the nature of peer-to-peer apitat To implement this level of redundancy
seems heavyweight in terms of implementation when comptardioe truly fully-distributed Narada
protocol which ESM uses.

e FatNemo has been implemented, but the literature does fushirus of what language it was imple-
mented in, or indeed where source code might be availalbdeith, the authors do not appear to offer
it publically as a download). FatNemo elects one node pestetito become a leader, and also elects
co-leaders for the sake of redundancy.

While the all the protocols mentioned here are relevant wibiky are generally not designed for multicasting
from more than one source. Of the systems described in thjgtehthat are, it seems that Narada, FatNemo,
or ALMI are best suited to form a basis for developing a protatesigned with the specific goal of being
able to carry real-time audio in mind.

Shttp://al minet.org/

Chapter 3

Research Approach

Based on the selection of Narada, FatNemo, and ALMI froméfew of previous and related work in Chap-
ter 2, three possible approaches to providing an overlagicast system for use with RAT were immediately
available:

1. Model the overlay multicast system on the ALMI system,ritiag the existing Java code in C

2. Model the overlay multicast system on the Narada protpoedented by ESM, generating code from
scratch with reference to the outline pseudocode providehea papers released and standard routing
algorithms available in any number of algorithmics textk®o

3. Model the overlay protocol on the FatNemo system fromnifi@rmation available in the papers.

Of these then, the FatNemo literature does not provide metdildegarding algorithms used for construction
of trees, and any implementation of FatNemo would rely orldlbse concept of calculating available band-
width between nodes. While rewriting ALMI code in C ratheathwriting code from scratch should prove
an easier task to complete, the fully distributed naturdnefNMarada protocol seemed more appropriate to the
project, more challenging, and less dependent on partibalsts in the system surviving (and is therefore,
potentially more robust) than either ALMI or FatNemo. Fagdh reasons, a re-implementation of Narada was
chosen as a starting point, with some consideration takaredér stage as to how to improve the protocol.

With the Narada protocol in mind at start of development fthlewing steps were taken to fulfil the project
aims:

e The overlay APl was defined by analysing the existing code dtermining just what functions were
used for the purposes of constructing a starting point frdniciwvto work. By defining this API, devel-
opment took place in the space between this API (buildingrdeavd from the functionality required
by the application) and the standard network librarieslalséé (building upward from the functionality
provided by the network). This process produced a clean &iRthe functionality required.

e Work began on implementing the Narada protocol to build amsésicture in order to test underlying
data structures used by the overlay code. Performance s tih@ta structures was not necessarily a
primary goal; creating a system which worked first, from wimcay be subsequently optimised is more
important. Once the data structures required and netwatk e@s apparently stable, work began on
modifying the method in which control traffic is distributddoughout the overlay.

20

21

¢ Implementation of the modifications took place, taking daralter all relevant Narada code. Once the
overlay was stable, it was possible to construct a concueleation plan, the outcome of which can be
seen in Chapter 8. Evaluation of certain key metrics to etalboth that the protocol works, and that
it offers properties desirable for real-time applications

¢ Integration of the implementation of the modified protoatbi RAT using the overlay to carry data,
rather than using the network directly, was carried out.sTdliowed RAT to treat the overlay as an
intermediate layer between the network and the applicatiod served as a demonstration of the appli-
cation of this overlay multicast software in a “real-workfiplication. To focus developmentwork, only
calls which RAT makes that involved the transfer of realdidata across the network were modified to
use the overlay; the main components of RAT communicategusimessage bus (mbus, [37]) system,
which also makes multicast calls. These calls were lefcinfar the purposes of testing. Patches are
provided in Appendix C.2.

The end result then is an open implementation of a new prbtadied Orta, which is a variant of the Narada
protocol. This implementation is a demonstration of thedtgms used to create the mesh, and then the dis-
tribution trees on top of that mesh. The implementationrsffenctionality to allow hosts to join the overlay
group, leave the group, and send/receive data to/from ladlranembers of that group; this functionality is
general enough that any host can attach itself to the graoplgiby identifying at least one existing group
member and sending messages to it, asking to join. Once arkme@mber of the group, the peers attempt to
organise themselves to improve the quality of the mesh. iilfementation is provided as a library, which
RAT or any other application can use at will.

To help focus the coding for the project then, aside fromitggthe previously mentioned mbus code used
by the three main software components which constitute fiedpplication, the coding will also focus only
on IPv4 functionality, rather than offering IPv6 supportirther, issues raised by NATs and firewalls, [21],
will not be considered for this implementation — the focushef project is on the construction of the overlay
multicast network, not the details of bypassing hostawgjttiehind a NAT on a private network. The develop-
ment will also assume that peers have some mechanism infpldogating an entry point into the multicast
group, such as some of the lookup mechanisms described fin®@c2. Development will be taking place
on Linux workstations, and so code will primarily be testedldnux; to attempt to implement this system in
C for all manner of platforms within the time constraintsitatale would most certainly be foolhardy.

Chapter 4

The Narada Protocol

This chapter briefly covers the Narada protocol on which thte @rotocol, presented in Chapter 6, is based.
The Narada work forms the basis of the ideas used in thisgirdfee major difference being how the protocols
share enough information to be able to hold enough knowlethget the overlay such that reliable routing
tables can be generated. Further and more detailed inflmmman the Narada protocol is available in [15].
This chapter covers the construction of, and gradual imgr@nts made to, the mesh, and the data delivery
methods.

4.1 Properties of Narada

The Narada protocol is designed to be self-organising alfidnsproving. That is, the protocol is fully dis-
tributed, and the peers in the network must be capable ofrabgecertain network performance metrics in
a bid to enable peers to gradually improve the state of thdayaNhich metrics are observed are described
as “application specific” though, for real-time communioas, latency is the major metric to measure be-
tween peers due to timing constraints mentioned in Sectib2 2Available bandwidth is also an issue, once
transmission quality, the potential audience (and theiemiially varied connection types), and the size of the
group are also considered.

Each peer tries to improve the quality of the overlay by jndgihe quality of the links it currently holds
and the quality of potential links which could be added todkerlay. The actual adding and removing of
links is defined by the Narada literature, and reiterated heections 4.5.1 and 4.5.2.

4.2 Overlay Construction

Narada uses a two-step process to construct the spannasyrequired to carry multicast data efficiently
across the overlay. The first step involves the construaifom richer graph between nodes than that of a
spanning tree; this structure is termediesh in the Narada literature. The mesh allows many connections
between hosts in the group, and attempts to improve itselfdeide “desirable performance properties”. The
second step involves running a routing protocol over theltm@gsonstruct spanning trees from each source,
thus allowing for the possibility of group communication.

The motivation for the two-step process is to allow moreatdt overlay structures for multi-source ap-

22

23

(a) A mesh structure, showing the (b) A potential spanning tree from (c) A potential spanning tree from
members E considers to be it’s group member E. group member A.
neighbours.

Figure 4.1: lllustration of Narada terminology.

plications, such as audio conferencing. While it would @iety be possible to construct an overlay capable
of carrying data from one host to many using either one shdistdbution tree built directly from knowledge
of group members, or many distribution trees built dire¢tym knowledge of group members, there are
drawbacks to this approach:

e The construction of one tree is prone to failure, as it onketaone node failure to disrupt the tree
structure.

e One solitary tree is not optimised for all participants.

e The construction of many trees requires additional ovatiregerms of group membership when adding
nodes to trees, removing nodes from trees, etc, as hoswrjlEave the multicast group. The additional
overhead is a side-effect of the trees themselves beingagepand therefore each requiring individual
management.

The two-step approach of constructing a mesh and then reultiptribution trees allows the mesh layer to
handle group membership and other problems such as howimispthe mesh or how to repair a partitioned
mesh structure, with the routing protocol running indepity on top of this layer. The additional links
between nodes allows for each distribution tree to potiytie of a higher quality for the host to which is
belongs than a single, shared spanning tree would be.

4.3 Terminology

For the sake of clarity, a number of key terms to be used forahminder of this dissertation shall be defined
here, with reference to Figure 4.1.

Figure 4.1(a) shows a potential mesh structure, with mamnections between peer. These are logical
connections, and not the underlying physical links in thevoek. A connection between two peers within
the network can be considered to be two unidirectional lifgkging to the fact that the route a packet takes
to get from A to B might not be the return path from B to A. Thure term ‘link’ refers to one direction over

a TCP connection; when the actual physical network stredtibeing discussed, links will be qualified as
either physical or logical. The terms peer and member maysbkd interchangeably, though on occasion a

24

distinction may be made between a source and recipientsiraess simply one member, and the recipients
are all other members of the group.

Figure 4.1(a) also highlights which peers E considers ta’paeighbours. Spanning trees, such as those
in Figures 4.1(b) and 4.1(c) are built from the links betwesgmbers and their neighbours, and peers cer-
tainly do not share the same spanning tree for data disitut

The term neighbour implies that if one node, a, has chosethand, as it's neighbour, then a is also b’s
neighbour. Indeed, this assumption allows for informatiequired to build correct routing tables at each
node and all others to be passed back and forth between a nelwenef the mesh.

4.4 Group Membership and Overlay Maintenance

The Narada protocol is fully distributed, and as such, naglsipeer is solely responsible for maintaining

group membership data; this responsibility falls onto akrs in the group. While this allows for a higher

level of redundancy of data, peer group sizes are surelydexdiby the capacity of hosts to store some infor-
mation on all hosts in the peer group. Sharing this burdeitdigroup sizes by requiring that state be sent
between and stored at end hosts, which brings with it coscefistorage space and the efficiency of data
structures holding the information.

Each member regularly signals to its neighbours within thesmthat it is still alive by means of a refresh
packet, which contains a sequence number. The sequencesnisbsimple method of having other peers
in the network log the last time they received any infornratielating to the source of that sequence number,
and can be used to resolve partitions in the mesh structive|lde discussed in Section 4.4.3. These refresh
packets are also used to carry the routing information requn Section 4.6 on data delivery.

Members continuously probe their neighbours, to monitdwogk conditions and advertise correct weights
on links.

4.4.1 Members Joining

Narada does not provide a lookup service for the finding lonaif any group member a new peer might be
able to connect to; the protocol instead assumes that peshing to join the group have some method of
locating at least one group member with whom the exchangerdfal information can begin. As Narada is
fully distributed, which member is chosen for joining issllgvant, as any existing member can admit entry to
any joining peer. This contrasts with IP Multicast, where address is used for the entire group, with routers
internal to the network admitting new members.

Information regarding the new member will be propagatechtorest of the group via the normal mecha-
nism of regular refresh packets. Given that the peer grolipearn about the new member slowly rather than
immediately, it will take some time until the entire groupaiware of a new member and, likewise, approxi-
mately the same amount of time until the new member is awatieeofest of the group. If we consider that
refresh packets might be generated every 30 seconds, astidhtest path between the new peer and some
others might be four hops away, in the worst case it might &ikest 2 minutes for those members to learn
of the new group member (though generally, the highly coteteeature of the mesh suggests that this would

25

not be the case).

Once a member is part of the group, it may commence proceduiesprove the quality of the resulting
mesh structure.

4.4.2 Members Leaving

On a member leaving, that member informs its immediate h&ighs, who subsequently inform other group
members by means of the regular refresh packets. Remairong gnembers restructure their routing tables
on receipt of the new information. As before, this procesdattake some time.

In a bid to try and counter the time taken for the informatioptopagate throughout the group, old routes
continue to be used until such a time as the routing tablesitfirout the group converge. Coupled with this,
old routes are advertised by a “transient forward” valueicilis guaranteed to be higher than any weight, or
latency, achievable by a real link, yet also lower than tHi@iite cost which signifies no link is in place. The
nature of the distance vector algorithm then allows for tteaig to naturally avoid the links advertised with a
transient forward value.

4.4.3 Member Failure

The Narada protocol takes into account the possibility ofitners failing. The sequence numbers mentioned
earlier form a part of this process, by allowing each peeotpthe last time they received any control data
from each other member of the group. If a member were to fallauit exiting gracefully (i.e.: without dis-
patching the appropriate ‘member leave’ information towalfor transient forward links to be advertised, and
to allow for the continued forwarding of data for some acabf# amount of time), these sequence numbers
would fail to be generated.

Narada ensures that the mesh is capable of repairing itgethecking the sequence number for each known
group member on a regular basis, and running Algorithm 1wshon Page 26. In essence, the algorithm
guarantees that a host which has been silent for some uppadlam time elapsed will be removed if no
connection can be made to it; a host which has been silent feast some lower bound on time elapsed
might be probed, and possibly removed thereafter if no larklose made.

4.5 Improving the Quality of the Mesh

Narada peers constantly monitor the quality of the links/thave to all of their neighbours. How they
do this is dependent on what metrics are chosen by which fereliftiate a good link from a bad link, but
sending regular ping packets to neighbours is a method ofunieg latency between peers, for example. The
following outlines exactly how Narada chooses which linksdme part of the mesh structure, and how links
are removed from this structure.

4.5.1 Adding a Link

In order that the quality of the mesh improve over time, p@eust attempt to seek out links between each
other which offer some significant improvement for the de¢es, or alternatively add links to help ensure
that a partition in the mesh structure is less likely to occthius, there must be some mechanism in place

26

Algorithm 1 Algorithm used by peetrto detect and repair partitions in the mesh structure.
Let Q be a queue of members for whichas stopped receiving sequence number updates for aflgast
time.
Let T4 be maximum time an entry may remainh
while truedo
UpdateQ;
while ! Empty(Q) andHead(Q) is presenting for > T,,,, timedo
j = Dequeue(Q);
Initiate probe cycle to determine jfis dead, or to add a link to it.
end while

if |Empty(Q) then

Length(Q)
GroupSize

with probabilityprob do
j = Dequeue(Q);
Initiate probe cycle to determine jfis dead, or to add a link to it.
end
end if
sleep(P). // Sleep for time P seconds.
end while

prob =

which probes potential links, over and above the continywabing already carried out on existing links to
monitor network conditions.

Narada achieves this by randomly selecting peers withimtégh to which the local peer is not connected,
and probes those members to determine the properties ahksebletween them. If latency is the metric the
protocol is concerned with, this is achieved by sending theyimg packet; required as part of the return data
for this ping is the routing table of the other peer, which sedito estimate the usefulness — or utility — of
adding this link. Algorithm 2 shows the utility calculatioBach peer in the group can contribute between 0
and 1 to the final utility score.

Algorithm 2 Evaluate Utility of link L

utility =0

for each membet}/, such thatV/ £ localhost do
L,, = new latency ta\/, with L in place
L. = current latency ta//, without L in place
if L, < L.then

utility+= (Lot

end if ‘

end for

if utility > threshold then
add link L

end if

A new link will be added to the mesh if the perceived gain isatgethan that of some threshold; the details

27

of this threshold value are not disclosed in the Naradaglitee, beyond stating that it is to be based on group
size and number of neighbours each member at either end fikheas.

The threshold value calculated at a naodlés simply defined as relating to the number of group members
A knows about, and the number of links bothand the other member has. No more detail is provided for
the threshold, but it makes sense that the threshold woupddyortional to the group size (as each link can
potentially provide up to 1.0 of the utility value), and ajs@portional to the number of neighbours each of
the two nodes have (so that once a member is well-connectedgsinthe group it becomes harder for it to
add low-quality links, while members with fewer links maydaaew links with greater ease).

4.5.2 Removing a Link

Peers using the Narada protocol do not have enough infasmdifectly available to them to derive a value
for the usefulness, or utility, of an existing link like thdg for the addition of a link. This means that Narada
must instead provide an alternative mechanism for dropipikg.

Each member attempts to evaluate how valuable its linksoatteetgroup by looking at the number of mem-
bers, including itself, which make use of this link to distrie their data. Algorithm 3 outlines the algorithm
used by Narada to derive what it calle@census cost for the link.

The requirement on such an algorithm is that the utility lmstdropping a link is the same as if the link
were to be added, given all other network conditions remaistable. Without enough information though,
Narada cannot judge this perfectly, and simply drops thewith the lowest concensus cost beneath some
threshold. This threshold is different to the thresholdduseadd links.

As discussed in Section 4.4.2, owing to the fact that on tineovel of a link it will take some time for
other peers to be made aware of the state change, Naradaysmaphansient forward state for a link, where
a peer will continue to forward packets along that link fomsoreasonable time to follow.

Algorithm 3 Evaluate Concensus Cost from local peer i to remote peer j.
Cost;; = Number of members for whichuses; as next hop for forwarding packets.
Cost;; = Number of members for whichiusesi as next hop for forwarding packets.
return maximum otCost;; andCost ;

The threshold for dropping a link is always less than thesthoéd would be to add the link. This s, in essence,
a simple hysteresis technique to ensure stability in linflittwh and removal decisions, and helps avoid the
situation that links are repeatedly added and dropped byairee member. By taking members on both sides
of the link into account, the mesh also ensures that one peegnating to add a link will not be repeatedly
thwarted by the neighbour dropping it each time.

The dropping mechanism should not cause a partition prdwide network is stable, and the threshold for
dropping a link is less than half of the group size. The reampis that if the link being considered is the
only link holding together two halves of a mesh, then eittiest;; or Cost;; will be greater than half the
group size, or both will equal half the group size. The dragginks algorithm obviously cannot handle the
situation where multiple links are dropped simultaneougigugh the mechanisms for fixing a partition as
described in Section 4.4.3 can be used to fix such a partition.

28

4.6 Data Delivery

Narada runs a distance vector algorithm over the mesh, dodlais the distribution tree for each source
using reverse shortest path between each recipient forsearhe, as is done in DVMRP [48]. The distance
metric advertised via the distance vector algorithm is ¢iidlhe weight of the link derived by whatever appli-
cation specifics are required (e.g.: latency), rather tiraplg the number of hops from source to destination.
While conceptually the routing algorithm could be viewed amplemented as an entirely separate entity
from the mesh structure upon which it runs, it makes sensthéodistance vector information required to be
passed between peers to be sent as part of the regular rpfelstts Narada defines. Thus, the very process
of propagating routing information as the distance vedigor@thm requires is the process by which members
are able to monitor the liveliness of the other members.

Narada’s data links use TFRC [23], a rate-controlled UDR;ay data. This allows for data rates which
are friendlier toward TCP connections on the same link.

4.7 Summary

Narada is a protocol which attempts to gradually improvegihaity of a mesh of links, upon which multiple
distribution trees (one per source) can be built. Routitdetare built via a distance vector algorithm. The
method in which it selects new links in an attempt to imprdwequality of the mesh, and attempts to create
multiple links from any host, offers the strong benefit foealrtime conferencing application that peers leav-
ing a group are unlikely to split the mesh, thus reducing thences of breaking a stream of data.

It appears, however, that by the choice of routing algoritiarada makes, the group might not be very
responsive to changing group state.

Chapter 5

Constraints

Since the purpose of the project was to deal with a real-tiotkoaconferencing application, some thought
into the constraints this places on the design of the ovenlagocol is required.

As mentioned briefly earlier in Section 2.4.2, 400ms is cdexs@d to be an approximate upper bound on
the round trip time of audio packets in a communication tovallor conversational audio to be feasible [27].
Narada is designed to attempt to find the shortest path spgutneie from each source to all recipients in the
group, and so is should to be able to find paths which offertlems a 400ms RTT if one exists.

However, owing to the routing mechanism Narada uses, shatdork conditions change during the lifetime
of the group, the group members may have to endure longer Riitiithe mesh is reconfigured.

The 400ms limit should not only consider raw RTT values, heeve If we are to consider real-time au-
dio as the data the overlay shall be carrying, there are iaddltconstraints to meeting that 400ms upper
bound. The sender waits for around 20ms to grab an audio framdemay take a few milliseconds to encode
that frame. The receiver may buffer this packet for a fewisgltonds to take into account jitter on the input
stream of packets, and again for the decoding. With all th&lsen into account, the additional delay may
be anywhere between approximately 50ms and 70ms, anddhetbet raw RTT to be met must be less than
350ms or 330ms respectively. To ensure that these targetseamet, the overlay must surely be able to react
quickly to network conditions changing.

Swift reorganisation in the face of member departure: meso rely on the leaving group member for
packet delivery require that the overlay restructure asldyas possible, with as little disruption to the packet
stream as possible. While for some applications such asditsfiers, a temporarily broken data stream is not
an issue (provided enough of the peer group remains intadtjeak in the tree means that some participants
may be disconnected to others leading to a break in coni@nsatd loss of information.

Similar to that above, low packet loss rates would be defsiraiw reorganising the overlay structure must
be performed in a timely manner. No packet loss due to recandipn of the network is preferred, though

occasional packet loss is acceptable when compared torlboggs of packet loss.

The Narada protocol provides some good properties for thipgses of conferencing applications. The
gradual improvement to the mesh by adding better links antbwéng poorer links, and the building of a

29

30

distribution tree rooted at each source, suits the needsafiferencing application very closely.

However, the distance vector algorithm used for routingmsehat information regarding members and links
propagates slowly through the group. The choice of a distaector routing algorithm which does not re-
quire link state to be held at each group member leads to aliogping mechanism which is not working
on total knowledge of the group, and indeed only works by giog links conservatively. The nature of
the distance vector algorithm, and the fact that the digtarector of another group member is returned in
response to a random ping, means that the algorithms thaidsarses are working with potentially out of
date information. Further, the threshold by which a new isjkidged for adding, and the threshold by which
an existing link is judged for dropping, are entirely diffat to one another, with very different mechanisms
in place for the addition and removal of links.

To resolve these issues, the Narada protocol required roatiifn. The Orta protocol, presented in Chap-
ter 6, modifies the routing algorithm and the methods use@#bwith control state, which attempt to solve
some of the problems with Narada, and allows the additionrambval of links to be governed in the same
manner.

Chapter 6

The Orta Protocol

This chapter introduces Orta, a new overlay routing prdtmraeal-time applications. Like Narada, Orta is
a fully distributed, self-organising protocol which attetsto improve overlay quality during the lifetime of

the overlay. Orta, however, distributes control inforraatin a different manner, to inform the entire group of
state changes as quickly as possible.

Where one of Narada’s failings is the use of a distance vetdgmrithm to slowly propagate information,
Orta instead uses link-state routing to maintain link stdteach peer, over which a shortest path algorithm
can be run. By changing to a link-state routing mechanisate sthanges at any group member are flooded
to the entire group, so all group members are informed akiyuas possible about the state change and can
react accordingly.

This rather major modification to how peers interact alsovedl for the algorithm responsible for dropping
links to be changed, to mirror that of the algorithm desigteeddd links. Measuring the utility of a link by
the same mechanism on both adding and dropping a link alloxtsé same threshold calculation to be used,
and should offer more reliable decisions made by the linlppgiog mechanism.

6.1 How Orta differs

The key feature of the Narada protocol is that over the tifetbf the multicast group, links can be added and
removed such that performance of the mesh is improved. Thieelof running a distance vector algorithm
over the mesh, while simple to implement and run, does nowdlbr quick propagation of information relat-
ing to network state changes.

The new protocol presented here uses the pseudocode padetie Narada literature for operations such
as evaluating whether or not a new link is worth adding, bstead uses a link-state protocol to flood infor-
mation on new links out to group members. Dijkstra’s shangpesh algorithm is then run over the link state
information which should be the same at each node, to praitienal data distribution trees given the cur-
rent mesh structure. Any state changes which might causédison trees to change should be flooded, i.e.:
a new member arriving; an existing member leaving; the addif a new link; the removal of an existing
link; or the updating of the weight of an existing link.

While this does mean more computation taking place at eashqoenpared to what is required in Narada, the

31

32

rate of propagation of information provides much more infation for each node which can then be used to
provide a more robust network structure for the carrying oftioast data. The flooding nature of the protocol
means that peers will be less likely to arrive at differirates capable of creating loops in the network.

The link-state protocol then operates as follows:

e New information is propagated on arrival of a new member, areanber leaving, on the addition of a
new link, and on the removal of a link.

e Inorderto keep peers informed of current network cond#j@ach peer continuously probes its neigh-
bours to determine the distance between itself and eachbaig, exactly as is done in Narada. On a
regular basis (every 30 seconds, say), each peer floodsnafimn regarding significant link distance
changes between it and its neighbours.

On receipt of any of these flood packets, a peer runs Dijlsssiadrtest path algorithm using the link state it
has to generate a shortest path spanning tree from each gremper to generate the routing table at each
peer. This can clearly lead to a lot of computation beingqrened at each peer, though ideally network
conditions would not change all too frequently; if no staés kbhanged, no computation has to be done.

6.2 Overlay Construction

In the same way as Narada does, Orta uses a two-stage pmbedd the overlay structures required to route
data from any source in the group to all receivers. Once agfanmotivation of this two-stage approach is
to allow for distribution trees optimised for each sourag] o allow for a greater level of robustness than a
single shared distribution tree can offer.

Orta adds and removes links in a bid to improve the qualityhefrnesh, like Narada. The key difference
between the two is of how control traffic is distributed, anidatvcontrol data is distributed. The additional
information available to each peer as part of the link-statging protocol allows for Orta to calculate its
spanning trees in a very different manner to Narada.

6.3 Group Membership and Overlay Maintenance

As in Narada, the burden of maintaining group membership ¢al each member of the group. Orta requires
that each member monitor its own links, and flood informatmthe rest of the group regarding those links.

Thus, in Orta, members collect current information aboahdiak in the mesh on receipt of floods from other

members, and so there is the additional burden of each haisigh®a store all this additional information.

Where Narada peers, by using a distance vector algorithnd sefresh data containing known informa-

tion about all group members only to local neighbours, Qrsddad sends only information relating to links

to local neighbours to the entire group by flooding the infation. Thus, the peer responsible for probing an
existing link in the mesh is always able to provide the groighwhe current information regarding the state
of that link. This method of propagating control informatiallows for:

¢ Dijkstra’s shortest path algorithm to be calculated overlihk state to derive routing tables at each
member, covered in Section 6.5.

33

e Faster reactions to changes in network conditions, owirlggmature of the propagation mechanism.

Under normal operation, new information carried in a rdirpacket is merely updated information on an
existing link or member, and is incorporated into localest&rta must also be able to include information re-
lating to unknown members and links, due to the fact thatdpainy periods in which the mesh is partitioned,
state changes on one side of the partition will not be obssyanembers on the other. Thus, peers must be
able to absorb new knowledge as it arrives, to ensure thaésh will be able to gradually repair itself.

For each peer to send information on each link it owns at exefinesh cycle seems wasteful, if the state
of that link has not changed recently. If a link has not chamjece the last cycle, a peer can opt to not send
information regarding that link. Members must still, howewsend a refresh packet containing a sequence
number as normal. It might be the case that on many refredbs;ylittle more than the sequence number is
flooded for any given group member. Each member must stilfdod information on each link it owns, even

if at a reduced rate, for the same reasons as mentioned abmiow for a gradual repair to take place if the
mesh becomes partitioned and link state changes at anychoing that partition.

To aid the flooding algorithm, looping of flooded packets isided by having flooded packets carry the
incremented sequence number from its source. This singptifie handling of flooded packets somewhat,
even though all operations over control state should be pademt; for example, receiving two copies of a
packet to add a link from member A to member B should not réstto link entries for A— B. By ensuring
that a sequence number received is not forwarded if it haadjrbeen acted upon, no flood operation should
erroneously continue to cycle around the network.

As with Narada, peers are required to constantly probe et t0 ensure that the advertised link state
is a good representation of the actual link state. If, howeYea were to flood a state change on every link
as soon as that state changed even marginally, the mesh tecddne flooded with constant state updates.
(fronically, the state updates would likely disrupt theremt state of other connections, prompting those con-
nections to re-advertise their status, and so forth.)

To this end, Orta declares that there be a distinction be rbatlgeen the actual weight, and the adver-
tised weight, of a link. The actual weight of a link is the @nt latency observed over a link, while the
advertised latency is a recently observed latency on thiat The advertised latency need only change when
the difference between the actual latency and the adveéftsency is sufficiently large.

6.3.1 Members Joining

Like Narada, Orta does not concern itself with lookup meddraa to locate an existing group member. Loca-
tion of a group member is assumed to take place via some otbehanism (be it a centrally located lookup
service, a fully distributed lookup service such as thosewdised in Section 2.2, or using an existing members
advertised IP on the Web). Being fully-distributed, anyaJpeer is capable of admitting entry of a new peer
to the group.

On entry to the group, information on the new member and neivif flooded to the entire group, thus
allowing for distribution trees to immediately take intacaant the new member, even though the initial link
chosen might not be the best possible for the group. Once am@wber is admitted, mechanisms for im-
proving the quality of the mesh take over.

34

OL

(a) A functioning overlay structure. (b) Member D has left the group,
E has only one neighbour in the and peers have cleaned up their lo-
group. cal state as required. E is detached

from the group.

Figure 6.1: lllustrative example of packets lost due to a paé#ing.

In order to allow the new member as much information as ptessibintegrate it into the mesh quickly,
on a successful join the existing member should send the wstboth member information and link-state
information; this information should allow for quick intesgion into the mesh network structure.

6.3.2 Members Leaving

On leaving, a member informs the group of their departureasal of any links which will be affected by
this. Again, this allows for the peers to immediately be ableestructure their distribution trees such that the
new mesh topology immediately comes into effect.

Unlike Narada, Orta does not specify a transient forwar$ta a link, nor is a peer required to continue to
forward packets along a link for some reasonable lengtmué tilf the mechanisms which deal with adding
and removing links to the mesh have not created a mesh whigblisonnected enough, the departure of a
peer can then cause problems, as illustrated in Figure 6elcalV see in Figure 6.1(a) that the mesh is well
connected. At first glance it appears that to have only oretdrE, creating a leaf node, is not a problem
provided no member joins through E to create a chain of peksdrigure 6.1(b) demonstrates, this is not
necessarily the case. Member E is entirely dependent on eremkand as D leaves the group, it becomes
detached. It is unable to route to the rest of the group, atelversa. The mesh then relies on mechanisms
described in Sections 6.3.3 and 6.4.1 to reconstruct the.mes

6.3.3 Member Failure

In the event of a member failure, state relating to that memiliélinger in each other member’s local state,
potentially leading to data loss. Orta employs the same ar@sim as Narada does for detecting and repairing
partitions in the mesh structure, as detailed in Sectior8B4@nly when a member declares this failed mem-
ber to be dead will all group members be able to remove the@aetdingering state. On detecting a failed
member, Orta requires that the peer who discovered thalfaiember flood the same information as for a
member leaving the group, as per Section 6.3.2, but insteig) known group state to flood information

35

about the failed member, and any links it held. This shoufgblea on both sides of a partition, thus clearing
any state relating to the failed member at all remaining peer

By removing the affected peer and updating the local stagaei peer via the normal mechanism of peers
continuously flooding refresh messages, the group can figooea itself over time and generate correct rout-
ing tables from the new mesh structure for the distributibdata packets.

6.4 Improving the Quality of the Mesh

As in Narada, the key element of the Orta protocol is thatliate added and removed in a bid to improve the
quality of the mesh based on some metric. The mechanism gawpla Orta for dropping links is entirely
different to that of Narada, and is shown in Section 6.4.2.

6.4.1 Adding Links

Adding links takes place in the same way as it does in Naraatape the return payload of a ping packet to a
randomly selected peer does not include distance vectomistion as Orta peers maintain all the link state
the algorithm for adding links requires. Orta uses exattitydgame algorithm as that defined in Section 4.5.1
to determine whether or not a link should be added to the niegfan Orta peer has the advantage of having
all link state available to it, plus the reported latencytis tother peer, to allow it to determine the latencies
to all other members with or without that link in place usihg same shortest path algorithm used to create
the routing tables.

As before, the method of evaluating the worth of a new linkatcelated from a local perspective; only
the current node is taken into account in the hope that thii@ddf this new link will benefit the mesh as a
whole. The utility of a link is essentially a measure of howahhat link improves the quality of the mesh;
once again, the utility of a link lies in the ran@el, with 1.0 being the highest attainable utility.

On adding a link after receiving a favourable turnarouncetim a ping packet, the round trip time on that
packet is used as the latency for the new link, being the ordilable estimate of the weight of the link. The
assumption here is that the latency reported by the randogwgill be close to the average latency observed
over time. By advertising the link with this latency, we ayéhe need to advertise as some arbitrarily large
weight initially, only to have trees reconfigure a secondetiwhen the actual latency over time is observed
and advertised at the next refresh cycle.

6.4.2 Removing Links

Given that Orta peers store complete link-state infornmatio the peer group, there is enough information
available locally at each peer to calculate the utility ofirgk by running a modified version of the algorithm
used to add links. This is in stark contrast to Narada, whggsa separate measure of utility for links when
calculating whether or not to drop a link.

Algorithm 4 (page 36) outlines the actions Orta takes tordaitee the usefulness of a link. Given perfect,
unchanging network conditions, the utility of a droppedklimould be exactly the same as if it were to be
added again. For this to work, the threshold for droppingla thust be calculated as if that link were not in

36

Algorithm 4 Drop Links
utility < 0
L < link L to randomly selected neighbour
for each membet)/, such thatV/ # localhost do
L, <= new latency taV/, without L in place
L. < current latency td\/, with L in place
if L,, = ocothen
return
elseifL, > L. then
utility < utility + La=te)
end if
end for
if utility < threshold then
drop link L
end if

place (as the utility if the link were being added would be paned to the threshold before the addition of
the link).

Little has to be changed from the Algorithm 2 for adding linksesented in Section 4.5.1. It is simply a
reverse of the link addition. New overlays distances arsghwithout the link being evaluated while current
overlays distances are those with the link in place; if thitybf a link is below a given threshold — rather
than above — the link will be dropped.

In normal circumstances, the dropping of a link will not deea partition in the mesh, provided that when
checking the latencies, the observation of any infinite flietigks is enough to signal that the link should not
be dropped.

By introducing this altered mechanism for dropping links,@rta peer can judge the adding or removal of
links against the same threshold calculation. This remthesecessity for the additional threshold required
for dropping links as per Narada in Section 4.5.2.

6.4.3 Calculation of the Threshold

The threshold on which the adding and removing links in baginada and Orta is difficult to specify for all
network conditions. The threshold must be dependent onitleeo$ the group, the number of neighbours a
peer has, and also the number of neighbours the peer at theastti of the link has. Multiplying by these
numbers alone would give a threshold value far too high todbe ta add any links, though the whole lot can
be multiplied by some small constant to deliver a usefulthotd value.

It makes sense for the threshold to increase sharply oncerahas achieved a handful of links; the idea
behind the threshold is that a peer should be able to achiewe finks relatively easily, and after attaining

those it shouldn’t be able to add further poor quality lindsly higher quality links.

Given the factors that the threshold must rely on, and a pewitiA its neighbours B, it might be easily

37

calculated as:

n = numberof_neighbours(Aynumberof_neighbours(B)
m = numberof_members
threshold = constxmnxm

The calculation of this threshold value is covered furtmeBéction 9.10.

6.5 Data Delivery

Routing tables are re-calculated on any link-state chasgeDijkstra’s shortest path algorithm. The rout-
ing tables stored reflect the nature of the peer group beirg@many: rather than having a lookup table of
destination againstext hop as might be seen in a conventional IP router, here it makee sense to store
source againsinext hop(s).

To calculate the routing table then, Dijkstra’s algoritherriin for each source in the peer group. The lo-
cal peer can then simply trace its own location in the spantriee created, and store the outgoing links on
this tree, if any, in the routing table against the sourcehéflocal peer is a leaf-node on the tree, no entry
need be added to the routing table for this source.

Using link-state, however, more computation is requirecmdve at the same result. However, the out-
come of this computation should be more up-to-date, an@tber precise, owing to the altered mechanism
for distributing control traffic. Dijkstra’s shortest pasifgorithm is reasonably efficient, given efficient data
structures [22]. The worst case complexity of Dijkstra’siiimlogn), wherem is the number of links in

the network, anch is the number of nodes. To achieve this worst case comp]efitgient data structures
such as adjacency lists for describing links between nadeba heap data structure for the ordered queue the
algorithm uses for picking off the next best node when caliindg shortest paths are required. Consider that
at each peer, the algorithm will run once for each memberdrgtioup; with this in mind, the computational
complexity of recalculating routing tables using this soleds actuallyO(mnlogn).

Once the routing tables have been calculated, they cansibgplised for lookup purposes on the receipt
of any data packet. The routing code must then both send gatianard the application layer, while also
duplicating the packet for any outgoing links dictated by tbuting table.

The routing table can only be affected by control traffic whek-state changes, at which point the routing ta-
ble must be recomputed. Given that transmission times ommaldnformation packets are bound primarily by
latency between hosts in the system, there will be shorbgsiof time whereby the system is yet to converge
on the same solution. Due to this fact, and that the fact tlasystem will constantly attempt to improve
the quality of the links it holds onto, it is entirely likelyat some packets may be lost or duplicated during
transition periods. Further, routing tables at peers madiotv looping of data packets during a transition
period. These transition periods should not last long, wewelue to the nature of the flooding mechanism
used to distributed the control traffic. Data packets cariyna-to-live field, which would prevent looping
packets from flooding the overlay until its destruction.

The increased frequency of state changes with a larger geoegudes this protocol from being used for
larger groups beyond the order of a few dozen members, dhe mount of computation taking place. The

38

combination of increased computation, and more frequate shanges suggests that as group size increases,
the time taken to reconfigure all routing tables in the groilptake longer.

While Narada uses TFRC as the transport protocol for dataaxdions, Narada uses plain UDP connec-
tions, leaving congestion control to the protocol beingiedrthrough the Orta links. This simplifies the

design of Orta, and allows for a great deal of flexibility; Rp#®files for different types of data provide their

own method of offering congestion control, so to force auaggion at a lower level would no doubt affect

the performance of the RTP congestion control methods. fecigfan application is unaware of whether it

is using IP Multicast or Orta to carry its data, so it seemswisoffer a basic, unreliable packet forwarding

service, and allow the RTP protocol to run unaffected.

6.6 Summary

As in Narada, Orta uses a two-step process to construct émnsyg trees it uses for multicasting of data, the
first step involving the construction of a richer graph betwe@odes called a mesh, and the second being to
create spanning trees rooted at each source in the groupmauting protocol.

Orta utilises link state routing rather than distance veaating, which offers some very important bene-
fits:

e Members are brought up to date with all state changes mutdr.fas
e Owing to the storage of link state, link removal is more aater

e Also owing to the storage of link state, Dijkstra’s shortgath algorithm can be used at each peer to
calculate spanning trees from each source, and can do seedheagroup arrive at a set of distribution
trees which all ‘agree’, due to the flooding process.

These changes alone should suit Orta to real-time apmitatuch as audio conferencing. The performance
of the protocol is evaluated in Chapter 9.

Chapter 7

Implementation Detalils

The Orta protocol was implemented in C as a library which ddod statically compiled into other applica-
tions. The interface to this library was based on that whiehRTP code in RAT uses to initiate, destroy, and
use a multicast session. This meant that the interface igtditirary was well-defined to start with, which
served to guide development in the early stages of the projéte original APl and the Orta API can be
viewed in Appendices A and B respectively.

Many of the intricacies of the C language were learnt as tbgept advanced, such as using structs to care-
fully map data onto memory locations safely when dealindnyiickets, rather than as a convenient method
for creating new data types and accessing members of that typ

Section 7.1 covers the architecture of the software. Tha Pmbtocol relies on control traffic to maintain
state at each peer, and handles data traffic as a separagdrenti data traffic. Handling of control state and
control traffic is dealt with here in Section 7.2 and Sectidrg&sand 7.4 respectively. Section 7.5 handles the
generation of routing tables, with the data forwarding eeddan Section 7.6. Finally, Section 7.7discusses
known issues and improvements which could be made to theva@t and Section 7.8 covers in brief the
adaptation of the RAT application to use the Orta overlay.

7.1 Overview of Software Structure

Figure 7.1 gives an outline view of the conceptual strucbfrthe software, showing the division between

functionality of the control plane (which the applicatiariever directly aware of), and the data plane. The
only communication between the two is the routing table,clwtthe control plane recalculates on receiving
new link state information.

Identified in the discussion in Chapter 6, Orta peers areiredjio maintain group member state and link
state, as well as keep track of group neighbours. This ntleads itself to splitting control plane state out
into three separate data structures to handle neighbaorg) gnembers, and all link state. The information
in the latter of these two structures is used to calculatedhtng table.

These data structures all have helper functions to allowupe over, additions to, and removals from any
of them. The functions provide quasi-object oriented dediy having the relevant data structure passed as

the first argument to the function, rather than the functieim@ an operation offered by the data structure as

39

40

>
Dependency: A =~#¥ B means: B uses A | %
mesh_send —
CONTROL PLANE . - - | DATA PLANE
P routing_build_table P2
. f-@’ M
neighbours member§/ links § route =3 =3 =3
El 2 2
3 %E -
o = S
o4 o Q
LTy Pl | \ =
A Y) ~~ \ Py
N N, sy, > ' ~ —
v ! 4 e N \ >
N \:\ et (*pthread_t) | =
\ I - .
o /,‘7 outgoing_data i handle_udp_data
handle_control_data ' |
! | |
1 L I
recv 'gngl " sendto @#@72_
T = i 7
_|

Figure 7.1: Conceptual view of the operation of the softwanrehitecture, showing the split between the
control plane and the data plane; route() in the data plandleathe duplication and forwarding of packets
to the relevant hosts.

in object oriented programming. It is fair to say that impkantation and testing of these data structures whilst
learning the various nuances of the C language took a caasildeamount of development time.

The helper functions hide a certain amount of memory allonaind deallocation required to perform oper-
ations over the data structure. All data structures offeirtiwn mutex lock, but helper functions do not lock
over any of the structures themselves; this is left as a hnigvel task to be performed as and when neces-
sary. To avoid deadlocks, locks are acquired in alphaletider by the name of the variable they belong to
(so “members-lock” must be locked before “neighbourdock” if a function requires the use of both), and
deallocated in the reverse order.

7.2 Control Plane

Control traffic, vital to the upkeep of the overlay, is sentqarily over TCP connections between neighbours.
This makes the maintenance of state slightly trickier, &t ttn top of already monitoring which members of
the group are also in the neighbours set, the implementhtisrio also handle TCP connections and socket
descriptors. TCP traffic in this implementation always usesarbitrary port number 5100, though a fixed
port number certainly might not be ideal for all network cgnfiations. An additional initialisation function
which allows for an alternative port to be used for TCP isaiety viable, and would be trivial to implement.
This implementation, however, assumes that all hosts ang tise same port numbers.

The control plane handles group membership, link state,neighbour state. Each of these is required to
maintain correct state at each peer. It is responsible fating data which affects other group members, and
handling incoming data from other members which potemtifflects local state.

While most control data is passed between members over T@kRections, the pinging mechanism which is
part of the control plane is handled over the open UDP sodaketgpily intended for data transmission.

41

7.2.1 Neighbour State

The table handling all neighbour data is required to mantgesach neighbour, the socket descriptor for
the TCP connection to that neighbour, the IP address fongsighbour, and the actual point-to-point latency
to the neighbour (as mentioned in Section 6.3, a distinatould be made between the actual latency on a
link, and the real latency on a link; the implementationwBdor a 10% deviation from the advertised latency
before the actual latency is advertised). The requireneekéép the actual latency of a link separate from
the advertised link stems from the fact that for the genemnadf routing tables which create valid distribution
trees, link state must be globally consistent.

To facilitate not sending information on this link at evesfresh cycle, a ‘lassent’ field is also defined
for each neighbour, which is a counter that will increaseagherefresh cycle until it hits the defined limit,
arbitrarily defined in the implementation as 5 refresh cycdter which some information must be sent about
that link.

The neighbours form a linked list, with each neighbour gaisidexed by socket descriptor. This allows
for the flooding mechanism to run through the neighbourskdyisimply picking off the socket descriptor to
use in the appropriateend() call.

7.2.2 Member State

Member state is marginally simpler than the neighbour stdktéhat is required for a member is that their IP
address be held, the last received sequence number for émaben, and a timestamp holding the local time
that that last sequence number was received. The IP addnessd to identify a member as an existing mem-
ber when a refresh packet arrives, and therefore can bedewedito index the entries; the same IP address
should not appear twice. The IP addresses can also be uked cahveniently when picking a member to
randomly probe, as per Section 6.4.1.

Members are, again, stored in a simple linked list, thoughdéata structure can be thought of as a table
indexed by IP address.

7.2.3 Link State

The link state to be stored is structured in a different mafmoen the member or neighbour state; link state is
instead stored as a set of adjacency lists; implemented\bgdithe head list identifying each member, each
node of which is the head of a list identifying the neighbdorthat member, and thus also describing which
links are in place. Each link is identified by the member IFhathiead of each adjacency list, the neighbour
IP within the adjacency list, and also the weight of the liak;illustration of the data structure to help clarify
can be seen in Figure 7.2.

Links added to the link state have a floor value, a minimalnagewhich no link will drop below. This is
beneficial is local area network settings, since ping tinmesmall enough that what are normally considered
minor variations in ping times can alter the structure ofpleer group quite considerably. Implementing a
floor value can help prevent this reconfiguring across lagsrzetween machines of a few hundred microsec-
onds. The floor value in the implementation is 3ms, and waseamas a cut-off point below which differences

42

links_t*

 —1 »

IP
length > > >
1P P 1P
wei ght wei ght wei ght
>l

P
wei ght

IP u

- T e T e
wei ght wei ght
g |

Figure 7.2: lllustration of the data structure used to maintink state; the pointer at the upper left is the
pointer maintained by theesh_t data structure.

in latency do not necessarily matter (in the sense that ikdite difference in the outcome if Orta were to
route a packet through one host which is 1.5ms away, or anathieh is 2ms away); latencies across local
area networks are generally negligiBle.

7.3 Communicating Control State

TCP connections were chosen for the sharing of control gat&#® offers some guarantees that data won't be
lost in transit (provided all routes to a host are not sevgat helps to ensure that state at each peer is kept
up to date; the only additional cost for dealing with TCP cections is the handling of socket descriptors,
as mentioned in Section 7.2.1. All control traffic which affestate is sent over TCP connections. We can
consider three different types of control traffic:

e One-time floods
e Regular floods
e Probing of existing/potential links

Of these, the first two are sent over TCP, the third is senttinesame UDP socket which is used for sending
application data. A fourth category would include more ralemeous types of communication, such as join
requests, acceptance packets, requests to add links,ath.dEthese types of traffic shall be considered in
turn in the following subsections.

7.3.1 One-time Floods

These flood messages are sent as and when the event thepelesairs; they are not generated cyclically
or otherwise predictably in any way. Each describes a disgment, which requires that some part of the
control state be updated, and also that routing tables asdcidated. Control data of this sort is flooded in
the following circumstances:

o Addition of a new link.

e Removal of an existing link.

10f interest is the latency between sibu.dcs.gla.ac.uk ame.gla.ac.uk, which is highly variable, but rarely greatean 3ms.

43

e Addition of a new group member.
e Removal of an existing group member.

Of these, the first two carry an updated sequence number frersaurce of the flood, to track the liveliness
of group members. These message types correspond direttly aictions described in Sections 6.4.1, 6.4.2,
6.3.1, and 6.3.2 respectively.

7.3.2 Regular Floods

Control information sent regularly is that of refresh megsa which carry current link state (if either the
weight of that link has changed significantly since the laftash cycle, or if no information relating to that
link has been sent recently), and carry the current sequamoéer for the peer which generates the message.
The refresh messages are generated once every 30 seconds.

To help ensure that minimal bandwidth is used on each refigdl, exponential smoothing of latency values
held within the neighbours state (Section 7.2.1) is emplpgach that for each ping packet returned to a peer,
the updated ping time can be described as:

p' = p*xweight + p * (1 — weight)

This is used to counter the fact that variations betweenrteg@ing times can be relatively large, especially
considering the pinging mechanism employed in Orta worktherapplication level, and is at the mercy of
the Linux kernel at both ends of the communication. This stmog process is buried within the functions
which deal with neighbour table state, and need not be a coficehigher layers of the software, but help
ensure that the network can stabilise given unchangingor&teonditions, rather than having the possibility
of a data path fluctuating between two similarly weightedtdinThe weight used in the implementation is
0.95, weighting heavily toward old latency values.

If, when a refresh message is being generated, it is detethilmat the weight of a link has deviated far
enough from the advertised weight, the current actual wegghsed as the new advertised weight, with this
value being entered into both the refresh message, andlasiodal link state, to be observed when the
routing tables are recalculated.

7.3.3 Control Data over UDP

Ping packets are sent over UDP, the only reason being thatlithg of connections at the TCP layer causes
high levels of variation in the turnaround times of ping petsksent over TCP, causing spurious ping times to
be returned. Sending ping packets by UDP generates moreromifing times, though occasional spurious
numbers are still sometimes observed (probably due to turfate scheduling decisions by the Linux kernel
at end-hosts). The pinging mechanism employed is simplesagiaces a timestamp into a packet and sends
that packet to another host. The other host catches the ppac#ieeturns it, leaving the original timestamp
intact. The source waits for this return packet and, on pgcedbmpares the time held in the packet to the
current time.

Ping packets to randomly selected members, are sent usict)ethe same packet types as for ping packets
to existing neighbours, the only difference being that oesponse, the peer who initiated the ping will notice
that this peer is not currently a member, and will initiateedto evaluate the utility of that potential new link.

44

7.3.4 Miscellaneous Control Traffic

Other control data is sent during the lifetime of the mesmeadanformation exchange using TCP takes place
between only two members. For instance, a new member rexquitht the existing member to join, and
awaits an ‘ok’ or a ‘deny’ message before it will continue.eT¢ther data of this type is for the purpose of
adding a link to the mesh, before flooding that the new linklieen created, as per Section 7.3.1.

7.4 Control Packet Types

The following control data is sent over TCP:
e j 0i n: Sentto a peer by a new peer seeking to join the group.

e j 0i n_ok: Sent back to the peer seeking to join the group after recéipf oi n packet.j oi n_ok
accepts this new member as a group member, and carries wiiktit-date information on the state of
the system (current group members, current known links).

On receipt of this message, the new member initiates@d_new_nenber , which updates the rest
of the group.

e j oi n_deny: Sent back to the peer seeking to join the group after recéigf oi n if the join cannot
be accommodated. Currently unused, but code is in placeilddte the use of § oi n_deny.

On receipt of g oi n_deny, the attempt to join the group fails.

e request _add_l i nk: Sent from one peer to another when a peer has determineithéheteation of
the link would benefit the mesh. This is similar to thei n_ok operation, except that accepting this
call does not require that all system state be sent back onss.

e repl y_add.l i nk: Sent back to the peer to notify that the new link has beenpede On receipt of
this message,

e fl ood_newl i nk: Sent on the creation of a new link; this packet is sent the mbe initiated the
new connection, and carries the local sequence number.
Initiator: Sends message to all neighbours.
Other peers. Send message to all neighbours aside from the one from vithiebeived this message,
only if we've not previously received a control message ftbmsource of the flood with the sequence
number. Local state to be changed is the addition of linledtat that link. The implication is that if
the message was sent in the first place, then some state mgedrsomewhere else in the group; if we
haven’t changed any state by receiving this message, wetdterd to forward it, as we have already
done so.

e fl ood_drop._l i nks: Sent on the destruction of an existing link by the membeeaah end of that
link.
Initiators: Send this message to all neighbours.
Other peers: Send message to all neighbours aside from the one from wieateceived this message,
only if we've updated local state given this message. Loédo be changed is: the removal of link
state for that link.

45

e fl ood_new.nmenber : Sent on the addition of a new member by that new member.itself
Initiator: Send this message to all neighbours.
Other peers: Send message to all neighbours aside from the one from weateceived this message,
only if we've updated local state given this message. Lotatesto be changed is: the addition of
member state and link state information to/from this new fem

e fl ood_nenber | eave: Sent on a member leaving the group, sent by that membef;, ilsedent by
a member who has detected a failed peer within the group re&qution 4.4.3.
Initiator: Send this message to all neighbours.
Other peers: Send message to all neighbours aside from the one from weateceived this message,
only if we've updated local state given this message. Lotatesto be changed is: the removal of
member state and link state information to/from this member

e fl ood_refresh: Sent periodically by each node, carrying a local sequencaeber (which other
peers can use to help determine when they last heard frompehi3, and local link state (ie: the current
weights of outgoing links from this peer).

Initiator: Sends this message out to all neighbours.

Other peers: Send message to all neighbours aside from the one from wieateceived this message,
only if we've updated local state given this packet. Locateto be changed is: link weights from the
peer who created this packet.

Of the control traffic sent over UDP, the only calls for the ditibn of two packet types, the format of which
is the same:

e pi ng_request : Carries a timestamp, and expects the receiver to simplyrréhe packet, with the
‘type’ field modified.

e pi ng.response: The response to the request packet.

7.5 Calculating Routing Tables

On receipt of any control information which alters the switéhe system, a peer must recalculate its routing
table, to ensure that distribution trees are not disrupted.

If the peer were routing in the conventional manner, it wostioke the tree in some convenient form and
use it for lookups by destination, choosing the appropatput link from that information. Routing over
the mesh is different, however, in that all peers are renipief data, and the source of a packet is what is
important, as the distribution tree for each may be diffefeneach source.

Thus, each peer executes Dijkstra’s shortest path algorith every group member. However, much of
the data generated here is redundant, as each peer onlyreeticemselves with the point at which they
occur in each of the distribution trees. By storing each s@and a matching list of outgoing links in an

adjacency matrix, each peer knows which peers it must fahdata packets to as part of the distribution tree
for that source. Lots of information is thrown away from eae here, and for larger groups substantial
amounts of computation will be performed.

Figure 7.3 demonstrates, on a small scale, how this workgur&i7.3(a) shows the logical mesh topol-
ogy, while Figure 7.3(b) shows the resulting spanning tozenbde A. Consider node E; on calculating this

46

(a) Five peers connected by a virtual (b) The same five peers, showing
mesh structure, with link weights the spanning tree from A.
shown.

Figure 7.3: lllustrative diagram for discussion of routtagles.

spanning tree, E will store A as one of the keys for lookup @rtuting table, with D as the result for lookup
on A. Further, on calculating its own spanning tree, E witiretA and D as results for lookup on the tag E.
This allows the forwarding of all data packets to be handigethie same routine, in that the application can
generate packets and as part of thesh_send() call will cause a lookup on the source (in this case, the
localhost), and from that arrive at a list of outgoing links.

7.6 Data Plane

Data traffic is sent using user-defined ports over UDP. THisats the use of UDP by the IP Multicast code
on which the library was modelled.

Given that the data plane and the control plane should netfere with each other, the data plane does
not need access to the control structures, and therefoes has to wait to acquire a lock to any control state.
Access to the routing table is managed safely by a mutex thckigh in general only reads are taking place
over the routing table. The only time this lock comes in truseful is on the calculation of a new routing
table, when the safe destruction of the previous table neigularanteed to ensure that all forwarding opera-
tions still using the old table are completed, and that badtprs which might cause a segmentation fault are
avoided. This data structure would be more efficient if it@vaccessed using a read/write lock, or perhaps a
semaphore.

7.6.1 Data Channels

Data channels are used to to emulate multiple sockets usszhimunicate with the same multicast group.
In terms of RAT, this translated to one channel for RTP data, @ne for RTCP data. The channels only
translate to actual data structures at the receiving endytammunication: on sending, a packet is tagged
with its channel number in the packet header, and on recgittiis placed into the appropriate queue to be
later retrieved by the application.

47

The implementation always assumes a channel 0 (zero) eg@sfor the case where only basic communi-
cation is needed with the multicast group, use of the ovaslayarginally simpler.

7.7 Known Issues & Potential Improvements

The peers using the overlay must space connections apartdasa100ms; due to the handling of the select()
statement to monitor TCP connections, the socket thahBdier new connections must be polled rather than
simply blocking over the socket as would be normal. This da#siormally cause a problem for the running
of the overlay.

More intelligent pinging code could be implemented. Cutlsetihe code for pinging hosts does not log which
hosts it has pinged; it merely responds on receiving theapjate packet and assumes that the timestamp
stored within that packet is one which it generated itselfmére intelligent way of handling ping packets
might be to have a fixed allocation of pings which can be pandineturn packet, holding the time sent for
that ping, and storing an ID in the outgoing packet. This wiallow for peers to determine when a host is
not reachable (either due to that host being down, or duedwdit restrictions in place), by monitoring for
lost ping packets.

Explicitly defined packet types for the addition of a new memir a new link are not necessarily required,;
the same functionality could be implemented via normak#irpackets. The advantage to this would simply
be that there would be less duplication of code within thelmasd therefore less chance of triggering an
obscure bug.

Also related to control packets, some bit packing couldvalfor more efficient control packets, to help
save bandwidth usage. This is not a vital requirement, butavoelp reduce the volume of the control traffic
during the lifetime of the overlay.

Improving the locking mechanism over the routing table, aged in Section 7.5, would allow for more
efficient data transfers than the current mutex can allovis iBrhas not been a problem during the testing or
evaluation of the project, but it might become a limitingttador data rates, depending on group size or type
of data to be carried.

7.8 Integration into RAT

RAT was modified to send and receive data using the Orta guvérkee modifications required can be seen in
the patches provided in Appendix C. All changes to actual@moode were contained to one file; the rest of
the changes are within Makefiles to specify the location efltrary and to define the identifier to have the
preprocessor enable the Orta as opposed to the IP Multicdst ¢

A screenshot of 4 RAT clients communicating via the overlay be seen in Figure 7.4.

- ‘ B> =] m]rnhe

| ¥ Speaker

| |@pstephen D Strowes
D Strowes.

s

P

@')S‘hepnan O Strowes

W Ustan 1272 kbis| | Talk anbs||
4 Vol 86 » Microphone 4 Gain 100
| -

Record
B| o] 1| | Nofie setected.

-)Steph-en'ﬁ Strowes

P

pi

|iZ
| "Untitied session”

Addrass gi&1-06u Port 5004 TTL 15
Blam opons. | asos. | G |
i W Listen 1261 kbrs| | Talk 0.0 b/s
B3 Speaker ¢ Vol 96 I'¥ Microphone « Gain 100
|
T

| |@»Stephen D Strowes
| |{>Stephen D Strowes
[»Staphen D Strowes

Address: g081-06u Port 5004 TTL: 15

"Uniitied sesston®

LI

| Q?ﬂuns...] Aboud.: | QI:IHJ

b
| @_S‘tepna'n O Showes

00k MW Tak 126.0 kiv's
4 Vol 96 » Microphone ¢ Gain 68

D Strowes
D Strowes

| Addrass! gm!-ﬁﬁu Fort 5004 TTL 15

"Untitfed session”®

S

_Opbons.. | Abowt. | out |

| m Listen
|¥ Speaker
|

. Q}S‘hﬂphs'n D Showes
> Stephen D Strowes
([»Stephen D Strowes

J»Staphen O Strowes

1247 kbss|) Talk 0.0 bis
4 Vol 96 ¥ Microphone « Gain 100

Address: localhost Port: 5004 TTL 15

“Untitied sesston® ‘

B E

| Q?‘Iluns... J About.: | GI.JIIJ

Figure 7.4: Screenshot of multiple RAT clients using thea@nterlay for communication.

48

Chapter 8

Evaluation Approach

To evaluate the system, there are a number of characterdtithe protocol to look at. The nature of the
overlay is important, with respect to how the protocol stésl-time communications. The evaluation of the
system then requires that not only are the characteridtite@verlay measured, but also that measurements
are taken to validate that the overlay can be used for nerd-tionferencing applications.

One key aspect of the testing is that as this overlay is dedidor multi-source multicasting of data be-
tween all group members, all experiments will gather dataefich source, unless otherwise stated. This
makes the protocol presented here stand out against soime atiter multicast protocols, in that many of the
others present a case only for single-source multicast toyrgeoup members.

Section 8.1 covers the different environments availabietdsting of the Orta protocol. Section 8.2 cov-
ers the various metrics by which the protocol will be testiscribing both why each metric is relevant, and
how it will be tested. A summary of the metrics is presentefaation 8.3

8.1 Testing Environments

Given the time available to conduct the evaluation, the tanson of a network simulator, while desirable

due to its ability to evaluate the protocol over a varietyteresting network topologies at varying group
sizes, could not feasibly be built and tested quickly endodbst the behaviour of the protocol. Other testing
environments available were:

1. Large numbers of undergraduate lab machines.

2. One machine at the University of Southern California®tmation Sciences Institute (ISI) in Los
Angeles.

3. A small network of systems linked together by transpaleidges running FreeBSD with Dummy#et
functionality enabled to impose latencies on links. Thisnoek consists 6 hosts with one network
card to act as end-hosts on the network, and five machineswadtimetwork cards to offer up to five
transparent bridges, or perhaps act as additional end-host

The first setup is useful for the purposes of observing hovpthocol behaves at different group sizes. The
lab machines are all located on the same LAN, so exhibit amiéitencies between any pair of machines.

Ihtt p: // www. dunmynet . cont

49

50

These latencies are measured in microseconds, rather ii@econds, so experiments run over the lab ma-
chines cannot be used to derive much information aboutiadditdelays imposed by routing through the
overlay, for example.

In terms of evaluation, firewall configurations prevented thachine at ISI from being a useful member
of either peer group involving the other machines. The meehias, however, useful for testing of code
before evaluation, and became the ping site for the Caldéiarade in the dummynets used (Figure 8.1(b)).

The third setup mentioned above is useful for simulating aemealistic setting where peers are sited at
different geographic locations, thus imposing real laienon packet transmission. Dummynet offers func-
tionality designed to be used for the testing of networkgeots, and allows for enforcing network behaviour
such as imposing delays on links, bounding queue sizes irotiter, and increasing packet loss rates. With
bridge and dummynet functionality enabled in their kerntlle FreeBSD machines can easily be set up to
forward traffic between the other hosts, with the simulateldyk able to emulate high-latency links between
hosts in the same room; for example, this can be used to sieqeers at different ends of the UK. The actual
dummynet networks constructed can be seen in Figures 8&k(d)8.1(bJ. The Dummynet topologies shown
here were designed to offer real-world latencies given graembers at different locations around the world;
place names are simply useful to get a rough idea of the phiygdography. While real locations were used
to derive approximate latencies between sites, they haxengssarily been followed too closely, due to the
limited number of machines capable of acting as transpéaréiges in any test setup.

8.2 Evaluation Metrics

Many of the test metrics described in the following sectioosld have variants which run on the first net-
work mentioned previously to monitor behaviour as groupsincrease, as well as the last network to test
behaviour with realistic latencies in place. Each of théofeing will describe which network the metric will
be measured on, how it will be measured, and what effect theawan have on the behaviour or suitability
of the overlay as a carrier of real-time audio. In all teslispeers connect to the first member of the group
spawned; this allows for an inefficient mesh to be formedgcWwi@rta must improve upon.

8.2.1 Worst Case Stress

The very nature of the overlay means that individual hostssanding and receiving more data packets than
the application layer is aware of. How many packets are dafdd is determined by how many links the
protocol creates to or from each host for a given networkselhis duplication raises two concerns:

1. Additional bandwidth usage over links to end-hosts. ttie discussion of the protocol has not con-
sidered bandwidth, it would be a serious issue to be coraidéconnection types varied considerably.
Clearly, many connections to be carrying data over a modghridinot as desirable as the same number
of connections through an ADSL link, or an Ethernet link.

2Measured from Glasgow; Inverness: uhi.ac.uk (60ms); Mesiem: www.mbs.ac.uk (45ms); Leeds: www.leeds.ac.uk €5m
London: scary.cs.ucl.ac.uk (50ms); Exeter: www.ex.a¢i@kms). Ping times are approximate to average ping timeelbgy start of
evaluation.

SMeasured from Glasgow; California: kame.isi.edu (175massachusetts: mit.edu (110ms); London: scary.cs.uakd80ms);
Paris: www.univ-paris3.fr (50ms); Berlin: ping www.tustia.de (60ms). Ping times are approximate to average ping logged at
start of evaluation.

51

Glasgow

Inverness

California] 40m:

Manchester

Massachusetts

Exeter London
3ms O
(a) UK Dummynet. (b) Cross-Atlantic Dummynet.

Figure 8.1: Graphs of the dummynet setups used for testioge8containing numbers represent the delay
in one direction in the line (so the round trip time from Invess to Glasgow is 60ms, not 30ms) which is
created by a transparent bridge with dummynet functionafibled between hosts. Shaded boxes are merely
switches, and empty circles are end-hosts eligible foringthe test software.

2. The increase in packets to be processed at each hostdeiadsetased processing costs in the overlay
code executing at the application layer, and puts additipressure on the networking subsystem of
the host operating system.

The stress of a link is simply defined as the number of idehtimgies of a packet carried by a physical link to
deliver that packet to the rest of the peer group. Worst CessSis then the maximum stress value observed
on any link in the group. In comparison, all links in a progerbnfigured IP Multicast group have a stress of
1, while a naive conferencing overlay which created a cotime between every pair of members over which
the members copy packets directly to all recipients woulelzaphysical link stress af on access links. Orta
should attempt to minimise the stress of links throughoetgioup by spreading the duplication of packets
throughout the distribution trees created from each souarttee group.

Determining the Worst Case Stress of a network could be ateambut it is much more useful to design a
network specifically for observing what Worst Case Stresse/@rta will generate for that network. As such,
the two networks shown in Figure 8.2 will be used specificallgiscuss the Worst Case Stress behaviour
of Orta. For each of these networks, simple test code willdrewhich will initiate connections between
Orta peers; debug output from the Orta code can be used g #ase how links have been placed across
group members. For the sake of comparison, Worst Case 8tileakso be considered for the UK and Cross-
Atlantic Dummynets described already, and it may be possiblook at Worst Case Stress values on a group
of Orta peers running over the undergraduate lab machines.

The goal of the protocol should be to keep link stress low s&as many group members as possible, thus
spreading the duplication of packets across group members.

52

(a) Worst case stress, test network 1. Designed to
attract connections to the centre peer.

i

(b) Worst case stress, test network 2. Designed to monitér li
stress in the presence of one high-latency link.

Figure 8.2: The physical topologies of the Dummynet netwdokbe used for testing Worst Case Stress.

8.2.2 Absolute Round Trip Time

As discussed in Chapter 5, the round trip time (RTT) betwe&nhosts is important when we're considering

conversational audio. By looking at the round trip times augr of Orta peers generate, it should become
apparent as to whether or not Orta is making sensible dasisegarding where in the mesh to place links.
This experiment will be run over the UK and Cross-Atlantiaxduynets. It makes little sense to run the

experiment over the lab machines, where latencies are séhlatit does not necessarily matter how data
packets are routed, so long as they arrive at all recipients.

Round trip time can easily be measured using only applicatimde designed for the purpose of the ex-
periment; no modification of library code is required. If theurce of a packet sends, through the overlay,
a packet containing the current timestamp, the source llPeaddand something to identify it clearly as a
‘SEND’ packet, then each recipient can sends the same ptxkbke mesh with type simply changed to
‘RESPONSE’ packet, altering no other state. The sourcedmamtify its own ‘RESPONSE’ packets by the
presence of its IP address in the packet, and can then daltiadifference between the current time and the
time carried in the packet.

For each response received, the test code should outpudiéhass in the form:

e RTT host i p packet _no RTT.val ue

The only limit on the frequency of these packets is that tlegprent of an RTT packet which it did not gen-
erate sends its response via the overlay, and as such, eacijeeceive many response packets which it
must ignore. With all peers sending RTT packets, this metfadliculating the RTT between pairs of hosts
is costly, but works without modification to the library code

After leaving the test code to run for 10 minutes, to ensuat tver time the overlay not only arrives at
a reasonable solution, but also stabilises and does nefpdigood links, RTT values can be collected and

53

plotted over time for each pair of hosts, to give a view as tawthe overlay is doing. RTT packets every
20 seconds would give a reasonable look at RTT between aHl phpeers during the lifetime of the group,
while not flooding the network.

8.2.3 Adaptability of Mesh to Changing Network Conditions

Since the intention of the mesh approach to building distidm trees for carrying data is that the quality
of the mesh gradually improves over time, it's worthwhilesetving how Orta behaves when the network
conditions change during the lifetime of a peer group. Thjseiment, by its very nature, requires the use of
the dummynet networks defined earlier.

Peers would be started on the dummynet networks shown irrd-Byd, and given time to settle on a mesh
configuration. Link weights can then be modified by altering tules at the transparent bridges that govern
the delays on links, and the peers again given time to settieapnfiguration.

The following alterations to the dummynet have been chosaybterve the behaviour of the protocol un-
der different conditions; some ‘long’ links have been sadrtand some ‘short’ links have been lengthened.

e On the UK dummynet network, the latency on the bridge betweearness and Glasgow shall be
reduced from 30ms to 5ms, thus removing that long link to b prompt more links to be formed up
to Inverness. Further, the latency on the bridge separatingon and the switch to which is is attached
will be increased from 3ms to 100ms, providing a longer litkietr Orta should try to avoid.

e On the Cross-Atlantic dummynet network, the latency on thidge between California and Mas-
sachusetts would be reduced from 50ms to 5ms; the latendyeoridge separating Paris and Berlin
from the rest of the network shall be increased from 5ms tari(inally, the latency on the final
bridge before Berlin will be increased from 5ms to 50ms.

In order to monitor the variation in packet round trip timésnay be useful to graph round trip times in
the same manner as suggested in Section 8.2.2. For furthaligation, it would be possible to display the
altered logical ‘shape’ of the mesh in a graphical form froathbbefore and after the modification of link
weights.

8.2.4 Normalised Resource Usage

The Resource Usage (R.U.) of the overlay, as defined in [Bhlculated as:

RU:Zdi*si

where: link: is an active link
d; is the delay of linki.
s; is the stress of link.

This can easily be calculated by summing the weight of tHedich data packet is forwarded on at each peer;
by considering each one in turn, duplicated packets arentedee of naturally.

Normalised Resource Usage (NRU) then is:

54

_ (R.U. through overlay)
NRU = (R.U. over DVRM P)

This can be calculated by hand over the dummynet netwonkgubke stress values identified in Section 8.2.1.
Without knowledge of precise latencies of links betweenemiand hosts in the lab network, it becomes
difficult to determine the weights of each physical link usedr a DVMRP tree in that environment.

8.2.5 Relative Delay Penalty

By routing packets through numerous hosts to deliver daé#l tecipients, packets will naturally be in transit
for at least as as if they were to be duplicated and deliveyegddnetwork alone. The Relative Delay Penalty
is describes the increase in delay that applications perediile using the mesh when compared to the same
unicast links being used to communicate directly betwegrt&a hosts in the peer group.

It is defined as:

RDP = mesh latency ~>=1.0

normal latency

Note that RDP values closer to 1.0 are better, since theiadditdelay through the overlay would then be
smaller.

The ideal would be to monitor how this metric changes as gsing increases, but latencies between be-
tween lab machines are so small that scheduling decisiods imathe Linux kernel on each host can have a
dramatic impact on the reported latencies between machirtég application level. Thus, the time taken to

route a packet across the lab machines is not a good indicfttoe performance of the mesh in this scenario.
For this reason, the Dummynet setups shall be used for aviadd” look at RDP.

The experiment would involve setting up the peers to contteeich other and have them regularly send
packets to each other. The frequency of these packets dbesitter, so long as they would run for 10 min-
utes, to allow time for the overlay to settle. All members cannect to the first peer to be spawned, leaving
the mesh to improve itself and generate data transmisses.tr

Peers would be transmitting numbered packets at a rate cigm@ximately every 20ms. With every other
peer outputting the time taken for each packet to arrivegiie link state information held for each peer’s
neighbour (which should prove accurate enough). Detengiaictual ping times between the source node
and each peer could also be scriptable.

Testing of this metric requires modification of library cod@n receipt of each packet, peers should output:

e RDP host i p source.i p packet _no di stance_to_here

Analysis of the behaviour of the RDP value after the fact temtbe performed.

8.2.6 Time Taken to Repair a Partitioned Mesh

While it is possible to have the mesh disrupted by a membeirlgaas discussed in Section 6.3.2, there is the
further possibility of a member failing and not exiting aidg in which case group members must determine
that this member has died as per the algorithm presentectiio8d.4.3, and attempt to clean up state.

This experiment could either be lab-based or dummynet bagedot entirely important which one. The

55

difficulty lies in partitioning the overlay.

In order that the overlay can be partitioned with ease, itesadense in this case to disable the code re-
sponsible for attempting to add links during the normal afien of the overlay. We shall assume that the
mesh is partitioned on a peer dying unexpectedly, leavihghaisical links in place (obviously if the only
physical link between the two halves of the peer group isreglesoftware has no hope of overcoming the
problem).

To demonstrate the repairing of an overlay partition, arclodipeers will be constructed. One of the peers
in the middle of that chain can then be stopped abruptlyl (i), and the other peers left to figure out what
happened as part of their normal running cycle.

Observation of link-state on successful repartitioninghef overlay, using debug output to determine the
sequence of events leading up to the reconstruction of trehm€&me taken to repartition the overlay is
essentially time when peers log the dead peer as havingrufiscted, until the first new link is added from
one side of the partition to the other.

8.2.7 \olumes of Control Traffic Sent

This is an interesting metric due to the very different wagt ttontrol traffic is handled in the Orta protocol
compared to the Narada protocol. Control traffic is partidyleasy to monitor; each node can be modified
to output the size in bytes of all control traffic sent or forded. Once all peers have terminated, calculating
the total control traffic sent from each node is trivial.

To observe the variations in control traffic sent, this ekpent should produce graphs showing the aver-
age level of control traffic with error bars showing the miniitm and maximum volumes of control traffic,
plotted against group size.

Testing of this metric requires modification of library cod®n sending or forwarding control data, each
peer should log the number of bytes sent; if the peer loggeddtume of data sent over TCP connections
and the volume sent over UDP connections, a comparison carat between the two types of control data.

This experiment can, again, be run with differing group sizeith each experiment running for 5 minutes.

The nature of the latency between lab machines being so lewdat demonstrate a ‘normal’ situation for the
flooding of control data, however. The dummynet network daa be used to monitor control traffic volume
for one or two of the smaller group sizes tested on the unddrgte lab machines, to compare volumes of
flooded data.

8.2.8 Reliability of Overlay: Lost & Duplicated Packets

Reliability of the overlay can easily be measured using &ntgst harness code, simply making use of the
overlay library.

Volume of lost packets can be calculated by:

if packet_no > (max_recvd_packet_no + 1) then

56

lost_count+ = (packet_no — mazx_recvd_packet_no — 1)
end if
Volume of duplicated packets can be calculated by:
if packet_no < max_recvd_packet_no then
dupecount++
end if
Running this test over larger groups on the lab machineddisee marginally higher levels of lost/duplicated

packets, as with the peers so close to equally distant fraim ether, the overlay is more prone to link state
changes.

8.3 Summary

A number of test metrics have been proposed here by whichghaviiour of Orta in different situations can
be discussed. The results of the experiments to test thesiesrare covered in Chapter 9.

Chapter 9

Evaluation

This chapter presents the results from the experimentsigied in Chapter 8. After discussion of the be-
haviour of the dummynet setups in Section 9.1, the folloveiagtions focus on each of the evaluation metrics
covered in Section 8.2, in the same order.

For the purposes of the evaluation, two different experiaesetups were used as detailed in Section 8.1.
For experiments which made use of large numbers of machinesmparisons between larger peers groups
against smaller peer groups, undergraduate lab machinmesused; these machines were all 1GHz Pentium
llls running Scientific Linux, with its default Linux 2.4.21 kernel. Other experimentsiethrequire that
nodes be some distance apart (in terms of latency) made @sewhber of FreeBSD 4.11 systems setup to
act as bridges, with dummynet functionality enabled forgheposes of introducing additional latency over
links. End hosts on this network were 450MHz Pentium llisniag KnoppiX, installed directly onto disk.

In all experiments presented, the threshold for additioneanoval of links was calculated as described in
Section 6.4.3, with the constant value being set to 0.02.cbimstant was chosen based on testing during the
implementation phase. Testing was primarily conductedhenlab machines, and over time this threshold
appeared to give a reasonable balance between peers higititp too many neighbours, and the opposite,
peers not forming any more links than they were initiallytgd with. The threshold is discussed further in
Section 9.10.

9.1 Analysis of dummynet networks

Before discussion of the results from the test metrics tledves, the behaviour of the Orta protocol over the
dummynet networks presented in Figures 8.1(a) and 8.1@hosld be considered. Figures 9.1 and 9.2 show
the resulting overlay structure and distribution treeslfoth these dummynets, using the threshold defined
earlier.

In each of Figure 9.1 and Figure 9.2, subfigure (a) shows th&hrsaperimposed over the physical net-
work topology, while subfigure (b) shows the logical netwstikucture of this mesh. Subfigures (c) through
(h) show the distribution trees rooted at each source, wighrécipients on each tree having their names
condensed to one or two letters which uniquely identify therp

Ihtt ps: // ww. sci entificlinux.org/
2ht t ps: / / ww. knoppi x. or g/

57

58

Glasgow Inverness Glasgow Inverness
@; —

Manchester Leeds
5ms

Manchester

Exeter London Exeter London
(a) Resulting mesh structure from the UK (b) Resulting mesh from the UK Dum-
Dummynet, shown over the physical net- mynet, logical structure.

work structure.

Inverness Leeds London Exeter

Q Glasgow Manchester Q O 0

© O e oRe oG ofcRe

o C{ o, @ ® & ® ©
BOO OLO © © © ©

© (d) (e) () () (h)

Figure 9.1: The resulting mesh over the UK dummynet, and igteilslition trees rooted at each source.

9.1.1 UK Dummynet

Figure 9.1 shows the mesh structure that Orta forms over i®Ummynet. Orta has concentrated links
between Exeter, London, Manchester and Leeds, providilygame link to Glasgow and Inverness. Further,
the link to Inverness is through Glasgow, creating a chaipesrs. The problem here is that if Manchester
were to leave the group, Glasgow and Inverness would be ateplairom Leeds, Manchester and London,
partitioning the mesh into two groups. Mechanisms desdribeSections 6.3.3 and 6.4.1 would be able to
repair the partition, but it would be desirable that a pianitould not occur so easily. The solution might be
to lower the threshold for adding links, but care would havee taken to ensure that the threshold was not
too low, allowing most, or all, possible links to be added.

The structure of the mesh beneath the Manchester nodel(eeds, London and Exeter), with many con-
nections between members, would allow for any one of thosesp® exit cleanly without affecting the
others. Likewise, Inverness could exit cleanly, having aerg which depend on it. Glasgow and Manchester,
however, become a potential points of failure.

An improved overlay structure would have at least one maretlh Inverness. With that one link in place,
either Glasgow or Inverness could leave the group withattdding the data flow to or from the other.

Orta has created few connections over the longer physidad,land choosing instead to create many connec-
tions over the shorter links The protocol hasn’t placed n@omnections over the longer link up to Inverness
and Glasgow, instead choosing to concentrate more linksgriiee hosts who are relatively close together.

59

Glasgow Glasgow

25ms

London

California
,,,,,,,,,,,,,,, " . S
California a0

50ms

Massachusetts

Berlin

(a) Resulting mesh structure from the Cross-Atlantic Dum- (b) Resulting mesh from the Cross-Atlantic Dummynet, log-
mynet, shown over the physical network structure. ical structure.
California

Massachusetts Glasgow Berlin

SRR

© (d) (e) ® © h

Figure 9.2: Distribution trees from each peer in the peeupgrtaken after the mesh had settled.

This makes sense, as Algorithm 2 in Section 4.5.1 will tryaofur short links between any two peers. Since
there are no links to Inverness considerably shorter thadinks that it found, no more have been added.
While the variation in latencies between some peers lowghéndummynet is equally small, the ratio be-
tween the overlay distance with or without the link is presiiy significantly large for the link to be added,
and for it to remain part of the mesh.

The fact that, although most of this network is well-conee¢tOrta has not created enough links suggests
that the threshold value that determines whether or notkeslirould be added or not should be weighted to
offer a higher chance of allowing a link when a peer has onk/@ighbour in the group.

9.1.2 Cross-Atlantic Dummynet

The mesh structure Orta forms over the Cross-Atlantic Dumethyas seen in Figure 9.2, suffers from the
same problem as the UK Dummynet. Glasgow and Berlin havelimtbme leaf nodes in the mesh structure.
Orta has not created a chain of peers like that of Manchest&lasgow— Inverness seen in the UK dum-
mynet.

The link between California and Paris is unexpected. It appthat to route a packet from California through

60

TOOTTTS

@ LUUITTS g

(@) (b)

Figure 9.3: Logical topology of two of the test dummynetscgld over the physical topology.

Massachusetts and London to Paris places enough additaiaaty on the round trip time that Orta has
deemed the California-> Paris link useful to the mesh structure. The addition of linis allows for a faster
connection from California to not only Paris, but also Berko the addition of the link is actually entirely
reasonable, based on the link adding algorithm.

Again, this mesh could be improved by lowering the threshetplired for adding links. The worry is that a
departing group member can partition the mesh, which shoeilaoided if at all possible by the Orta peers.

9.2 Worst Case Stress

The physical topologies designed specifically for testhmgworst case stress of a link were shown in Figure
8.2. These physical topologies were designed to obseneeow behaves in smaller, perhaps more artificial,
environments. Figure 8.2(a) was designed to attract linkise centre peer, while Figure 8.2(b) was designed
to observe Orta’s behaviour with two clusters separatedngythigh-latency link. The resulting mesh struc-
tures for this test can be seen in Figure 9.3.

Just as in the UK and Cross-Atlantic dummynets, the quafithe overlay in Figure 9.3(a) suffers by not
creating enough connections between peers. This is, inchato the highly artificial nature of the overlay; if
node E was behind an access link with an additional lateneyfedv milliseconds, the peers on the periphery
of the network would be more likely to create some connestiogtween each other, since routing through
E would then become more expensive; E became the hub of ciiomeon this test network purely because
the time taken to route packets through E to any other hosisisrgially the same as the time taken to route
directly from A to B, for example. A link from any peer to E is lofver latency and achieves the same round
trip time as a link directly between A and D, for example.

The distribution trees for this network all route throughald E duplicates packets to all other group mem-
bers. Thus, the worst case stress for the network is 4. Cen8idorithm 4 in Section 6.4.2 for dropping
links, and it becomes clear that the difference betweenatemty with and without a link between A and B
will be so close to zero that it would be very difficult for afyéshold value to retain these links. This, again,
is a side-effect of the artificial design of the network, tgtiows that it is still possible to achieve the worst
possible stress value. All physical links other than theeasdink to E have stress 1, and it is only E which
handles the duplication of packets.

In Figure 9.3(b), however, Orta has created many more liekaden peers. To have only one link between
the two halves of the group is a point of failure, but only an& is formed in this scenario perhaps due to the

61

highly artificial nature of the network. Peers A and F bridge two halves of the group because they are the
closest together of the two halves.

The worst case stress in this example is 3, and occurs onrke fiom A to its connecting switch, and
from F to its connecting switch. The stress of the high laydindk is 1. Orta, having partitioned this group
into the two distant groups with a connection in the middkes hvoided the potential worst case stress of 5,
in this case.

If we consider the UK dummynet in Figure 9.1 for slightly lestificial results, we can see that the worst
case stress on any physical link is 4 at Manchester. Desgitging three TCP connections, the physical link
from Exeter is not used as much as it may seem. While the higlress level it sees is 3, this stress level
is only actually met by considering the distribution treeted at itself; by considering the other distribution
trees, Exeter’s stress level is significantly lower, anémft.

Further, the and Cross-Atlantic dummynet in Figure 9.2 leilda worst case stress of 3 at both London
and Paris, but in this scenario, those stress levels areanaumerous distribution trees. The worst case
stress is clearly affected by the number of links that thequal creates for the peer group.

Of further note is that the worst case stress across a grasipe86 was only 6.

9.3 Absolute Round Trip Time

RTT results for the two dummynet configurations can be seéigimre 9.4. These graphs are showing a mod-
ified RTT between each pair of hosts, such that the lines septeaw RTT, plus another 60ms to compensate
for buffering, encoding and decoding delays, etc.

The variation we see in RTT near the start of the test is sirtidy of the mesh reconfiguring itself to find a
good set of links for the overlay. All peers initially conniéa the first peer to be initiated (which in the UK
network is Inverness, and in the Cross Atlantic network isf@aia); with this in mind, it is not unexpected
that we see initially high RTTs for most hosts. The RTTs disdihowever, and we can see that no two peers
have a round trip time of over 400ms, aside from the initiabpoonfiguration at the start of the simulation
for the Cross Atlantic configuration.

We can see from these graphs that the overlay manages to #dd Ibgks after the initial formation of
the group, and keeps those good links (as the RTT does netiseionce the good link is added).

9.4 Adaptability of Mesh to Changing Network Conditions

As part of the Orta protocol, peers are required to constantibe their neighbours, to monitor network con-
ditions. The implication of this monitoring of network cdtidns is that the Orta protocol should be able to
adapt should those conditions change.

For the purposes of this experiment, the two ‘real-worldyaynets were used, and after allowing the peers
to run for long enough to have the mesh stabilise, the lagsra some bridges were altered, as described in

62

0.8 |- B
o
°
5
g 06 R
@
o
£
'_
2
E
- 04 —
c
5
2
24

0 5 10 15 20 25 30

(a) RTTs from all hosts to all other hosts in the UK Dummyneaxis is represents time, over a 10 minute

period.
1 T T T T T

0.8 | —
o
©
5
S 06| .
K2
[}
£
'_
=3
=
5 i
c
>
o
x

o 1 1 1 1 1
0 5 10 15 20 25 30

(b) RTTs from all hosts to all other hosts in the EU-US Dumntyneaxis is represents time, over a 10
minute period.

Figure 9.4: Graphs of Round Trip Times to all hosts over batimhynets. Each line plots the variation in
RTT from one host to one other in the group, over time. Numbars-axis merely indicate reading number;
one reading every 10 seconds for the duration of the group.

63

Inverness Inverness

%)
£

w
Glasgow Glasgow

2%
2

Manchester

Manchester Leeds

SwW8

Exeter London Exeter London
(a) Logical topology of mesh before link weights (b) Logical topology of mesh after link weights
were changed. were changed.

1 T T T T T
0.8 | R
o
©
15
g 06 B
L
[}
£
E
=3
=
u i
c
>
o
24
o 1 1 1 1 1
0 5 10 15 20 25 30

(c) RTTs from all hosts to all other hosts in the UK Dummynetxis is represents time, over a 10 minute
period.

Figure 9.5: Variability of mesh under changing conditiongloe UK Dummynet.

64

Section 8.2.3.

For both of these networks, the initial logical mesh struetis shown next to the resulting logical mesh
structure. RTT values have also been provided, to moniwb#haviour of the mesh during the transition.

The behaviour of Orta over the UK Dummynet can be seen in Ei§us. The reduction of latency to In-
verness has allowed more links to be added, though somewtmaising is the removal of links to Glasgow.
The assumption is, again, that without additional weightsaocess links, the difference in distance from
Manchester to Inverness (via Glasgow or not), for exampgl@egligible. Orta has reduced the number of
links to the London host, having had the latency to it inceglasonsiderably. On reconfiguration, Orta is still
placing too few links to some nodes.

Figure 9.5(c) shows the variation in round trip time agathstlifetime of the mesh; around the 10th sample
point we see the rather dramatic reconfiguration of the nétwioucture. Immediately after the link weights
are reconfigured, round trip times peak, some at a little d@®ms. The mesh restructures itself and the
routing tables react accordingly, however, to bring thendbtiip times between all pairs of members down to
beneath the 400ms limit.

The variation observed in the Cross-Atlantic dummynet,Bgares 9.6(a) and 9.6(b), is minimal. Reducing
the latency to California has allowed Orta to create onehéurtink in the mesh, connecting California to
Glasgow. No addition of links has occurred elsewhere. FetLtndon/Paris/Berlin peers, this is understand-
ble, due to the similar increase in the latencies observabase links; by reducing the latency to California,
it should be expected that a new link be formed to that peer.

Figure 9.6(c) shows the variation in round trip time agathstlifetime of the mesh; around the 10th sample
point we see the reconfiguring of the network structure gkilace, and the reconfiguration of routing tables
and addition of the new link thereafter. It is worth notingéd¢hat on recofiguration, the peer group still
manages to ensure that no two peers experience a roundrigmfiover 400ms.

The behaviour of the mesh in these situations shows thatdart@rovide reasonable overlays for use in car-
rying real-time data, and also that the mesh is capable ofinggto changes in the network topology quickly
enough to avoid unacceptable delays for extended periotimefbetween peers when routing through the
overlay.

9.5 Normalised Resource Usage

Discussion of the Normalised Resource Usage (NRU), as dEfireection 8.2.4, is more difficult than origi-

nally intended, if the UK or Cross-Atlantic dummynets arbéoconsidered. The difficulty lies in the structure
of these networks. While Manchester looks, on the surféleeal useful candidate for examining the highest
NRU values that the UK dummynet can produce, there is nodgten the access link to the Manchester
host. The absence of any noticeable latency from that hoahsthat the calculation of the metric is re-
dundant. In essence, the stress of the link is still valid,ifotlhe latency of the link is essentially zero, then
the difference in resource usage between sending one gaakemerous along that physical link is marginal.

If we consider, again on the UK dummynet, the Exeter host, taeddistribution tree rooted at that host,

65

Glasgow Glasgow

25ms

London London

California California
A0MS

50ms

Massachusetts Massachusetts

Berlin

(a) Logical topology of mesh before link weights were (b) Logical topology of mesh after link weights were
changed. changed.
1 T T T T T

0.8 E
o
©
5]
g 06/ i
2 F
) AR
£ /!
'_
=3
=
- i
c
>
o
x

o 1 1 1 1 1
0 5 10 15 20 25 30

(c) RTTs from all hosts to all other hosts in the EU-US Dumntyneaxis is represents time, over a 10
minute period.

Figure 9.6: Variability of mesh under changing conditiongloe EU-US Dummynet.

66

(a) Artificial network for examining NRU. (b) Distribution
tree rooted at A.

Figure 9.7: Artificial network structure for discussion afrmalised resource usage. (b) is the distribution
tree created from A to the rest of the group, shown in (a).

we can derive some minimal results. With reference to thteildigion tree from Exeter, 9.1(h), and the phys-
ical structure of the overlay, 9.1(a), we can trace the madinks used to distribute one packet throughout
the multicast group: Exeter’s distribution tree calls fete packets to be duplicated on the physical link from
Exeter, and nowhere else. Thus, the total resource usatiafane packet isx8ms, plus the latency of every
other physical link utilised in the mesh. This results in aRWvalue ofgggz = 1.1, which is reasonably
close to the goal of 1.0.

The difficulty with measuring this metric over the ‘real-wdirdummynets is that not all links have a no-
ticeable delay. To this end, consider the network in Figui&a9; with this physical network structure,
we would likely see a mesh structure such as that shown inr€&igL8(b), and as such, a distribution tree
from member A such as that in Figure 9.7(b). In this example,NRU for the distribution tree from A is
ST Sy L et S Lo — 320ms — 1 98, Contrasting this value to the NRU for DVMRP
of 1.0, and the NRU for a naive overlay application which Intigee an NRU as high as 2.12 in the worst

case, we can see that Orta almost performs as well as theatentilbVMRP tree.

9.6 Relative Delay Penalty

Relative delay penalty (RDP) is another metric which seffefrom the design and size of the dummynets.
The issue is that to route through several hosts to reachtiaalésn on the overlay generally incurs the same
cost as when routing directly between the same two hostss ighin part due to the lack of links available
to route connections, as in a real network infrastructureections between pairs of group members would
likely take different paths through the physical infrastiure. Because of this, all numbers returned by the
RDP code were close to 1.0 for the dummynets tested.

If we consider again the mesh in Figure 9.7(a), introducedsfection 9.5, we can discuss how the RDP
value is affected by the process of routing through the ayerlfThe RDP measure becomes an important
measure as the size of the group expands, as it will direffdgtethe RTT times reported in Section 9.3.

By observing the distribution tree in Figure 9.7(b), it ieat that the relative delay penalty from A to all
of members B, C and F is 1.0, as no additional routing is tagiage, and A is forwarding packets directly to
those peers.

67

O DD DD O

(a) The initial logical network topology. (b) Selection of the host to be killed. While TCP connec-
tions will close, member and link state will remain intact.

(c) The logical shape of the network after the fixing mech- (d) The logical shape of the network when peers have
anism has run, showing the network has repaired itself. formed additional connections to reconnect both sides of
the mesh.

Figure 9.8: Logical view of a peer group both before and aftpartition has occurred.

The RDP from A to D, however, is easily calculated @87:£50ms — 1 267, and the RDP from A to E

‘e 140ms+45ms
is = = 1.276.

The ideal relative delay penalty is 1.0, offered by a true IRItMast distribution tree or a naive overlay,
and these figures approach 1.0 due to the overlay only roatjacket across the high latency link when it
has no other route to the rest of the group.

Without the ability to test the RDP over larger groups withlisic latencies in place, it is difficult to draw
further conclusions about the RDP values returned by Oz Ralues will naturally rise as the group size
increases, provided the overlay is not adding links to epesr in the group, and instead holding onto some
reasonable number links betweenmembers, but a largeet®sdirk or a network simulator would be required
to derive by how much exactly the RDP values would increaseadditional issue with the RDP calculation
over the dummynet is that mentioned in Section 9.5, of adtiermoutes through the network being possible
for different connections, therefore offering differeatdncy characteristics.

Despite not having a large enough network available to téstrhetric further, the numbers derived here
look promising for the Orta protocol.

9.7 Time Taken to Repair a Partitioned Mesh

The logical network topology used to test the ability of tleup to fix a partitioned mesh is shown in Figure
9.8(a).

In order to form a partition, the code responsible for prgbgmoup members and initiating new connec-
tions to those members was disabled. With that code disablémhical chain of peers was created as per
Figure 9.8(a), and shortly afterward, host D was killed @i%ki | | - 9” command). The actual timeline of
events from the initial kill signal until the mesh was fullgpaired was as follows:

68

1 0 seconds— Member D killed.

2: | 43seconds— First new connection made to a silent host ortllee side of the partition.
3 72 seconds— Member D declared dead by another group member.

4: | 190 seconds — All member state brought back up to date.

Not shown on the diagrams are the attempts made by group mgrnabeonnect to group member D, be-
tween stages 1 and 3 in the table above. In terms of how the pese actually behaving here, peers were
attempting to form a TCP connection to D, which was beingsefi as no process was running to accept the
connection). The peers did not clear the member and link stathat member until the timeout had expired
to declare the member dead; in the implementation, thig is# seconds.

State changes on one side during the partition are not obdenv the other, hence the time taken for the
routing tables to provide valid distribution trees agaieef® must wait for refresh packets to arrive in order
to update the link-state. This requirement for link-stafeimation to be readily available, preferably within
the next refresh cycle, is at odds with the bandwidth savirggsstion in Section 6.3 that if the state of a
link has not changed recently, then a host sends informationt that link less often. This additional delay
in the sending of some link state explains why it took so largtie group to arrive at step 4 in the table above.

The time taken to repair the mesh is a side-effect of two irddpnt mechanisms. First, the time taken
to rejoin the two halves of the mesh and declare the killed beras being dead, and second, the time taken
to remove the dead member from the local state of each peer.

The time taken to repair the mesh here is clearly of little imsea conferencing application. The parti-
tion repairing scheme, taken from Narada, that Orta usedde® is not suited for this type of application.
Given that TCP connections are used to maintain connedtietvgeen members, it would be reasonable to
assume that if a connection is closed unexpectedly, withautprior notification from the peer, then that
peer has failed unexpectedly. All neighbours would flood thformation outward; even if the mesh became
partitioned through the death of this peer, the act of rengpthie relevant member and link state immediately
at each group member aids the reconstruction of routingsatnh reconnecting the mesh. As is normal on
receipt of a member leave notification, peers recalculaie thuting tables; it would not be entirely difficult
during this process to spot members who are no longer rebtaatid add links to those members until all
members can be reached once again.

While this would require a lot of communication and compiotatit would be feasible to fix a partitioned
mesh due to failure of a peer within seconds. The only issgmnstill be that of link state changing on either
side of a partition before the mesh is reconstructed, eveugt the partition may only exist for a matter of
seconds; an easy solution might be that on noticing a membiehvis unreachable, to ensure that all link
state is retransmitted at the first refresh cycle followimg tepartitioning effort. This, at least, would guaran-
tee for the total recovery of all distribution trees withid Seconds.

It is worth noting that under normal operation a partitiomfied in the mesh, perhaps from a member failing,
will be repaired before the code dedicated to fixing a partitvill be initiated. The reason for this is that the
mechanism to randomly ping peers for the purposes of evatuaew links is likely to ping a member on the
other side of the partition. In this situation, it will stihke some time for the local state at all peers to be
repaired if any state has changed during the patrtition.

69

Monitoring TCP connections does not protect the mesh frdrmamber failures, however. TCP state is
maintained in software, and a severed physical link, or arnagpowered down unexpectedly, does not close
a TCP connection. In fact, the connection would likely timelong after the mesh had noticed that peer was
not responding. If more complex methods of tracking respsit@ normal ping packets to neighbours were
employed, a peer would assign some large weight, less tfiaitynto the link in question, thus allowing for
the mesh to route around a failed peer before it has even tedardd dead. With a well-formed mesh, the
routing changes happen swiftly; if the peer formed the oolyte between two halves of the mesh, normal
link discovery mechanisms would quickly allow for new linksroute over. In either eventuality, it appears
that it should be possible to repair the mesh in a matter afreds; rather than minutes.

The mechanisms in place for fixing a partition should be regdabefore Orta can be used for real-time
applications.

9.8 VWolumes of Control Traffic Sent

This experiment made use of the undergraduate lab macteaek; of the various peer group sizes tested
lasted for the same five minutes. The nature of the floodingge®to distribute control information deserved
attention, and so the volume of control traffic sent at vagigroup sizes was monitored.

The average volume of control traffic sent by each group memober TCP, as shown in Figure 9.9, ap-
pears to rise linearly. This makes sense, in that providdddiate remains reasonably constant, then most
TCP traffic being sent is the regular refresh packets frorh paer. The average volume of UDP traffic sent
over the lifetime of the group appears to remain constarsymably due to the number of neighbours each
peer has in the mesh does not vary significantly. As grou simeease, so too does variation in the maximum
volume of data sent on each type of connection, suggestatgetren though the average number of neigh-
bours a peer has in a group remains constant, larger groaposge peers with larger neighbour sets than
others. More neighbours in the mesh requires that a peerdlofmward a flood message to more links when
it receives such a message, and likewise, sends more pikgtpdo existing neighbours over the UDP sock-
ets, hence the increase in volume of data sent by each trgéic Given that these experiments were run on
lab machines, no conclusions can be drawn about the cowitygofithe hosts which attract most connections.

Plotting the total control traffic sent over the whole peesugr in Figure 9.9(b), we see that the total vol-
ume of control data required to maintain the group riseslilyewith group size. This is a useful property in

that the limiting factor for larger group sizes is not thewrak of control data, but may actually the amount
of computation involved at each peer. Further testing wbeldequired to determine if this was the case.

The volume of control traffic sent at group sizes 4 and 6 overdbimmynet were similar to volumes sent
at those group sizes on the lab machines. Larger networks‘sgial-world’ properties would have to be
tested or simulated to determine whether this holds foelaggoup sizes.

9.9 Reliability of Overlay: Lost & Duplicated Packets

This experiment was run for 5 minutes at all varying grougsjavith each host transmitting an increasing
sequence number from a test application every 20ms. A pewrgtng a new data packet every 20ms will

70

oQ
FrEE o

S O

[
|@WT

=D<

| I NS [N (S (NN N SN N S S (N (S S S S S S_— _—_—_— _—
¥ XY XYY XY NXYYYYYYYYYYYYYYY
OMMOoOLOLOLOULOL OO OLWOoOLWmOoOLWw
LNONLULNONMNULANONMNMNLIL NOMNLNOIMNSL N
LTI TTONOOONNNNAAAA

(sa14g) J9ad yoe:

(]
©

L

12 14 16 18 20 22 24 26 28 30 32 34 36
Group Size

10

(a) Average volume of control traffic sent from each hostluding minimum/maximum variation in this

value. Graph shows TCP traffic, UDP traffic, and the combiogal.t

(SRS 7
FoE
|W mDr [t...]
o<
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
S 3> 33>=>3>3=3>3=3=35>73-°:3
Q 1n o n o 1w O v o wnw o wmwownw o wo W
®» 0 0O M~ M © O 1 1 < T MO MO N N A A O
(s@14g) 1uas e1Ep |01JUOD JO SWN|OA [B10 |

Group Size

(b) Total volume of control traffic sent throughout the emtgroup during a session at each group size.

Graph shows TCP traffic, UDP traffic, and the combined total.

Figure 9.9: Variation in volumes of control traffic sent atyiag group sizes during the lifetime of the mesh

at various group sizes.

71

—————T—T— T
No. of lost packets from a source No. of packets duplicated ffom a source

30

25 + A

20

Packets Lost

15 |

Packets Duplicated

PR

10 |

+ o+ —

L
R T
"

+ P

e e

+ For o+ o+ o+ o+ o+ o+

, R VU SO SO SO S S H — NI P

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
Peer Group Size Peer Group Size

e
bbbt
Y
R Lt L e e L g
Fie o+ o+ + +

¥
A A e R
Foale ® ot bbbt
Lol v a4 4+ 4+
R

®
®
w
8

(a) Graph of packets lost over varying group sizes. Total (b) Graph of packets duplicated over varying group

number of packets lost for each group member, from any sizes. Total number of packets lost for each group mem-

other individual group member, at varying group sizes. ber, from any other individual group member, at varying
group sizes.

Figure 9.10: Packets lost and duplicated for varying grézgss all peers sending data every 20ms.

generate up to 15,000 packets during the lifetime of thelayef he test code monitors packets received from
each host, and logs both packets lost and packets duplitata@very other host. Since streams of data from
each host in an audio conference are completely separatenhy@eed consider the packets lost from any
individual source, not cumulative packet loss from therergroup.

Results from this first run can be seen in Figure 9.10. Bottkgtaloss and packet duplication rates ap-
pear acceptable for all group sizes used, with higher ldss idue to more frequent reconfiguration of links
and inefficient computation at end hosts.

Some packet loss should be expected due to normal recorifigurd the mesh. This is particularly true
of running such group sizes over a local area network wheemd#es between hosts are measured in mi-
croseconds, rather than milliseconds. While the numbein&§lin the group is reasonably stable (varying
by at mostt4 links for larger groups), there is still some variation mmhmany links each peer holds onto.
Erroneous ping times can lead to incorrect latencies beipgrted, causing the mesh to add or drop links.
Packet losses and duplications due to this natural recaafign are what we can see at all group sizes, and
explains the increase in packet loss and duplication ratesger group sizes. Duplicate packets arise for the
same reason of periods of misconfiguration.

It's worth noting that as these tests were run, by necessitynachines all occupying the same LAN, that
ping times were notoriously close to each other, and gelgaeported to be the floor value of 3ms (some
larger, presumably due to unfortunate scheduling of therseesses by the Linux kernel).

The graphs shown here do not demonstrate the possibilitypefea leaving, and splitting part of the mesh
structure, though this would be a very real concern undeemealistic settings, with members joining and
leaving at more arbitrary moments than simply leaving atesll-defined 5 minutes. One possible solution
to force a member to keep at least two links to the rest of thehnmeight be to require that a an absolute
threshold value close to zero for the case of a peer havingghbbeur be used instead of the algorithm nor-

72

—————T— T
No. of lost pacKets from a Source No. of packets duplicated ffom a source

Packets Lost
~
Packets Duplicated
£
N

SO SO e e A S ey e R R R S S
4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
Peer Group Size Peer Group Size

(a) Total number of packets logged as being lost from the (b) Total number of packets logged as lost from the
source by each group member, at varying group sizes. source by each group member, at varying group sizes.

Figure 9.11: Packets lost and duplicated over the lifetimgadous sizes groups.

mally used to generate a threshold value. This would reduitber investigation, to determine whether the
setting of an absolute threshold value for some group mesnbeuld upset the stability of the mesh, partic-
ularly if that threshold was significantly different fromethof what would otherwise be calculated.

One further issue would be that of attempting to balance ltheshold in groups large enough that rout-
ing tables at peers could become large enough to overflowmgdJDP buffers, thus losing packets, such
that this does not happen, but also that peers still retdenat two neighbours, and distribution trees do not
become too deep.

9.10 Discussion of the Threshold Value

Both the Narada protocol and the Orta protocol rely heavilytee definition of a threshold value, which acts
as a seemingly arbitrary number that dictates whether amendink is worthy of being included in the mesh.

It appears from the Dummynet structures shown above thathbsen threshold value works and gener-
ates correct meshes (in that they are fully connected) thsitiot capable of providing at least two links to
each node in the group at all times.

Part of the difficulty lies in finding a threshold value thatrik®for varying group sizes, over varying network
topologies. For example, peers on the lab network groupgether to achieve between 2 and 5 neighbours,
but this behaviour was not reflected on the dummynet netwested.

Further difficulty in choosing the threshold value is thatdtuses the overlay to behave differently in dif-
ferent types of environments. It might be beneficial to haWemnt thresholds ‘hardwired’ for different
environments, so a threshold might be more appropriatedofetencing between home users over ADSL
links, while another might be better for groups of users @nséime LAN. Adaptation of the threshold calcu-
lation during the lifetime of the overlay could be achievalgerhaps based on group size, number of sources,
variability of link types, latencies between group memb&same a few. Evolutionary algorithms could

73

perhaps be of use here, to allow the system itself to decidge thiheshold to use based on results from past
attempts at threshold values. This approach would requbystantial testing before real-world usage.

9.11 Summary

Orta appears to provide desirable properties for real-tym@ications. The volume of control traffic sent
during the lifetime of a peer group is reasonably predigabased on group size. Round trip times achieved
on the test networks are within the limits required for casagional audio to take place, and packet loss and
duplication rates are minimal. Orta achieves worst cassswf substantially less than that of a naive unicast
application. While more testing over a larger variety ofwaatks would be required to boost confidence in
the new protocol, these results are promising.

Mechanisms used to fix partitions are unsatisfactory, hewélhe packet loss incurred at some peers would
be too high, especially if the algorithm takes in the ordemifiutes to repair the mesh. Potential improve-
ments to this algorithm have been highlighted in Section 9.7

In summary, the Orta protocol defines a peer-to-peer ovedpgble of carrying real-time data, which demon-
strates useful properties for the carrying of this data. l@vttiere are some issues to be resolved when a
partition has to be fixed, these issues are well understowtireodification to the protocol would allow for
swift reconfiguration of the mesh structure, leading to ireipaseconds rather than minutes.

Chapter 10

Conclusions & Future Work

10.1 Future Work

Further investigation is required into determining theaidreshold values for different environments, and
into trying to find a method of calculating threshold valuesttallow for groups of variable size to stabilise,
and which enforces that each peer has at least two links & atbmbers of the group. The main issue with
the threshold value is that it's arbitrary; if the threshodaild adapt during the runtime of the system (without
destabilising the mesh by doing so, as thresholds are etécllocally, not globally), the group would theo-
retically be able to adapt to different network environnseifor instance, using the same threshold value for
the dummynet experiments and the lab-based experimentsaptér 9.

Currently, the adding of new links is performed if the wilinf that link is deemed to be above some ar-
bitrary threshold. One method of removing the arbitrarggold might be to add a link if it is roughly as
good as or better than the links already in the group; renwfaiks could occur if a link is essentially redun-
dant, but a link would be left in place if it left the local pemrthe foreign peer with only one link remaining
to the group.

The work presented in [28] offers a way of scaling up peepeer groups which use mesh-based approaches
to generating distribution trees. It would be interestmgxtend the Orta protocol to accommodate these clus-
tering techniques to allow for a mesh of meshes; the additionore layers would make it more difficult to
meet the 400ms upper bound on RTT for conversational audiaybuld reduce the volume of control traffic
sent, and allow for larger groups to be generated. This iscpdarly relevant for Orta, where the volume of
computation increases substantially as the size of thegyeap increases. The problem faced by this hierar-
chical approach is of how to cluster the group members irdividual clusters, so the problem becomes both
a problem of how to cluster peers, and then to form a meshmitiuse clusters. An idealised view of this
algorithm might be to have a UK cluster, and a US cluster, tithclusters themselves exchanging minimal
levels of control information.

As stated in Section 7.7, there are inefficiencies in the @ifckmats used, in that fields aren’t packed tightly
into the packet. Fields which could fitinto 1 or 2 bits takefiwen of a 32 bit unsigned int. During a redesign,
it would not be difficult to leave a few bits to signify what heechy level a control packet was intended for
(the only nodes that should ever see packets from a différierdrchy level being those who are elected as
leaders for their cluster).

74

75

Perhaps further experimentation with sending controlrimation over UDP, perhaps merging the control
and data channels to use the same port (using the channeldiost presented to the application), and re-
moving explicit “new member” flood packets in favour of thdtsstate refresh flood mechanism.

With computation becoming an issue for Orta peers at largaumsizes, it would be possible to cutting
down computation at every peer in the group by having peersrtide themselves as participants in the ses-
sion (i.e.: sources of data), or merely observers of tha@es3 his might be useful for scenarios such as
lectures or presentations. Shortest path trees would wettioebe calculated for those hosts who are merely
observers, though observers would still have to calculabetest path trees from the sources. An alternative
method of distributing routing state might be to have pgéints generate their own shortest path spanning
tree over the link-state and flooding this tree structureh(\wach receiving peer noting the parts of this data
structure relevant to themselves, and forwarding it on tfght®ours). This latter approach might be beneficial
on topologies where the link-state is not likely to changejfrently, and there are few sources of data.

Given that the intention of Orta was to carry real-time authere is the possibility of mixing audio streams
in transit, thus reducing the number of data packets whicstine sent at each peer. This would require that
an overlay layer were aware of the type of traffic is were dagyand as such an additional layer between
the plain overlay and the application could be designed. idéal would be to keep most routing decisions
completely generic, but to allow some knowledge of the ajailbn which the overlay was serving.

Investigation into and implementation of the ideas disedsis 9.7 would allow for faster repartitioning,
more suited to real-time applications. This would alleziabme of the issues regarding members leaving,
but should not be considered the ideal solution. Having pairea damaged mesh should be considered a last
resort for the protocol to take. Some effort would have torgo investigating how best to proceed when a
peer has failed or left the group, causing a partition.

Further, Orta could introduce bandwidth-saving measurels as probabilistically choosing the group mem-
ber which offers the best chance for a good new link from #gdiink state, or reducing the rate of random
ping packets to members which the protocol has tried a fewedialready, assuming that if a connection
wasn'’t acceptable on the first probe, the chances of it beiogm@able on the second probe are slim.

10.2 Conclusions

By altering the mechanism the Narada protocol used for thtilolition of control state to group members
from a distance vector algorithm to a link state flooding &lpon, the Orta protocol allows for a more re-
sponsive peer-to-peer overlay, geared toward the carofingal-time audio between many recipients.

While this change has brought with it increased computatitoads at all peers in the group, it has allowed
for a more accurate mechanism for the purpose of droppikg,lend also removed the requirement on peers
to continue to forward data for some time after leaving thaugr

The immediate advertisement of a new member to the groupvsitioe new member to participate with the
group immediately (leaving the overlay to attempt to imgrdself gradually over time). The current state of
the protocol is not entirely promising in the situation thia mesh structure becomes partitioned. Potential

76

improvements to this algorithm have been discussed in &e6ti7, but essentially involve taking advantage
of the nature of TCP connections between neighbours tatieilswift repartitioning of the mesh; more con-
crete methods of updating member and link state througheyté¢er group after a partition may be required
to repair the mesh state. Once improvements are made toattiefpthe protocol to facilitate much faster
repartitioning, the Orta protocol appears very much to ledul$or the purposes of conferencing applications.

The only other major obstacle the protocol has to countédaisdf the threshold used to determine whether or
not a link should be added or dropped from the mesh; thresladle calculation currently has to be almost
hardcoded to the type of network that the overlay will be ingracross. This is certainly not ideal, and is an
area that might require considerable effort to derive a @ragplution.

To conclude, Orta is a new protocol appropriate for the ¢agrpf real-time data to small or medium-sized
conference groups, in the order of 10s of members. The ppbtdiers distribution trees optimised for each
source, and will reconfigure in light of current network ciiwhs, offering ideal conditions for the carrying
of real-time data. As has been demonstrated, the impleti@mtaf Orta is capable of carrying data from
many sources to all members of the group at the same dataasade®al-time audio conferencing application
might send, a fact backed up by the implementation of RAT@i#ie Orta library for data carrying.

Appendix A

The net.udp API

Functions are listed with a list of occurrences by file (frdva toot of the source directory) and line number.

Note that Mbus entries, in other words any relevant functialts which appear imbus. ¢, was not be
replaced, as it was the mechanism through which the core aoemts of the application communicated.

Now that overlay code is more stable, the Mbus entries shibeloretically be replaceable.

Function:
Occurrences:
Notes:

Function:

Occurrences:

Notes:

Function:

Occurrences:

Notes:

Function:
Occurrences:

Notes:

udp_addr .val i d(const char* addr)

rat/ mai ncontrol.c:80

This function simply checks the validity of an IP agkir or hosthame. This can be copied &
pasted directly into Narada code, for the purposes of campéss.

udp-init(addr, rx_port, tx_port, ttl)

conmon/ src/ mbus. c: 470

conmon/ src/ sap. c: 81

Neither occurrence of this function is called fronilRo&de. At any rate, this function merely
calls udpinit_if(), with iface set to NULL.

udpinit.if(addr, iface, rx_port, tx_port, ttl)

conmon/ src/rtp.c: 1054

conmon/ src/rtp.c: 1055

Essentially binds rrort to a socket descriptor. This function contains lots aftioast code,
making it look scarier than it actually is. fxort is not used directly, but is held in the struct
socketudp* which is returned by this function.

udprecv(socket udp, buffer, buflen)
comon/ src/ nbus. c: 761

conmon/ src/rtp.c: 1359

conmon/ src/rtp.c: 1879
conmon/ src/rtp.c: 2925

conmon/ src/ sap. c: 106

This function simply lifts incoming data from the ketdescriptor in sockatdp.

77

78

Function: udp_send(socket _udp, buffer, buflen)
Occurrences: conmon/ src/ nmbus. c: 340
conmon/ src/rtp.c: 2239
comon/src/rtp.c: 2674
conmon/ src/rtp.c: 2862
Notes: Simply performs a sendto() with the socket desariptand in the struct sockaidp; replace
with a mesht type.

Function: udp-sendv(...)
Occurrences: conmon/ src/rtp. c: 2320
Notes: This function is WIN32 only.

Function: udp_host _addr(socket _udp)
Occurrences: conmon/ src/rtp.c: 918
conmon/ src/rtp.c: 1064
Notes: Gets local hostname; checks that hostname is vati@igBt copy and paste of code, for
completeness. Outcome of second call here is passed stmaiiglinit_rng, i.e.: INITiate
Random Number Generator.

Function: udp_fd(socket _udp)
Occurrences: Seemingly unused.
Notes: Simply pulls the socket descriptor out of the strumtketudp. Is there a reasonable
equivalent to this? Provide tags for groups? Create a grbuasy as local host name +
timestamp...).

Tag becomes some equivalent to the socket descriptor? @m d¢hat only one socket
will be open for sendto/recvfrom for UDP transfers, can wst gxpose this to higher layers?

Function: udp_sel ect(tineout)
Occurrences: conmon/src/rtp.c: 1872
conmon/ src/rtp.c: 2923
conmon/ src/ sap. c: 102
Notes: -

Function: udpfd_zero(void)
Occurrences: common/ src/rtp. c: 1869
conmon/ src/rtp.c: 2921
conmon/ src/ sap. c: 100
Notes: Clears set of file descriptors available for readingddect().

79

Function: udp_fd._set(socket _udp)
Occurrences: common/ src/rtp.c: 1870
common/ src/rtp.c: 1871
comon/src/rtp.c: 2922
common/ src/ sap. c: 101
Notes: Adds a socket descriptor to the read set for readirsgleget().

Function: udp_fd.i sset(socket udp)
Occurrences: conmon/src/rtp.c: 1873
conmon/src/rtp.c: 1876
conmon/ src/rtp.c: 2923
conmon/ src/ sap. c: 103
Notes: Queries whether or not a given file descriptor is inrélael set ready for reading by select().

Appendix B

The Orta API

Function:

Description:

Function:

Description:

Function:

Description:

Function:

Description:

Function:

Description:

Function:

Description:

Function:

Description:

Function:

Description:

i nt nmesh_addr val i d(const char *addr);
Returns TRUE if the given address (hostnamBwt address) is valid, FALSE otherwise.

const char *mesh_host addr();
Returns a character string containing therexl network address for the local host.

int nesh.iinit(nmesht **m uintl6t udprx_port, uintl6.t
udptx_port, int ttl);
int mesh_iinit.if(mesht **m const char *iface, uintl16.t

udprx_port, uintl6t udptx_port, int ttl);

Creates overlay state for use on connectiraptexisting mesh, or to allow incoming con-
nections from other hosts. Returns a pointer to a valid nieshucture on success, NULL
otherwise. The iface version is currently in place for coatghess against the nedip inter-
face; the iface argument will simply be ignored.

i nt nmesh_connect(nmesht *m const char *dest);
Attempts to connect to a peer already in the-gesup using ‘addr’, which should be a
character string containing an IPv4 network address.

i nt mesh_di sconnect(nesht *m);
Closes all connections into peer-group dieamd clears state held within the metsstruct.

voi d mesh_destroy(mesht **m);
Destroys the state used by ‘mesh’ and freeswymecupied memory.

i nt nmesh_register_channel (mesht *m uint32t channel);
Registers a new data channel at this host fptirposes of receiving UDP data on that
particular channel. Channels can be seen as an emulatigstehs ports.
int meshselect(nmesht *m struct timeval *timeout, int*
channel s, int *count);

Scans the data channels until data is availabkt least one of them.

80

Function:

Description:

Function:

Description:

81

int neshorecv(nesht *m uint32t channel, char *buffer, int
buflen);

int meshrecv O(nmesht *m char *buffer, int buflen);

int nmesh_recv_tineout(mesht *m uint32t channel, char

*puffer, int buflen, struct tinmeval *tinmeout);

The recv calls all deal with removing data fritra input queues from the network;ecv ()

is the basic call, in which a channel must be specified. Itkdamtil data has been retrieved,
and on retrieval returns the length in bytes of that datan lingalid channel is specified, -1
is returned.

_recv_0() is exactly the same as the first call, except it's hardwiredhteck channel 0.
Allows for a slightly simpler interface into the overlay ity one channel is required.
_recv_timeout () behaves exactly as the first call, except it will also retdrshould the
timeout be hit before any data arrives on the channel spécifie

int nesh_send(nesht *m uint32t channel, char *buffer, int
buflen);

int mesh.send O(nmesht *m char *buffer, int buflen);

The send calls handle the bundling of data angldrding to the relevant hosts in the overlay;
the application need not be aware which hosts the overlayngafrding to.

As with the recv calls,send() sends the data to the channel specified, a@hd_0()
sends on channel zero, should only one channel be required.

Appendix C

Modifications made to RAT

The following details the modifications made to the softwiaie RAT, [4], to make use of the Orta library
presented here. Patches are presented here in sectiohsa@d?C.2.2. A minimal number of source code
modifications were required, and aside from modificatiorthéoMakefiles present in theat andconmon
directories, only t p. ¢ had to be altered.

The modifications made tot p. ¢ were generally to replace calls which were previously madenctions

in net _udp. c, which are themselves covered in Appendix A. These are thetifuns RAT uses to send and
receive real-time data. Had the functions containeden _udp. ¢ been used only for the transmission of
real-time data, then the required modifications could haenkplaced in there. However, the main compo-
nents of RAT communicate using a message bus (mbus, [34Pmysvhich makes use of these functions.
To aid stability, the decision was taken to leave tieg _udp. ¢ functionality in place for use by the mbus
functions, and instead point the RTP calls to the Orta fnsti Had the mbus not made use of these function
calls, calls into Orta would have been made withintie¢ _udp. ¢ functions to directly replace system net-
work calls.

New function calls are merely fenced off by &nf def ... #endi f, to be activated if the ORTA tag is
defined during compile time.

C.1 Data Structures and Constants

The RTP code in theonmon source tree bundles all RTP state up into one large strutttimthis struct are
two UDP sockets kept for the purposes of sending and receRirP data, and RTCP data [44]:

e rtp_socket
e rtcp_socket

To maker t p. ¢ work with the Orta library instead then, the sockets wereamgér necessary. The sockets
can be replaced with one reference tmesh_t structure. In other words, simply declare

e mesht xmesh
Thus the RTP code carries with it a reference into the oveilagn where it can send and receive data, after

it has connected to a group.

82

83

To emulate the two ports, the patched code defines two Ortanetig one for RTP data and one for RTCP
data. Onreceiving any data on either of these channelsathe sode as was run prior to the patch is executed.

C.2 Patches

The following patches can be applied to code obtained froomamous CVS servers at U&Las was current
as of the end of May, 2005.

C.2.1 ratpatch

di ff -Naur rat/Makefile.in /users/students8/|evel 8/ strowesd/ Project/src/rat/Mukefile.in
--- rat/Makefile.in 2005-02-01 08:55:15. 000000000 +0000
+++ /users/students8/1 evel 8/ strowesd/ Proj ect/src/rat/Makefile.in 2005-05-28 03: 30: 10. 000000000 +0100
@-5,11 +5,15 @@
#
Configure substitutes variables here...

+ORTASRC = ../ nesh/
+ORTANAME = nesh

+

+

DEFS = @EFS@ - DH DE_SOURCE_STRI NGS
CFLAGS = @FLAGS@ $(DEFS)

-LIBS = @I BS@ @MTHLI BS@

+LIBS = @IBS@ @ATHLI BS@- L$(ORTASRC) - | $(ORTANAME) - | pt hr ead
LDLIBS =

-1 NCLUDE = @COVMON_| NC@ @AU_| NC@ @ CL_I NC@ @K_I NC@ @5728_1 NC@

+1 NCLUDE = @COMVON_| NC@ @A\U_| NC@ @CL_I NC@ @K_I NC@ @5728_| NC@ - | $(ORTASRC)
cC = @c@
AR = ar
RANLI B = @RANLI B@

C.2.2 common patch

di ff -Naur common/exanpl es/rtp/ Makefile.in /users/students8/|evel 8/ strowesd/ Project/src/comon/ exanpl es/ rtp/ Makefil e
--- common/ exanpl es/rtp/ Makefile.in 2001-04-04 14: 36: 36. 000000000 +0100
+++ [users/students8/| evel 8/ strowesd/ Proj ect/src/conmon/ exanpl es/ rtp/ Makefile.in 2005-05-26 02:29: 38. 000000000 +0100
@-4,14 +4,17 @@

#

Location of includes and library

-CSRC = ../../src
+CSRC =../..Isrc
+ORTASRC = ../../../mesh/

Library nane
-LNAME = ucl nmbase
+LNAVE = ucl mbase
+ORTANAME = nesh

-DEFS = @EFS@

+DEFS = @EFS@ - DORTA

CFLAGS = @FLAGS@ $(DEFS) - I $(CSRC)

-LIBS = @IBS@-L$(CSRC) - $(LNAVE)

+LIBS = @IBS@-L$(CSRC) -1 $(LNAMVE) - L$(ORTASRC) - | $(ORTANAME) - I pt hread
+INC = -1$(ORTASRQ)

cc = @C@

1 pserver: cvsanon@cary. cs. ucl . ac. uk: / cs/ r esear ch/ net s/ conmon0/ st ar shi p/ src/ | ocal / CVS_
repository

84

TARGET = rtpdeno
di ff -Naur common/src/ Makefile.in /users/students8/|evel 8/ strowesd/ Project/src/comon/src/Makefile.in
--- common/src/ Makefile.in 2003-05-28 12:38: 56. 000000000 +0100
+++ [users/students8/1 evel 8/ strowesd/ Project/src/comon/src/ Makefile.in 2005-05-26 01:58: 23. 000000000 +0100
@a-3,9 +3,10 @@
This probably requires GNU make.
#

-DEFS = @EFS@
+DEFS = @EFS@ - DORTA
CFLAGS = @FLAGS@ $(DEFS)

-LIBS = @l BS@

+I NC = -l../../mesh/

+LIBS = @IBS@-L../../nmesh/
cC = @c@

AR = ar

RANLI B = @RANLI B@
di ff -Naur common/src/rtp.c /users/students8/|evel 8/strowesd/ Project/src/comon/src/rtp.c
--- comon/src/rtp.c 2004-11-25 17:25:22. 000000000 +0000
+++ /users/students8/1 evel 8/ strowesd/ Project/src/comon/src/rtp.c 2005-05-28 14:52: 31. 000000000 +0100
@ -61,6 +61,10 @@

#include "rtp. h"

+#i f def ORTA
+#i ncl ude "mesh. h"
+#endi f
+
/*
* Encryption stuff.
*/
@-97,6 +101, 13 @@
#def i ne RTCP_BYE 203
#def i ne RTCP_APP 204

+
+#i f def ORTA
+#def i ne RTCP_CHANNEL 1
+#def i ne RTP_CHANNEL 2
+#endi f
+
+

typedef struct {

#i f def WORDS_BI GENDI AN

unsi gned short version:2; /* packet type */
@ -218,8 +229,12 @@
*/

struct rtp {
+#i f def ORTA
+ mesh_t *mesh;
+#el se
socket _udp *rtp_socket;
socket _udp *rtcp_socket;
+#endi f
char *addr;
uint16_t rx_port;
uint16_t tx_port;
@ -866,7 +881,7 @@

#def i ne MAXCNAMELEN 255

-static char *get_cnanme(socket_udp *s)
+static char *get_cname(struct rtp *s)

{

/* Set the CNAME. This is "user @ostnanme" or just "hostnane" if the username cannot be found. */

85

const char *hnane;
@ -915,7 +930,11 @@
#endi f

/* Now the hostname. Must be dotted-quad |P address. */
+#i f def ORTA
+ hname = mesh_host _addr ();

+#el se
hname = udp_host _addr(s);
+#endi f
if (hnane == NULL) {
/* If we can’t get our |P address we use the |oopback address... */
/* This is horrible, but it stops the code fromfailing. */

@ - 1051, 17 +1070, 38 @@
session->rx_port = rx_port;
session->tx_port = tx_port;
session->ttl = mn(ttl, 127);
-session->rtp_socket = udp_init_if(addr, iface, rx_port, tx_port, ttl);
-session->rtcp_socket = udp_init_if(addr, iface, (uint16_t) (rx_port+1), (uintl16_t) (tx_port+1), ttl);
+#i f def ORTA

+ mesh_init_if(&session->mesh, iface, rx_port, tx_port, ttl);
+

+ if (session->nesh == NULL) {

+ xfree(session);

+ return NULL;

+}

+

+ if (!strcnp(addr, "local host")) {

+ mesh_connect (sessi on- >mesh, NULL);

+}

+ else {

+ mesh_connect (sessi on- >nesh, addr);

+}

+ mesh_regi st er_channel (sessi on- >mesh, RTCP_CHANNEL) ;
+ mesh_regi ster_channel (sessi on->nesh, RTP_CHANNEL);

init_opt(session);
+ init_rng(mesh_host_addr());
+#el se
+ session->rtp_socket = udp_init_if(addr, iface, rx_port, tx_port, ttl);
+ session->rtcp_socket = udp_init_if(addr, iface, (uintl6_t) (rx_port+1l), (uintl6_t) (tx_port+1), ttl);

if (session->rtp_socket == NULL || session->rtcp_socket == NULL) {
xfree(session);

return NULL;

}

+ init_opt(session);
init_rng(udp_host_addr(session->rtp_socket));

+#endi f

+

sessi on->ny_ssrc (uint32_t) Irand48();
sessi on->cal | back = cal | back;
@ -1108,7 +1148,7 @@

/* Create a database entry for ourselves... */
create_source(session, session->ny_ssrc, FALSE);
-cname = get_cnanme(session->rtp_socket);
+ cnanme = get_cnane(session);
rtp_set_sdes(session, session->ny_ssrc, RTCP_SDES _CNAME, cnane, strlen(cnane));
xfree(cnane); /* cname is copied by rtp_set_sdes()... */

@ - 1356, 7 +1396, 11 @@
bufferl2 = buffer + 12;
}

86

+#i f def ORTA
+ buflen = mesh_recv(session->mesh, RTP_CHANNEL, buffer, RTP_MAX PACKET_LEN - offsetof (rtp_packet, fields));
+#el se
bufl en = udp_recv(session->rtp_socket, buffer, RTP_MAX PACKET_LEN - offsetof (rtp_packet, fields));

+#endi f

if (buflen > 0) {

if (session->encryption_enabl ed) {

uint8_t initVec[8] = {0,0,0,0,0,0,0,0};
@ - 1866, 6 +1910,28 @@

int rtp_recv(struct rtp *session, struct tineval *timeout, uint32_t curr_rtp_ts)

{

check_dat abase(session);
+#i f def ORTA

+ /* FI XME: Constant buried in code. */

+ int channel s_set[2];

+ int count, i;

+

+ if (mesh_sel ect(session->nesh, tineout, channels_set, &count)) {
+ for (i=0; i<count; i++) {

+ if (channels_set[i] == RTP_CHANNEL) {

+ rtp_recv_data(session, curr_rtp_ts);

+}

+ if (channels_set[i] == RTCP_CHANNEL) {
+ uint8_t buffer[RTP_MAX_PACKET_LEN;

+ int buflen;

+ buflen = mesh_recv(session->mesh, RTCP_CHANNEL, buffer, RTP_MAX PACKET_LEN);
+ printf("Recv RTCP\n");

+ rtp_process_ctrl (session, buffer, buflen);
+}

+}

+ check_dat abase(session);

+ return TRUE;

+}

+#el se

udp_fd_zero();
udp_fd_set (session->rtp_socket);
udp_f d_set (sessi on->rtcp_socket);
@®-1882,6 +1948,7 @@
check_dat abase(session);
return TRUE;
}
+#endi f
check_dat abase(session);
return FALSE;
}
@ -2236,7 +2303, 13 @@
buffer_len, initVec);

}

+#i f def ORTA
+ /*printf("- Calling nesh_send.\n");*/
+ rc = nesh_send(session->nesh, RTP_CHANNEL, buffer + offsetof(rtp_packet, fields), buffer_len);
+ /*printf("- Call conplete.\n");*/
+#el se
rc = udp_send(session->rtp_socket, buffer + offsetof(rtp_packet, fields), buffer_len);

+#endi f

xfree(buffer);

/* Update the RTCP statistics... */
@ -2317,7 +2390, 11 @@
}

/* Send the data */
+#i f def ORTA
+ fprintf(stderr, "Wndows functionality not inplenented...\n");
+#el se

rc = udp_sendv(session->rtp_socket, my_iov, nmy_iov_count);

87

+#endi f

/* Update the RTCP statistics... */

sessi on->we_sent = TRUE;
@ -2671,7 +2748,12 @@
}
(session->encrypt_func) (session, buffer, ptr - buffer, initVec);
}

+#i f def ORTA
+ nmesh_send(sessi on->nesh, RTCP_CHANNEL, buffer, ptr - buffer);
+ printf("Sent RTCP\n");
+#el se

udp_send(sessi on->rtcp_socket, buffer, ptr - buffer);
+#endi f

/* Loop the data back to ourselves so local participant can */
/* query own stats when using unicast or nulticast with no */
@® - 2859, 7 +2941, 11 @@

assert (((ptr - buffer) % session->encryption_pad_| ength) == 0);
(session->encrypt_func) (session, buffer, ptr - buffer, initVec);
}

+#i f def ORTA
+ nmesh_send(sessi on->nesh, RTCP_CHANNEL, buffer, ptr - buffer);
+#el se
udp_send(session->rtcp_socket, buffer, ptr - buffer);
+#endi f
/* Loop the data back to ourselves so | ocal participant can */
/* query own stats when using unicast or nulticast with no */
/* | oopback. */
@ -2918, 13 +3004, 23 @@
timeout.tv_sec = 0;
timeout.tv_usec = 0;
tv_add(&tinmeout, tv_diff(session->next_rtcp_send_time, curr_tine));
+
+#i f def ORTA

+ buflen = mesh_recv_tinmeout (session->nmesh, RTCP_CHANNEL, buffer,
+ RTP_MAX_PACKET_LEN, &tineout);

+if (buflen!=-1) {

+ rtp_process_ctrl (session, buffer, buflen);

+}

+#el se

udp_fd_zero();
udp_f d_set (sessi on->rtcp_socket);

+
if ((udp_select(&ineout) > 0) &% udp_fd_isset(session->rtcp_socket)) {
/* We woke up because an RTCP packet was received; process it... */
buflen = udp_recv(session->rtcp_socket, buffer, RTP_MAX PACKET_LEN);
rtp_process_ctrl (session, buffer, buflen);

}

+#endi f
/* Is it time to send our BYE? */
gettimeof day(&curr_time, NULL);
new_interval = rtcp_interval (session) / (session->csrc_count + 1);

@ - 2981, 8 +3077, 13 @@

}
*/

+#i f def ORTA
+ nmesh_di sconnect (sessi on- >nesh) ;
+ mesh_destroy(&(sessi on->nesh));
+#el se
udp_exi t (session->rtp_socket);
udp_exi t (session->rtcp_socket);
+#endi f
xfree(session->addr);
xfree(session->opt);
xfree(session);

Appendix D

Project Management

The following sections cover the project timeline, the sooked to achieve the project aims, and how the
work effort was divided.

D.1 Resources and Tools

A project of this nature requires many hosts on which to testrtinning of the system and ensure that not
only is the code stable, but that the nodes are behavingatlytrdo this end, not only were undergraduate
lab machines used for the evaluation in Chaper 9, but theg aiso used for testing on progressively larger
groups as the code stabilised. The machine aki&fre. i si . edu, was useful for testing of the code which
dealt with latencies during development, since the latsbetween lab machines was so small.

For the purposes of the evaluation then, as was covered i ® ahoth lab machines and a smaller net-
work of machines connected by transparent bridges with dgmetfunctionality enabled were employed. In
all these experiments, end hosts which ran test code wagwgisome form of Linux; transparent bridges all
ran FreeBSD 4.11,

The integration with RAT was tested over some of the machim&981, though due to drivers only offering
half-duplex audio on these machines, actual running ofpipdiGation was not possible until Supportinstalled
the correct sound drivers for the hardware to work correayRAT requires full-duplex audio hardware sup-
port.

Aside from the above, the usual array of tools was used to tEmthe project, including, but not lim-

ited to, BTpX, gcc, gdb, awk, gnuplot, etc. The ability to chain many adgh tools together and to build
scripts to automate testing made the evaluation easier,|#ss time consuming.

D.2 Division of Labour

All projects suffer unexpected delays, and this one wasitgytno different. For an overview of the timeline
of the project, see Figure D.1.

The original project timeline was as charted in Figure D).1(Bhe labels on the tasks are detailed below.

88

89

10/ 01/ 05 24/ 01/ 05 07/ 02/ 05 21/ 02/ 05 07/ 03/ 05 21/ 03/ 05 04/ 04/ 05 18/ 04/ 05

17/ 01/ 05 31/01/ 05 14/ 02/ 05 28/ 02/ 05 14/ 03/ 05 28/ 03/ 05 11/ 04/ 05 22/ 04/ 05
(DEADLI NE)

(a) Original project timeline.

10/01/ 05 24/ 01/ 05 07/ 02/ 05 21/02/ 05 07/03/ 05 21/03/ 05 04/04/ 05 18/04/ 05 02/ 05/ 05 16/ 05/ 05 30/ 05/ 05
17/01/ 05 31/01/05 14/ 02/ 05 28/ 02/ 05 14/ 03/ 05 28/ 03/ 05 11/04/ 05 P5/04/05 09/05/05 23/ 05/ 05 07/ 06/ 05

22/ 04/ 05

(ORI G NAL

DEADLI NE)

(b) Actual project timeline.

Figure D.1: Gantt charts charting project timeline.

90

Task Label | Description

11 Design of sensible external APIs. Identify important cotfactures apparent before im-
plementation begins.

12 Implementation of the mesh structures.

13 Implementation of data distribution mechanisms.

14 Integration of code into RAT.

15 End of testing; code freeze to focus on evaluation and déatssm.

D1 Initial document work, setting dowATgXfiles and scripts, etc.

D2 Draft sections for the mesh structures.

D3 Draft sections for the distribution tree design, data dliyrouting, etc.

D4 Finalise dissertation.

As with any project schedule, it is difficult to predict whailiaappen in the future. As such, as can be seen
in D.1(b), 13 took considerably less time to implement thardid, and debugging of 12 ran for most of the
project. 14 was a step which was surprisingly easy to perform

D.3 Project Log

12/01/05 Created basi€TeXframework for report, splitting sections into (empty) ex files.

17/01/05 Initial definition of data types to be presentedhtodpplication set in code.

18/01/05 Experimentation with packet formats; how to tdiidransmit flatten data structures for send-
ing, and reassemble structures at the receiving end. SoisngxRTP code used for as
example code.

23/01/05

27/01/05 Many peers able to connect to each other withoutimuay stability problems. Members are
now passing current known group membership tables to nevs peea new peer joining the
group.

Looked into ICMP for sending of ‘real’ ping packets betweeers; determined that times-
tamps in packets should work well enough, but over UDP rétier TCP.

04/02/05 Code restructuring, toward more of a link-staydesdf routing rather than distance vec-
tor routing. Peers are still sending link-state on a regbéesis, rather than when link-state
changes, and data structures are such that a shortestgattithath can be run on top of them.
These regular packets contain group membership and lagtrkseguence number from each
member, and a list of link states local to the sending peestd@u ping packets are now being
sent using UDP rather than TCP.

07/02/05 Dijkstra’s shortest path algorithm in testing.

08/02/05 Started working on code to evaluate the benefitdihaca new link.

17/02/05 Dijkstra’s shortest path algorithm now being ugechlculate routing tables. Improved sim-
ple test harness to make use of masimd and meshecv functions. Also fixed code to run
on FreeBSD.

23/02/05 Code cleanup. Removal of a busywait on the incomiétig queue for data intended for the
application, and instead signal when data has arrived ogubae. This emulates a normal
blocking recv() quite nicely.

91

06/03/05 Major restructuring to do proper link-state floggdion major state changes (new member,
dropped member, new link, removed link), with regular flofrden each member to update
the group on current link weights from each peer.

16/03/05 Code stabilising after the change to link-statediiog.

18/03/05 - 21/03/05 First bout of iliness.

06/04/05 - 20/04/05 Continued debugging, starting of eatéd properly, building of scripts, etc. Outlined re-

maining dissertation sections.

21/04/05 - 01/05/05 Study break.

24/03/05 - 06/04/05 Second bout of illness.

02/05/05 - 24/05/05 Exam season.

25/05/05 - 07/06/05 Finalising of testing & evaluation,s#igation writing.

07/06/05 Final deadline.

Bibliography

(1]
(2]

(3]

(4]
(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Homepage of the BitTorrent projedat t p: / /bittorrent. com .

Homepage of the Skype instant messaging and real-timi® @onferencing applicatiornt t p: / / www. skype.
cont .

Homepage of the UCL Network and Multimedia Research @rohtt p: // ww\ ni ce. cs. ucl . ac. uk/

mul tinedi a/.

Robust-Audio Tool homepagéat t p: / / ww mi ce. ¢s. ucl . ac. uk/ mul ti medi a/ software/rat/.

A. Adams, J. Nicholas, and W. Siadak. Protocol Independiulticast - Dense Mode (PIM-DM): Protocol Speci-
fication (Revised)ht t p: / /www. i etf.org/rfc/rfc3973.txt.

Z. Albanna, K. Almeroth, D. Meyer, and M. Schipper. IANAu@elines for IPv4 Multicast Address Assignments.
http://ww.ietf.org/rfc/rfc3171.txt.

S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Skalapplication layer multicast. |8 GCOMM ’02:
Proceedings of the 2002 conference on Applications, technologies, architectures, and protocols for computer com-
munications, pages 205-217. ACM Press, 2002.

S. A. Baset and H. Schulzrinne. An analysis of the skyper{t@-peer internet telephony protocol, September 2004.
S. Birrer, D. Lu, F. E. Bustamante, Y. Qiao, and P. A. Dinéi@tnemo: Building a resilient multi-source multicast
fat-tree. INWCW, volume 3293 ot _ecture Notesin Computer Science, pages 182—196. Springer, 2004.

M. Castro, P. Druschel, A. Kermarrec, A. Nandi, A. Rowst, and A. Singh. SplitStream: High-bandwidth content
distribution in a cooperative environment. IRTPS 03, February 2003.

M. Castro, P. Druschel, A. Kermarrec, and A. RowstroBRIBE: A large-scale and decentralized application-level
multicast infrastructurelEEE Journal on Selected Areas in communications (JSAC), 2002. To appear.

Y. Chawathe. Scattercast: an adaptable broadcasbdisbn framework.Multimedia Syst., 9(1):104-118, 2003.

Y. Chu, A. Ganjam, T. S. E. Ng, and S. G. Rao. Early experewith an internet broadcast system based on overlay
multicast, 2004.

Y. Chu, S. G. Rao, S. Seshan, and H. Zhang. Enabling ceméeng applications on the internet using an overlay
multicast architecture. IACM SGCOMM 2001, San Diago, CA, Aug. ACM.

Y. Chu, S. G. Rao, and H. Zhang. A case for end system oaglti InMeasurement and Modeling of Computer
Systems, pages 1-12, 2000.

D. Clark. The design philosophy of the DARPA internedtamcols. INnSGCOMM ’88: Symposium proceedings on
Communications architectures and protocols, pages 106—-114. ACM Press, 1988.

M. Coates and R. Nowak. Network tomography for intehalhy estimation. IhEEE |nternational Conference on
Acoustics, Speech and Sgnal Processing (ICASSP '01), volume 6, pages 3409-3412, 2001.

S. E. Deering. Multicast routing in internetworks andended lans. II'8iGCOMM '88: Symposium proceedings

on Communications architectures and protocols, pages 55-64. ACM Press, 1988.

D. Estrin, D. Farinacci, A. Helmy, D. Thaler, S. Deerjiid. Handley, V. Jacobson, C. Liu, P. Sharma, and L. Wei.
Protocol Independent Multicast-Sparse Mode (PIM-SM):t&rol Specification. htt p: //wwv. i et f. or g/
rfc/rfc2362. txt.

P. Francis. Yoid: Extending the internet multicastratecture, April 2000.ht t p: // www. i si . edu/ di v7/

yoi d/ .

A. Ganjam and H. Zhang. Connectivity restrictions ireday multicast. IrProceedings of the 14th international
workshop on Network and operating systems support for digital audio and video, pages 54-59. ACM Press, 2004.

92

93

[22] M. T. Goodrich and R. TamassiAlgorithm Design: Foundations, Analysis, and Internet Examples. Wiley, 2002.

[23] M. Handley, S. Floyd, J. Padhye, and J. Widmer. TCP RfieRate Control (TFRC): Protocol Specification.
http://ww.ietf.org/rfc/rfc3448.txt.

[24] V. Hardman, M. A. Sasse, M. Handley, and A. Watson. Rdizaudio for use over the Interneroceedings of
INET, Oahu, Hawaii, 1995.

[25] M. Hefeeda, A. Habib, B. Boyan, D. Xu, and B. Bhargava (RRSE: peer-to-peer media streaming using collect-
cast. Technical report, August 2003. CS-TR 03-016, Purchiedisity. Extended version.

[26] M. Hefeeda, A. Habib, D. Xu, B. Bhargava, and B. Botevll€xicast: A peer-to-peer service for media streaming.

[27] International Telecommunications Union, Recomm¢iotiaG.114. One-way transmisesion time, February 1996.

[28] S. Jain, R. Mahajain, D. Wetherall, and G. Borrielloatble self-organizing overlays. Technical Report 020Q2-
UW-CSE, Feb 2002.

[29] J. Jannatti, D. K. Gifford, K. L. Johnson, M. F. Kaashpakd J. W. O'Toole, Jr. Overcast: Reliable multicasting
with an overlay network. pages 197-212.

[30] X.Jiang, Y. Dong, D. Xu, and B. Bhargava. GnhuStream: AAR2Zdia Streaming System Prototype Piroceedings
of the International Conference on Multimedia and Expo (ICME), volume 2, pages 325-328, July 2003.

[31] B. Knutsson, H. Lu, W. Xu, and B. Hopkins. Peer-to-peepport for massively multiplayer games. IBEE
Infocom 2004, March 2004.

[32] M. Kwon and S. Fahmy. Topology-aware overlay networksdroup communication. IRroceedings of the 12th
international workshop on Network and operating systems support for digital audio and video, pages 127-136.
ACM Press, 2002.

[33] J. Lennox and H. Schulzrinne. A protocol for reliabledetralized conferencing. IMOSSDAV '03: Proceedings
of the 13th international workshop on Network and operating systems support for digital audio and video, pages
72-81. ACM Press, 2003.

[34] J. Liebeherrand T. K. Beam. Hypercast: A protocol foimt&ining multicast group members in a logical hypercube
topology. InProceedings of 1st International Workshop on Networked Group Communication (NGC ’99), pages
72-89, July 1999.

[35] M. R. Macedonia and D. P. Brutzman. MBone provides awaid video across the internetEEE Computer,
27(4):30-36, April 1994.

[36] J. Moy. Multicast Extensions to OSPRtt p: //www. i etf.org/rfc/rfcl584.txt.

[37] J. Ott, C. Perkins, and D. Kutscher. A Message Bus fordl@oordination.ht t p: / / www. i et f. org/rfc/
rfc3259. txt.

[38] D. Pendarakis, S. Shi, D. Verma, and M. Waldvogel. ALMh application level multicast infrastructure. In
Proceedings of the 3rd USENIX Symposium on Internet Technologies and Systems (USTS 2001), pages 49-60,
March 2001.

[39] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and Sni&re A scalable content addressable network. Technical
Report TR-00-010, Berkeley, CA, 2000.

[40] S.Ratnasamy, M. Handley, R. Karp, and S. Shenker. Bopodlly-aware overlay construction and server selection
In Proceedings of |IEEE INFOCOM'’ 02, June 2002.

[41] S. Ratnasamy, M. Handley, R. M. Karp, and S. Shenker. lidgion-level multicast using content-addressable
networks. InProceedings of the Third International COST264 Workshop on Networked Group Communication,
pages 14-29. Springer-Verlag, 2001.

[42] A. Rowstron and P. Druschel. Pastry: Scalable, digtdt object location and routing for large-scale peer-to-
peer systemsIFIP/ACM International Conference on Distributed Systems Platforms (Middleware), Heidelberg,
Germany, pages 329-350, November 2001.

[43] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-endisugnts in system desigACM Transactions on Computer
Systems, 2(4):277-288, nov 1984,

[44] H. Schulzrinne, S. Casner, R. Frederick, and V. Jaceb&T P: A Transport Protocol for Real-Time Applications.
http://ww.ietf.org/rfc/rfc3550.txt.

[45] K. Sripanidkulchai, A. Ganjam, B. Maggs, and H. ZhandeTeasibility of supporting large-scale live streaming
applications with dynamic application end-poinBGCOMM Comput. Commun. Rev., 34(4):107-120, 2004.

[46]

[47]
[48]

[49]

[50]

[51]

[52]

94

I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balkshnan. Chord: A scalable Peer-To-Peer lookup service
for internet applications. IRroceedings of the 2001 ACM S GCOMM Conference, pages 149-160, 2001.

D. Tran, K. Hua, and T. Do. Zigzag: An efficient peer-tegp scheme for media streaming, 2003.

D. Waitzman, C. Partridge, and S. Deering. DistanceteRlulticast Routing Protocolht t p: / / www. i et f .
org/rfc/rfcl075.txt.

W. Wang, D. A. Helder, S. Jamin, and L. Zhang. Overlayiroj#ations for end-host multicast. FProceedings of
the International Workshop on Networked Group Communication (NGC), October 2002.

D. Xu, M. Hefeeda, S. Hambrusch, and B. Bhargava. On-peeeer media streaming. Proceedings of the 22

nd International Conference on Distributed Computing Systems (ICDCS 02), page 363. IEEE Computer Society,
April 2002.

B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapesfw infrastructure for fault-tolerant wide-area location
and routing. Technical Report UCB/CSD-01-1141, UC Berketril 2001.

S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz, and JKibiatowicz. Bayeux: an architecture for scalable
and fault-tolerant wide-area data disseminatiorPrioceedings of the 11th international workshop on Network and
operating systems support for digital audio and video, pages 11-20. ACM Press, June 2001.

95

