
Evaluating Compact Routing Algorithms
on Real-World Networks

Project Dissertation

Graham Mooney

A dissertation submitted in part fulfilment of the requirement of
the Degree of Master in Science at The University of Glasgow

April 2010

Abstract

Compact routing has shown promise for reducing the forwarding state in Internet-
like graphs, without badly impacting traffic flows. This dissertation compares
two such compact routing algorithms on real Internet snapshots from router data
across 12 years. The results indicate that these algorithms behave consistently over
time, and exhibit extremely small forwarding tables with very low path inflation.

Acknowledgements

Colin Perkins and Stephen Strowes for their support, feedback, discussions, helpful
pointers, field trips, anecdotes, and, of course, the initial idea for this project.

The departmental support staff for their help through out the year with machine
upkeep, and allowing access to copious amounts of server space, hard drives, and
docks; their assistance was invaluable. The Embedded, Networked and Distributed
Systems group for their help and support through out. The Algorithms group for
sanity checking any graph theory and algorithms I produced.

My fellow MSci and MRes students for their company, help, and generally making
this year bearable. Finally, the Level 4 and 3 students for their patience while I
stole their CPU cycles, RAM modules, and hard drive space.

ii

Contents

Abstract . i

Acknowledgements . ii

1 Introduction 1

2 Background 3

2.1 Network Structure . 3

2.2 Problems . 6

3 Related work and literature 9

3.1 Incrementally deployable solutions 9

3.2 Clean-slate Internet architectures 12

3.3 Compact routing . 13

3.4 Summary . 17

4 Evaluating compact routing on real-world networks 19

4.1 Potential approaches . 19

4.1.1 Internet snapshots . 20

4.2 Summary . 20

5 Thorup-Zwick (TZ) compact routing 22

5.1 Description . 22

5.1.1 Landmarks and clusters . 22

5.1.2 Routing . 24

5.1.3 Discussion . 25

5.2 Implementation . 26

5.2.1 Distance information . 26

5.2.2 Landmarks algorithm . 27

iii

5.2.3 Routing . 29

5.3 Summary . 29

6 Brady-Cowen (BC) compact routing 30

6.1 Description . 30

6.1.1 Routing table construction 30

6.1.2 Thorup-Zwick compact routing scheme for trees 31

6.1.3 Proximity-preserving labels 32

6.1.4 Routing table construction, revisited 34

6.1.5 Routing . 34

6.2 Implementation . 35

6.2.1 Spanning tree . 35

6.2.2 Connected components and extra edges 35

6.2.3 Thorup-Zwick tree routing 36

6.2.4 Proximity-preserving labels 36

6.2.5 Routing . 36

6.3 Summary . 38

7 Experiment details 39

7.1 Understanding compact routing parameters 40

7.1.1 Landmark selection algorithm for the Thorup-Zwick algorithm 41

7.1.2 Deriving values of ’d’ for the Brady-Cowen algorithm 42

7.2 Summary . 47

8 Thorup-Zwick landmark selection 49

8.1 Stretch . 49

8.2 Routing tables . 51

8.3 Summary . 52

9 Compact routing over time 68

9.1 Thorup-Zwick . 68

9.1.1 Stretch . 68

9.1.2 Routing tables . 69

9.1.3 Popular Traffic . 70

iv

9.1.4 Thorup-Zwick over time . 70

9.2 Brady-Cowen . 71

9.2.1 Stretch . 71

9.2.2 Routing tables . 71

9.2.3 Popular Traffic . 72

9.2.4 Brady-Cowen over time . 72

9.3 Summary . 72

10 Comparison of algorithms 86

11 Conclusion 88

11.1 Future Work . 88

11.2 Summary . 89

Bibliography 94

v

List of Tables

7.1 List of ASes selected frequently (>80% occurrence rate in landmark
sets) by the landmark selection algorithm 43

7.2 List of Tier 1 AS . 43

9.1 Routing table sizes for the Brady-Cowen scheme 72

vi

List of Figures

2.1 IP addresses, bit masks, and CIDR notation 3

2.2 AS connectivity example . 5

2.3 Advertisements resulting from a multihomed AS using PA and PI
space . 7

2.4 RIB entries by prefix length over time 7

3.1 Path of packets destined to prefix 4.0.0.0/24 (or, 4/24) between
external routers A and E through an ISP with ViAggre. Router C is
an aggregation point for virtual prefix 4.0.0.0/7 (or, 4/7). Acquired
from [6]. 10

3.2 Compact routing example . 14

5.1 Why do we need clusters? . 24

5.2 A 9 node graph showing TZ routing table information. 25

5.3 The distance file (.dij) file format. 27

5.4 Center and cluster file formats . 28

6.1 A 9 node graph showing BC concepts 32

7.1 Occurrence rate of AS in landmark set versus node degree 42

7.2 Core size with relation to extra edge count 47

8.1 Mean path stretch for each landmark set 52

8.2 TZ results on the March 2004 snapshot using landmark set 2 54

8.3 TZ results on the March 2004 snapshot using landmark set 3 55

8.4 TZ results on the March 2004 snapshot using landmark set 4 56

8.5 TZ results on the March 2004 snapshot using landmark set 5 57

8.6 TZ results on the March 2004 snapshot using landmark set 6 58

8.7 TZ results on the March 2004 snapshot using landmark set 7. . . . 59

vii

8.8 TZ results on the March 2004 snapshot using landmark set 8 60

8.9 TZ results on the March 2004 snapshot using landmark set 9 61

8.10 TZ results on the March 2004 snapshot using landmark set 10 . . . 62

8.11 TZ results on the March 2004 snapshot using landmark set 11 . . . 63

8.12 TZ results on the March 2004 snapshot using landmark set 12 . . . 64

8.13 TZ results on the March 2004 snapshot using landmark set 13 . . . 65

8.14 TZ results on the March 2004 snapshot using landmark set 14 . . . 66

8.15 TZ results on the March 2004 snapshot using landmark set 15 . . . 67

9.1 Average path stretch over time for the Thorup-Zwick compact rout-
ing scheme . 70

9.2 TZ results on the March 1998 snapshot 74

9.3 TZ results on the March 1999 snapshot 75

9.4 TZ results on the March 2000 snapshot. No stretch results as this
snapshot causes the class loader to misplace essential files required
by the simulator. 76

9.5 TZ results on the March 2001 snapshot 77

9.6 TZ results on the March 2002 snapshot 78

9.7 TZ results on the March 2003 snapshot 79

9.8 TZ results on the March 2004 snapshot using landmark set 1 80

9.9 TZ results on the March 2005 snapshot 81

9.10 TZ results on the March 2006 snapshot. No longest path result due
to corrupt result file. 82

9.11 TZ results on the March 2007 snapshot 83

9.12 TZ results on the March 2008 snapshot. No stretch results due to
simulator failing to initialise with this dataset 84

9.13 TZ results on the March 2009 snapshot 85

10.1 Routing table size over time BGP, TZ and BC 87

i

Chapter 1

Introduction

The Internet is composed of a collection of networks that co-operate to provide
end-to-end communication for clients. These networks exchange routing infor-
mation by taking part in a distributed calculation known as a routing protocol.
The Border Gateway Protocol (BGP) is the current routing protocol for the inter-
domain Internet. This protocol is designed to route packets using the shortest
possible path. The Internet is increasing in size resulting in routing table sizes
also increasing. This increase is exacerbated by business practices such as traffic
engineering and multi-homing. This increase in routing state is beginning to caus-
ing hardware problems at present, which will only become worse as the Internet
continues to grow.

Solutions are being devised that address the problem of increasing routing table
sizes. One such solution is compact routing. Compact routing reduces table sizes
substantially at a cost: compact routing may introduce paths longer than the
shortest path. A key question to answer is whether this increase in path length is
acceptable.

Compact routing schemes have previously been simulated on power-law random
graphs [27, 8, 12, 15]. Results have been promising, with path stretch (the multi-
plicative factor that represents path length experienced divided by shortest pos-
sible path) values of ∼1.2, however compact routing has have not been simulated
on real world Internet graph representations. This thesis will simulate compact
routing on snapshots of the Internet AS topology graph taken between 1998 and
2009. This will demonstrate the viability of compact routing for routing on static
Internet topology snapshots, and determine how the performance of these compact
routing algorithms varies over these twelve years of data.

Two compact routing algorithms in particular will be analysed, the Thorup-Zwick
(TZ) [39] and Brady-Cowen (BC) [8] compact routing schemes. These have been
chosen due to their varying approaches to achieving sub-linearly scaling routing
tables with minimal path stretch.

The contributions of this work are a program capable of pre-processing a graph to
produce routing tables and node labels as defined by the Thorup-Zwick compact
routing scheme. Similarly, API’s have been developed to aid in the pre-processing
of a graph for use with the Brady-Cowen scheme. This API includes components

1

for extra-edge detection, spanning tree construction, connected component detec-
tion, and calculation of proximity-preserving labels. Additionally, this work has
constructed a distributed network simulator capable of utilising the Thorup-Zwick
compact routing scheme. Furthermore, a Brady-Cowen compact routing scheme
simulator was implemented capable of simulating the Brady-Cowen algorithm.

This work also contibutes to the state-of-the-art by providing detailed analysis of
the Thorup-Zwick compact routing scheme. The effect of reduced routing table
size on path stretch for real-world Internet snapshots is determined. The landmark
selection algorithm for Thorup-Zwick is analysed to see its effect on routing table
size variance, as well as path stretch. Finally, the landmark set sizes and path
stretch of the Thorup-Zwick compact routing scheme is analysed over a period of
twelve years (1998 to 2009) to determine the potential of this scheme in the future.

This dissertation assumes that the reader has some background information on
shortest path routing algorithms, primarily distance vector algorithms. A knowl-
edge of graph theory and its notation is beneficial, particularly for the description
of the Brady-Cowen algorithm (Chapter 6).

The remainder of this dissertation is structured as follows: information on the
current inter-domain routing protocol (BGP) and problems associated with it are
described in chapter 2; related work and literature surrounding compact rout-
ing are provided in chapter 3; chapter 4 on compact routing, routing simulation,
and the simulator used to perform experimentation; detailed descriptions of the
Thorup-Zwick and Brady-Cowen compact routing schemes will be given in chap-
ters 5 and 6, respectively; the details of the simulations to be perfomed, as well
as determination of parameters for the compact routing schemes are presented
in chapter 7; the analysis of the Thorup-Zwick landmark selection algorithm is
provided in chapter 8; analysis of the Throup-Zwick and Brady-Cowen compact
routing schemes over the tweleve Internet snapshots are presented in chapter 9; a
comparison of Throup-Zwick and Brady-Cowen to BGP is presented in chapter 10;
and finally, chapter 11 provides a conclusion to this dissertation, presenting future
work and a summary of the results found.

2

Chapter 2

Background

This Chapter provides background information about the structure of the Internet
and how inter-domain routing is currently achieved in Section 2.1. Section 2.2
specifies problems that this existing architecture is experiencing; solutions to these
problems will be discussed in Chapter 3.

2.1 Network Structure

Communications between hosts over the Internet is possible with the use of the In-
ternet Protocol (IP). IP addresses under the classless inter-domain routing (CIDR)
scheme are split into two parts, the network and the host. Separation of an IP
address into its component parts is done using bit mask that is associated with
the IP address. To retrieve part the network information from an IP address a
bitwise ‘and’ operation between the IP address and the bit mask is performed.
A prefix is a combination of the network component of an IP address along with
the length (i.e., number of bits) of the network component of that IP address.
Figure 2.1 shows the IP address, network bit mask, and the resulting prefix for a
computer on the Department of Computing Science (DCS) network. CIDR allows
for multiple machines or addresses to be represented by a single prefix, for exam-
ple, 4,096 IP addresses are represented by the prefix shown in Figure 2.1. The
ability to represent multiple addresses, as well as the merging of smaller prefixes
into a larger prefix, is called aggregation.

Figure 2.1: IP addresses, bit masks, and CIDR notation

For communication to be possible in the Internet, packet switching hardware
(routers) in the network must know where, in reference to the current router,
the destination of the IP packet is located. These routers are required to produce

3

from the state they maintain the link on which to send this packet. This type
of routing is known as ‘next hop’ routing: a router does not need to know every
step in how to get to a destination, only the next step in routing this packet to
its destination. Routers get the required state for routing by participating in a
distribute algorithm known as a routing protocol.

The Internet is made up of many networks, or domains, which are independently
owned, and maintained. Each independently managed network is called an Au-
tonomous System (AS): “a set of routers that has a single routing policy, that run
under a single technical administration. To the outside world, the entire AS is
viewed as a single entity” [19]. Communication within an AS is known as intra-
domain communication, while communication between two or more ASes is known
as inter-domain communication.

Since ASes operate independently, the way they interact with each other is deter-
mined by business policy. The relationships between ASes falls into one of three
categories: customer-to-provider (the customer is charged for the traffic that trav-
els between it and its provider); peer-to-peer (both ASs agree to provide transit
for traffic originating from either AS and their customers); and sibling-to-sibling
(a peer-to-peer like relationship where data originating from providers is also ex-
changed). These relationships can be inferred from BGP data using heuristics
[17].

It is believed that the Internet’s topological structure exhibits a ‘power-law’ dis-
tribution (few networks with high connectivity; many networks with low connec-
tivity), this graph type is known as a power-law graph or ‘scale-free’ graph [27].
Within the Internet, there are ASes with as many as 2000 connections to other
ASes, however, the majority of the ASes maintain one or two connections. ASes
can be classified into three types: transit AS (two, or more, connections comprising
of zero or more provider(s) or peer(s) links and at least one customer link); singly-
homed stub networks (one connection to its sole provider), or multi-homed stub
networks (two, or more, connections to at least two different providers). Figure 2.2
provides an illustration of these different types. Any AS that must maintain a full
routing table and therefore, has no need for a default route entry (0.0.0.0/01) in
their table, is said to belong in the default free zone (DFZ).

The Border Gateway Protocol (BGP-4) [35] is the current inter-domain routing
protocol. AS border routers (a router at the edge of the AS’s administrative do-
main) exchange reachability information about destinations they can reach, or
have previously heard about from another AS, while revealing no information
about the internal structure of the AS. Routers participating in the routing algo-
rithm maintain a Routing Information Base (RIB) and a Forwarding Information
Base (FIB). The RIB contains all prefixes the router has learnt while participating
in BGP, the next hop to that prefix, as well as a list of AS corresponding to how
this prefix reached the current router. The RIB can contain multiple entries for
the same prefix2; the routing information which the RIB supplies to the FIB is

1Matches all IP addresses.
2This is because the RIB consists of three parts: RIB-In (contains all paths learnt); RIB-Out

(the paths this router will advertise to its neighbours); and the RIB itself (the entries this router
has selected for the FIB).

4

Figure 2.2: AS connectivity example

decided by the AS’s local policy. The FIB contains prefixes and next hop informa-
tion, as supplied to it by the RIB, and performs packet forwarding when a packet
arrives at the router. The FIB is known colloquially as the ‘forwarding table’ and
the RIB as the ‘routing table’.

The FIB and RIB within a router participating in BGP-4 (or BGP-speaker) use
CIDR prefixes to allow aggregation of multiple destinations to one routing table
entry. When a packet arrives at a router longest-prefix-matching is performed
within the FIB to decide on the next hop for this packet. This is necessary as the
FIB will contain multiple entries that match the current destination, to break this
tie the entry with the longest prefix is selected as it is a more specific advertisement
than the others. For example, if the destination of a packet is 4.1.3.2, the FIB
may retrieve two entries, 0.0.0.0/0 and 4.0.0.0/8. The longest prefix here is 8 bits
long, and thus 4.0.0.0/8 would be selected and the corresponding next hop would
be used to route the packet towards 4.1.3.2.

BGP belongs to the path-vector class of routing algorithms, and is designed to
calculate the shortest path to a destination. However, it can be the case that
the shortest path between two nodes is not utilised due to politics or business
relationships. For example, an AS, a, may have a contractual agreement with one
of its neighbours, b, that states it must pay for any traffic that is sent between
them. There are two potential routes from AS a to a destination prefix, d: the
shortest path to d which traverses b, and another longer path that does not traverse
b. Due to AS a being able to choose the RIB route selection policy they may
choose to utilise the path that avoids AS b in order to save money, resulting in
the shortest path from a to d not being used. This manipulation of BGP state
is known as traffic engineering (TE). Traffic engineering is not to benefit routing
ability, but to benefit the business running the AS. Multihoming is also a business
related practice with the primary goal to increase the ASes network durability and
connectivity in case of a link failure. Abley et al. [3] discuss the practices and

5

reasoning behind multihoming in more detail.

2.2 Problems

From a routing perspective, AS business decisions can have the undesirable ef-
fect of increasing path length (the distance between source and destination) or
path stretch (a multiplicative factor which represents path length experienced di-
vided by shortest possible path). On top of this path length and path stretch
increase, there may be the additional overhead of more entries in routing tables.
For example, traffic engineering is normally performed by manually inserting BGP
entries for the desired prefix(es) that need to be redirected due to AS business re-
lationships3. Traffic engineering within an AS (intra-domain) have no effect on
the global routing system, as these will not be disclosed when advertising routes
to other AS. However, if a collective of ASes choose to perform traffic engineer-
ing on the inter-domain level, this will result in additional, globally viewable,
de-aggregated prefixes (unnecessary (from the routing perspective), more specific
entries in the routing table), resulting in growing DFZ routing tables.

The Internet Assigned Numbers Authority (IANA) allow for two types of address
allocation to an AS: provider aggregatable (PA), and provider independent (PI).
PA space is assigned form a provider AS to its customers, the provider AS is able
to advertise one aggregated prefix using BGP to allow traffic to reach both it and
its customers. PI space is assigned independent of an AS’s provider, and as a
result may be from a different prefix range, making it non-aggregateable by this
AS’s provider requiring the provider to advertise both its own and its customers
prefixes.

Another cause of increasing routing table sizes in the DFZ is AS multihoming.
A multi-homed AS requires all its providers to advertise the prefixes it serves to
allow traffic to be routed via any of its providers. The number of additional adver-
tisements and routing table entries is depending on the type of address allocation
for the multi-homed AS, as well as the type of service required by that AS. A mul-
tihoming AS with prefixes assigned from PA space, can result in either n or n− 1
additional advertisements, where n is the number of providers. If the AS’s reason
for multihoming is redundancy, n − 1 advertisements are required (one for every
other provider). However, if the AS is requesting to be able to send and receive
data over all links at once, n advertisements are required to ensure that one path is
not selected over another due to that path having a longer prefix. Should the AS’s
prefixes be assigned from PI space, there is always n advertisements, regardless
of type of service, due the each provider having to advertise a prefix outwith its
prefix range. Figure 2.3 provides illustration of the differences between a PA and
PI prefix allocation with respect to advertisements when an AS multi-homes.

A single-homed (i.e., not multihomed) AS using prefixes not derived from that of
its provider’s prefixes (e.g., from PI space) will require the provider to advertise
the single-homed AS’s prefix range, causing additional entries in routing tables.

3Another method of intra-domain traffic engineering makes use of multi-protocol label switch-
ing (MPLS) [36]

6

(a) Multihomed AS acquires its ad-
dresses from PA space, resulting in
one additional advertisement (only if
multihoming is used for redundancy,
otherwise 2 advertisements are prop-
agated)

(b) Multihomed AS acquires its ad-
dresses from PI space, resulting in two
additional advertisements

Figure 2.3: Advertisements resulting from a multihomed AS using PA and PI
space

This advertisement is necessary so that the single-homed AS can receive data.

Routing tables will naturally grow as more IP addresses are assigned to the ASes of
the Internet, each new prefix results in a new entry in the routing tables of routers
within the DFZ. The deployment of IPv6 only leads to exacerbate the routing
table growth as the new addresses are utilised in the Internet, as these addresses
utilise the same routing architecture. Figure 2.4 shows the relative increase of
each prefix length over time. All prefixes combined are represented by the top
most line, while the ‘/24’ prefix is represented by the second most.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

01
/0

1/
19

98

01
/0

1/
19

99

01
/0

1/
20

00

01
/0

1/
20

01

01
/0

1/
20

02

01
/0

1/
20

03

01
/0

1/
20

04

01
/0

1/
20

05

01
/0

1/
20

06

01
/0

1/
20

07

01
/0

1/
20

08

01
/0

1/
20

09

N
um

be
r

of
 a

dv
er

tis
ed

 p
re

fix
es

, b
y

pr
ef

ix
 le

ng
th

Date

All
/8
/9

/10
/11
/12
/13
/14
/15
/16
/17
/18
/19
/20
/21
/22
/23
/24

Figure 2.4: RIB entries by prefix length over time

Increasing routing table sizes are beginning to cause a problems for a few ASes,

7

however, it will become a wide-spread cause for concern in for almost all ASes in
the near future [29]. Increased routing table sizes impact of FIB size, which in
turn causes increased access time when performing longest-prefix routing (as all
entries must be compared). Administrators of AS within the DFZ are concerned
over increasing running costs for critical routers within their infrastructure (due
to upgrades to memory capacity). For these AS it is already becoming an issue.

The increase in routing state not only affects the memory requirements of a router,
but the processing requirements also. Routers must recalculate the routes within
their RIB when they receive a BGP update message from another BGP speaker.
BGP update messages are normally sent when there is a change in the network
topology (i.e., a link failure) requiring some routers to route traffic differently, or
when a prefix is advertised or withdrawn. However, due to router misconfiguration
it is possible that a router frequently sends out update messages advertising the
availability, or lack thereof, of a route. The misconfigured router may also become
indecisive between two or more potential routes to a prefix, producing an update
message each time it changes its route choice - this is known as route flapping.
Regardless of the source, these frequent update messages cause problems to routes
in the DFZ when routing tables get large. Upon reception of an update message,
these routes must recalculate the routes for all prefixes - in early routers this
could result in packets being un-routeable as the router would not forward packets
while calculating the FIB. The rate of BGP update and withdrawal messages is
known as churn, and is believed to be increasing [20]. Huston [20] states that
router processing time due to an update message can last on “order of hundreds
of seconds” at its worst. Huston believes that for updates to be acceptable the
worst case convergence time across the network should only be a few seconds.

The increasing stress inflicted on routing hardware, in terms or memory and com-
putational requirements, should be a cause for concern within the networking field.
Researchers ([20, 29]) have specified requirements for future Internet routing archi-
tectures; they highlight the most important requirement to be routing scalability.
Many researchers have published papers on potential Internet architectures that
constrain routing table sizes, limit convergence times and lower update communi-
cation cost. These potential architectures will be highlighted and discussed in the
next chapter.

8

Chapter 3

Related work and literature

Chapter 2 provided information on the current Internet structure, AS business
practices, and the problems experienced by routers in the Internet due to increas-
ing routing table sizes. This chapter will highlight and discuss solutions which
may to solve this routing scalability problem. The approaches taken by these re-
searchers fall into three general categories: incremental (or ‘dirty slate’) solutions;
‘clean slate’ Internet architectures; and compact routing. Incremental solutions
look to start with the existing Internet architecture and propose additions and al-
terations that would increase, normally only temporarily, the scalability of BGP.
Clean slate solutions aim to provide a scalable architecture by creating an entirely
new scheme or protocol. Compact routing is a subset of the clean slate solutions,
provided here in more detail, as it is the focus of this project.

This chapter is structured as follows: Section 3.1 covers incremental changes to
BGP; Section 3.2 highlights some alternative architectures; Section 3.3 details the
progression compact routing schemes; finally, Section 3.4 provides a summary of
the three types of solutions.

3.1 Incrementally deployable solutions

Incremental solutions are designed to extend the life of the existing inter-domain
routing protocol, BGP, as well as the hardware that implement that protocol.
These solutions are not long-term solutions to the routing scalability problem,
they are instead useful temporary solutions to allow more time to be spent on
developing and deploying a new architecture for routing. The two approaches
that this section will mention aim to reduce the stress incurred on either the FIB
or the RIB of routing hardware.

ViAggre (Virtual Aggregation) [6] is an intra-domain approach for reducing the
size of the FIB in an AS’s routing hardware. ViAggre achieves FIB size reduction
by using ‘aggregation points’, these are routers that advertise highly aggregated
prefixes to the internal routers of the AS. This results in the FIB of every non-
edge router within the AS sending packets for a specified destination address (say
4.2.1.3) to a aggregation point that is responsible for that address prefix (e.g.,

9

4.0.0.0/7). When the packet reaches the aggregation point responsible for that
prefix, the aggregation point tunnels the packet to the AS’s egress point for this
destination by encapsulating it using MPLS [36]. This tunnelling is required as
all non-edge routers will send the packet towards an aggregation point - creating
a packet loop. Figure 3.1 shows this process diagrammatically.

Figure 3.1: Path of packets destined to prefix 4.0.0.0/24 (or, 4/24) between exter-
nal routers A and E through an ISP with ViAggre. Router C is an aggregation
point for virtual prefix 4.0.0.0/7 (or, 4/7). Acquired from [6].

The inclusion of aggregation points into the AS reduces the number of FIB entries
in non-edge routers by allowing them to only maintain the necessary forwarding
state to route packets to aggregation points (and a few other prefixes, e.g., local
addresses). Edge router also benefit from a reduction in FIB state if they utilise
the MPLS label to determine the port or link out of the AS if, and only if, it
removes the MPLS header prior to forwarding the packet to the neighbouring AS.

A benefit of ViAggre’s design is that it can be deployed within an AS by upgrading
existing routing hardware with new software. It also has the benefit of providing
the implementing AS with immediate benefit (the reduction of FIB state) and so
does not rely on other AS’s co-operating – AS co-operation is difficult to achieve
due to the politics and business arrangements involved. Should an AS choose to
deploy ViAggre, this decision is not visible on the inter-domain level, and results
in no change to inter-AS communication.

Due to the nature of ViAggre, packets travelling through an AS implementing
it, may incur some path stretch, the authors provide evidence to show that this
path length increase is low in practice. They authors also note that existing traffic
engineering techniques introduce some path stretch while a packet is traversing
the infrastructure. ViAggre provides an intra-domain solution to the routing scal-
ability problem; the authors have also suggested this scheme could be extended
to allow multiple AS’s co-operating to achieve addition state reduction. However,
this scheme has proven controversial when discussed in RRG meetings[?, ?], with
AS administrators showing heavy opposition to this proposal.

An alternative approach to reducing routing state is to reduce the RIB size. For-
getful routing [22] takes this approach, it reduces the number of alternative routes
for the one prefix in the RIB by allowing a router to delete, or forget, the re-
dundant alternative route, thus, freeing memory on the routing hardware. The
authors explain that it is possible to delete this information as any alternative

10

route will have advertised to the AS from a neighbouring AS. This alternative
route will be that neighbours best or optimal route to that prefix. Should a link
failure cause an update message that requires the AS to route using an alternative
route, it is able to retrieve an alternative route from its neighbours by utilising
the BGP route refresh capability [10] to request a BGP data from a BGP speaker.
Upon receipt of the routing information from its neighbouring routers, this router
will be able to calculate a new route to the prefix that required updating. It is
possible that while waiting for the response to the route refresh message, and while
calculating the new route, that packets will not be able to reach their destinations
due to old or missing FIB entries.

Forgetful routing reduces RIB memory utilisation at the expense of additional
communication costs, and potential loss of packets. It introduces extra network
traffic when performing a route refresh, as well as incurring a time delay while
it awaits the response. This approach therefore increases the convergence time
of routers as they now need to fetch routing information as well as process it.
Forgetful routing does not offer a solution to router churn, and has no influence
on the frequency of update messages. Router churn will be a serious problem for
routers implementing forgetful routing, as they will have to fetch data frequently
from neighbours.

Another RIB reduction proposal from O’Dell is called 8+8 [31]. It uses ‘aggressive
aggregation’ to reduce the number of prefix entries in routing tables. This Internet
draft is for IPv6 addresses, it suggests that the address space be split up into 2
components: an end system identifier and a routing goop. The routing goop part
is equivalent to the network part of a CIDR IPv4 address, however, due to the
design specified by O’Dell the routing goops are strictly hierarchically ordered to
form a tree structure. This is the key feature that allows for 8+8 to perform
aggressive aggregation, as a node only requires routing information of each node
above and below it in its sub-tree. The end system identifier is split into 2 parts,
the host address and the network address. The host address can be an IPv4
address, a Media Access Control (MAC) address, or Internet Engineering Task
Force (IETF) nodeID, and represents a physical device. The network address
part simply identifies the network, or sub-network, that a host is attached to.
This scheme makes edge routers responsible for appending the routing goop to
every packet as it leaves the source network, this has two advantages, firstly,
it is possible to correctly identify the source routing goop of a packet (i.e., the
destination routing goop cannot be spoofed) and secondly,support for multihoming
is trivial and results in no de-aggregation of prefixes in the global routing tables.
Multihoming is achieved by selecting which edge router a packet uses as an egress
point, and that edge router deals with the routing goop labelling.

A proposal currently being discussed in IETF meetings is the Locator/ID Seper-
ation Protocol (LISP)[16]. This proposal makes use of the locator/identifier split
model and aggressive aggregation to produce smaller routing tables. The model
uses endpoint identifiers and routing locators to provide the necessary locator/i-
dentifier split. To allow this separation, a distributed mapping of endpoint identi-
fiers to routing locators is required. How this distributed mapping is implemented
is still being debated, with many suggestions being put forward [28, 21]. This

11

protocol achieves smaller routing tables by performing aggressive aggregation on
routing locators, which is the only information BGP speakers will route on. An
AS’s egress routers are responsible for being able to map the destination endpoint
identifier to a routing locator for the destinations network. This allows the benefit
of simple end-site relocation (simply change the routing locator for that endpoint)
and support for multihoming [34]. This approach is inspired by 8+8, however,
LISP is implemented by encapsulation, instead of packet content manipulation.

3.2 Clean-slate Internet architectures

Instead of researching ways to prolong the life of BGP, some researchers have pro-
duced solutions that start from a clean-slate. This allows them to produce highly
scalable designs. However, many of these designs do not allow for a smooth tran-
sition from the current Internet architecture to the new architecture, something
that is required for these schemes to be deployed. Regardless of this weakness,
these designs are worth investigating.

The current inter-domain routing protocol, BGP, uses path-vector routing to ad-
vertise prefix reachability information. Behrens and Garcia-Luna-Aceves [7] offer
an alternative approach called link-state vectors. This approach takes the ideas
from two existing types of distributed routing information exchange, link-state
announcements and path vectors. By combining these, the authors have designed
an architecture they believe reduces the effect or route flapping. Link-state an-
nouncements suffer less from route flapping, however, do not scale well due to the
broadcasting nature of the protocol. To solve this broadcast problem, the authors
have instead included link-state information into vectors, removing the need to
broadcast. This approach allows for a dampening on the effect of churn, however,
it does not solve the routing scalability problem in its entirety.

During the early expansion of the ARPANet, researchers were concerned over rout-
ing table sizes in their routers. Kleinrock and Kamoun [24] derived an aggregation
technique to reduce the required routing state in the routers. The technique was
known as hierarchical routing, and is the same technique used in CIDR and current
BGP routers. It works by aggregating or grouping nodes that are further away
into one entry, allowing correct routing with lower table sizes. This technique is
the core way to reduce routing table sizes in schemes like 8+8, and ISLAY.

ISLAY [23] is a clean-slate approach that defines the Internet topology in terms
of new structures called aggregates and destinations. Destinations, as expected,
represent the end-points in the network. Aggregates are groupings of destinations
and other aggregates. Reachability information is exchanged between aggregates
stating which aggregates and destinations they can reach. ISLAY uses this routing
information to fill the FIB for each destination within an aggregate, resulting in
the FIB not benefiting from any size reduction. This proposal can support multi-
homing, different protocols (IPv4 and IPv6), and is independent of the underlying
protocol addresses (name independent). This scheme is similar to LISP, however,
unlike LISP, ISLAY is not currently incrementally deployable.

12

Hybrid link-state path-vector (HLP) [38] is a protocol that utilises AS relationships
to create a routing structure. This approach creates a collection trees using AS
customer-provider relationships, each tree communications changes in network
topology via link-state announcements. Network topology changes that affect
other trees can be communicated via path-vector, however, other trees are only
notified of a topology change should that change be considered substantial. A
change is considered substantial if the change exceeds a specified threshold that
is determined on a per tree basis. For example, it is possible that a link failure
happens in a tree, however, there is an alternative root that maintains connectivity
– there is no need to notify the other trees. If, however, the tree could not find
an alternative root, it would notify the other trees of the failure, allowing them to
update their routing tables to reflect the failure. This decision to suppress updates
reduces the effect of route flapping, as the router causing the problem will only
affect the link-state information of the tree in which it is a member; all other trees
remain unaffected by the misconfigured router.

A contrasting approach to those mentioned above, is routing on flat labels (ROFL)
[9] which uses a flat name-space rather than a hierarchical name-space. ROFL as-
signs a new name to every node that joins the network, and routes information to
nodes based on this name. ROFL is a routing overlay network, and closely resem-
bles a distributed hash table. Nodes in ROFL are arranged in a ring with each
node having a predecessor and a successor (the nodes arithmetically before and
after it). Routing is achieved by comparing the current node name with that of the
destination and forwarding the packet to either the successor or the predecessor.
This process is repeated until the packet reaches its destination. To increase rout-
ing efficiency shortcuts across the ring are created, this can significantly reduce
the number of nodes in the overlay network that a packet is processed by. How-
ever, because the overlay network does not reflect the underlying structure of the
network, it is possible that a node and its predecessor or successor be separated
by substantial distance, increasing the path traversed by a packet. This approach,
by its definition, has a split between identifiers and locations, however, requires no
mapping between them (LISP requires a mapping). This approach also supports
host mobility and multihoming (achieved by giving a node multiple names).

3.3 Compact routing

Some researchers are developing routing schemes that have routing tables that
are sub-linear in size, grow sub-linearly as new nodes are added, and route using
packet headers poly-logarithmic in size. Routing schemes of this achieve these
properties are known as compact routing schemes. This routing table size reduc-
tion is achieved at the expense of increasing path stretch between certain nodes.
However, this path stretch is bounded. Gavoille and Gengler [18] proved that min-
imum value of maximum stretch for sub-linearly scaling routing tables is three. It
is therefore possible to have a routing scheme that guarantees that path stretch
of a pair of nodes will never exceed three, and still maintain sub-linear routing
tables. It is not possible to have a maximal path stretch of 2, or 1, with sub-linear
routing tables.

13

For the duration of this section, unless otherwise stated, n is the number of nodes in
the network or graph. Stretch remains as defined in Section 2.2 – a multiplicative
factor representing the length of the path travel divided by shortest possible path.
Stretch-3 indicates a path three times larger than the shortest possible path. A
compact routing scheme is said to be universal, if it can provide routing on any
graph type (for example, grid, tree, power-law).

Cowen [13] was responsible for the first universal stretch-3 compact routing scheme.
The routing scheme utilises the concept of global landmarks and local neighbour-
hoods. Routing is performed by routing a packet to the nearest landmark to
the destination and then onwards via the local neighbourhood to the destination.
This idea is analogous to the postal system. Figure 3.2 shows a node, u, sending
a packet to another node, v, in a different neighbourhood by sending it via the
local landmark, L(v). The routing table of a node is constructed by maintaining
next hop information for its neighbours and the global landmarks, this is all the
information required as routing state. A nodes neighbourhood is defined as the k
closest nodes to that node (where k is an arbitrary positive integer). Landmark
set selection is determined using a greedy approximation to dominating set con-
struction, in such a way to facilitate routing table sizes not exceeding O(n2/3) (i.e.,
number of landmarks + a nodes neighbourhood size ≤ O(n2/3)). Cowen notes that
it should be possible to create a stretch-3 compact routing scheme with routing
tables of O(n1/2) size, and presents this as an open problem to the community.

Figure 3.2: Compact routing example

Thorup and Zwick [39] addressed this open problem by producing a universal com-
pact routing scheme with worst-case O(n1/2) sized routing tables. This reduction
in routing table state is achieved by changing the landmark selection scheme to
an iterative process that randomly selects nodes as landmarks. Initially nodes are
randomly selected from the whole graph, but in subsequent iterations only nodes
whose neighbourhood (cluster in Thorup-Zwick terminology) exceeds a specified
threshold are candidates for selection. A nodes neighbourhood is no longer its k
nearest nodes, it is instead, any node that the distance between that node and
its landmark is larger than the distance to this node. The landmark selection
algorithm ensures, due to the neighbourhood threshold size, that routing tables

14

for nodes in this scheme do not exceed O(n1/2). They provide proof of this result
within the paper.

In addition to providing a universal compact routing scheme with O(n1/2) max-
imum routing state, Thorup and Zwick presented a specialised compact routing
scheme for trees. This tree routing scheme has constant time (O(1)) forwarding
and extremely compact header sizes. These compact headers are achieved by using
bit manipulation to encode routing information from the source to the destination.
This scheme, despite its being a tree only routing algorithm, is used to construct
a universal compact routing scheme by Brady and Cowen [8]. Finally, to round off
the spectrum of compact routing, Thorup and Zwick present a universal stretch-
2k− 1 scheme that maintains O(n1/k) sized routing tables, where k is any integer
greater than 1. This scheme achieves stretch-2k − 1 by utilising a handshaking
procedure between the source and destination nodes. If this handshaking is not
performed, the scheme dissolves to stretch-4k − 3. The authors leave the open
problem of achieving a stretch 2k − 1 algorithm without use of a handshaking
process.

The participants of an Internet Architecture Board (IAB) workshop for routing
and addressing [29] heavily encourage that any future Internet architecture provide
a separation between the locator of a destination and its identifier. Arias et al. [5]
present a name-independent compact routing scheme with O(n1/2) routing table
sizes. Mapping between a nodes identifier and its locator is facilitated by use
of a distributed identifier to locator dictionary. Nodes are arranged (clustered)
such that they can provide a mapping between an identifier and a locator for any
node in their cluster. To perform a identifier to locator mapping, a node first
queries its local cluster for this mapping. Should this query fail, the scope of the
query is gradually expanded until the query is answered. A response is guaranteed
as eventually the scope of the query will encompass the entire graph. To route
from a source to a destination, the source node first queries for queries fro the
nodes locator. This locator is then used to route using a scheme resembling both
the Cowen and Thorup-Zwick universal schemes. However, this scheme allows
for packet header contents to be changed to allow for the addition of topology-
dependent routing information to be added at intermediate nodes. This allows
for nodes to utilise the shortest path, should an intermediate node know this
information. This name-independent scheme achieves routing table sizes of no
more than O(n1/2), however has a worst case stretch of five.

A name-independent compact routing scheme that achieves both O(n1/2) routing
tables and stretch-3 is a scheme from Abraham et al. [4]. This scheme is a land-
mark based compact routing scheme, however, it uses a graph colouring approach
to produce landmarks. The ‘colour’ of a node can be determined by hashing the
node’s name. Nodes of the same colour are then grouped into sets. There are
two constraints on this grouping, there can not be more than 2

√
n nodes in one

colour-set, and every node must have a node of every colour within its neighbour-
hood. A node’s neighbourhood is defined as the k nodes nearest to it, much like
the Cowen scheme [13]. A node’s routing tables comprise of all nodes within its
neighbourhood, and all nodes of the same colour. Routing between two nodes
of the same colour is achieved by querying the local routing table and sending

15

accordingly. Routing between nodes of different colours is achieved by querying
the local routing table for a neighbourhood node of the same colour, the packet is
then sent to that node, routing then proceeds as defined for routing to a node of
the same colour.

Both the Thorup-Zwick [39] and Abraham [4] scheme previously mentioned have a
mathematical worst case of stretch 3. Krioukov et al. [27] performed experiments
on random synthetic power-law graphs using the Thorup-Zwick scheme. They
produce formulae for the statistical analysis of the various stretch values possible
within these graphs. They also perform simulations of the Thorup-Zwick algorithm
on these power-law random graphs (PLRGs). The simulations result in an average
stretch of 1.1, i.e., very close to the shortest possible path on average. This suggests
it may be possible to have small routing tables with very low stretch impact if
applied to the Internet topology. Krioukov et al. strongly suggest that future
work within the compact routing area should evaluate the performance of the
Thorup-Zwick scheme on ‘realistic power-law networks’. The also note that for
the advancement of compact routing, dynamic low stretch routing algorithms must
be developed.

Brady and Cowen [8] present a compact routing scheme specifically designed for
power-law graphs. Their scheme involves use of multiple trees spanning the entire
graph. Labeling and routing in this scheme is performed using a slightly modified
version of the Thorup-Zwick compact tree routing scheme. The authors prove
this scheme to have a worst case stretch that is additive. If the shortest possible
path between two nodes is 3 hops in length, traffic between these two nodes in an
additive stretch-3 scheme would exhibit a worst possible path length of 6. The
authors also suggest a hybrid scheme merging this additive stretch scheme with
the Thorup-Zwick universal compact routing scheme. This merging is performed
by performing the necessary calculations for both schemes; the routing table of a
node is then determined to be the best possible route that either scheme provides.
The resultant scheme is guaranteed to perform better than either scheme on their
own, as their will be some paths that are shorter in one scheme than the other,
and vice versa. The authors demonstrate this by simulating the Thorup-Zwick,
Brady-Cowen, and the hybrid TZ-BC scheme on PLRGs.

It has been previously mentioned that there exist both name-dependent (e.g.,
Throup-Zwick and Cowen) and name-independent (e.g., Abraham and Arias)
schemes that guarantee a worst case (multiplicative) stretch of 3. Krioukov et
al. [26] perform experiments between name-dependent and name-independent
compact routing schemes to see how the average stretch of each type compare.
The authors perform simulations on the Thorup-Zwick, Brady-Cowen, TZ-BC,
and Abraham schemes. The result show that name-independent schemes consis-
tently perform worse, on average, than name-dependent schemes. The authors use
their result to deduce that compact routing is a more scalable alternative to the
general category of locator identifier split schemes. The authors also present the
argument that it is not possible to reduce communication costs of a routing pro-
tocol (for example, updates or withdrawal messages) to below linear with respect
to the network size, and as such, believe that the future of routing protocols relies
on convergence free routing architectures. Convergence free routing architectures

16

are based on the small world principle1 [30]. Small worlds and the Internet share
similar properties as they both exhibit a power-law. A convergence free routing
architecture would allow for routers to successfully perform their task regardless
of how much information they have on the network topology as a whole, i.e., it
would be possible to route correctly with a partial view of the network.

All previously mentioned compact routing schemes are only viable when applied
to the static graph model (i.e., graphs that do not change). This is a major
limitation as real-world networks are subject to interruption, and failures. Korman
[25] claims to have developed a tree compact routing scheme that is resilient to the
addition and removal of nodes with up to degree 2. Korman provides details of
the node addition process, however defers the details on node deletion to a future
publication.

Following on from earlier work, Enachescu et al. [15] have derived alternative
landmark selection algorithms for stretch-3 universal compact routing schemes.
The authors have attempted to integrate knowledge of the Internet topology into
the landmark selection algorithm to reduce the average stretch. Their resultant
landmark selection schemes result in an average routing table size of O(n1/2) while
maintaining the stretch-3 upper bound. This routing table size is not as good as
the Thorup-Zwick scheme, however, the merits of their research is due to their
experimental method. Enachescu et al. simulated these new landmark selection
schemes over representations of the real-world Internet graph, as well as power-law
random graphs. Unfortunately their results to not supply the average path stretch
of their algorithms.

Another attempt to use the Internet topology to affect the landmark selection
algorithm is demonstrated by Chen at al. [12]. Their algorithm only selects
landmarks from what they define to the Internet ‘core’. This results in stub
networks being ineligible for landmark selection. The authors also evaluated the
landmark selection algorithm by simulation on real-world Internet graphs provided
by CAIDA [1]. The result of evaluating their landmark selection scheme on the
Internet graph was an average stretch of 1.28. This is worse than the Thorup-Zwick
scheme’s average stretch on power-law random graphs of 1.1, however, the authors
suggest a rigorous average stretch analysis of the Thorup-Zwick routing scheme
on real-world Internet graphs to provide comparison to their scheme. The authors
also propose similar experiments be performed to the Brady-Cowen scheme also.

3.4 Summary

This chapter has highlighted the several different approaches to solving the routing
scalability problem that exists in the current Internet architecture. Researchers
have suggested proposals designed to prolong the current Internet architecture,
however, since these solutions only prolong the life of the current architecture, they
only allow other researchers more time to design and evaluate new architectures to
replace the current architecture. New architectures include ideas like LISP, HLP,
ROFL, and compact routing. These architectures target different sources of the

1The small worlds principle is synonymous with the phrase ‘six-degrees of separation’.

17

problems that plague the current architecture. Compact routing looks to target
the routing table size by reducing the amount of state each router requires. This
is not just a one time routing state reduction; compact routing algorithms are
designed to manage growing networks such that the routing state grows at a sub-
linear rate with respect to the new additions. For this reason, compact routing
appears to be able to make the biggest impact to the routing scalability problem.
However, compact routing is not without its flaws.

Compact routing is only a viable option on the static graph model, which is
not representative of the Internet. Any compact routing scheme that is destined
to become a deployable inter-domain routing protocol, must be able to handle
changes in the network topology. Krioukov et al. believe that compact routing
does not go far enough, and should instead attempt to integrate some degree of
convergence free routing, in order to become truly scalable with respect to routing
convergence, as well as routing table size.

Regardless of these points, experiments performed on power-law random graphs
have produced favourable results in terms of routing table sizes and path stretch.
However, these experiments have not be performed thoroughly on real-world In-
ternet graphs. This is a large milestone for compact routing should it strive to be
a candidate for the inter-domain routing protocol; it must first prove its worth.
The next chapter outlines how we will attempt to reconcile this point.

18

Chapter 4

Evaluating compact routing on
real-world networks

This chapter discusses the potential approaches for evaluating compact routing
algorithms on real-world graphs. It will critique each approach, and select the
most viable, providing a strong justification for why this approach is feasible.

4.1 Potential approaches

From the papers outlined in the compact routing section (3.3) of the related work
chapter (3), the approaches used by the various authors fell into to broad cate-
gories: mathematical analysis, and simulation.

Mathematical analysis is used by many authors to prove the bounds of their algo-
rithms. Cowen [13], Thorup and Zwick [39], Arias et al. [5], and Abraham [4] all
preformed this analysis to prove routing table sizes, path stretch bounds and other
properties of their algorithms on generic graphs. Krioukov et al. [27] provided a
mathematical analysis of the Thorup-Zwick algorithm on power-law graph models.
Their analysis allowed for analysis of path stretch on graphs of this type. This
approach is close to being able to answer our research question, however, Krioukov
et al. highly recommend performing simulations to validate this information [27].
For this reason, as well as the fact that repeating this mathematical analysis will
yield no new results. Further, the mathematical models cannot represent the real
interconnections of the Internet, a real concern as the aim is to look at the practi-
cal aspects of the routing schemes not the theoretical as would be provided by the
model. Mathematical analysis is therefore not the best approach, albeit a possible
one.

Routing simulators, if provided with an accurate snapshot of the Internet graph,
would provide the information to answer the research statement. Brady and Cowen
[8], Chen et al. [12], and Enachescu et al. [15] have all used simulations on syn-
thetic power-law random graphs to provide stretch information for graphs of this
type. Chen et al. went one step further by utilising Internet snapshots provided by
CAIDA [1]. Routing simulators are computationally intensive software programs,

19

often requiring vast amounts of memory. Strowes and Perkins [37] estimate a 32000
node graph simulating BGP-like protocols would require of 120GiB of RAM. This
would normally require extremely expensive hardware to achieve, however, Strowes
and Perkins have produced a simulator designed to work over a distribute cluster
allowing normal computing hardware when networked to perform the simulation.

Provided with the simulator from Strowes and Perkins, as well as acquiring some
Internet snapshots from CAIDA [1] it will be possible to perform an experiment
that will answer the research questions. The simulator will be open-source soft-
ware once completed and is designed to be a platform for experimental protocols,
allowing for easy integration of those protocols into the simulator.

4.1.1 Internet snapshots

ASes are businesses, and often consider their network’s routing state and con-
figuration to be proprietary. It is, however, possible to derive Internet AS-level
connectivity by peering with an existing AS who will exchange all their BGP state
to the observer, but will advertise no prefixes for that observer. Thus, the observer
achieves a full view of the network from that peering location. CAIDA snapshots
[1] are the aggregate of multiple such views.

BGP data acquired from peering points, like all BGP data, does not contain infor-
mation on the relationships between ASes. To derive this information heuristics
must be researched. Dimitropoulos et al. [14] and Gao [17] have been developing
such heuristics. Dimitropoulos et al. have developed a heuristic that is capable of
inferring 94.2% of the AS business relationships in the Internet graph. The authors
evaluated the heuristic by presenting the derived relationships to AS administra-
tors and asked them to validate the information. The authors have provided an
additional contribution; the output of the heuristic is freely available online for
use in research [1]. This information when fed to the distributed simulator would
provide a test bed for this research.

Some AS connectivity is hidden from BGP advertisements (for example, sibling-
to-sibling links), therefore the inferred AS relationship graph is not complete.
Research is currently in progress to increase the accuracy of the inferred graph by
including these missing links. Chen et al. [11] are utilising a modified peer-to-
peer bit torrent client to observe links that are utilised in sending traffic, but not
advertised. Unfortunately, this data has not been released yet, and as such the
CAIDA Internet snapshots will be used.

4.2 Summary

A distributed simulator utilising real-world Internet AS-level snapshots from CAIDA
will simulate the Thorup-Zwick and Brady-Cowen compact routing schemes. De-
spite the missing edges in the snapshots, the accuracy of these results will ex-
ceed those of a mathematical analysis, and are the best option for answering
the research question. The experiment will require the implementation of the

20

Thorup-Zwick and Brady-Cowen algorithms along with their integration with the
distributed simulator. Descriptions of these algorithms follow in Chapter 5 for
Thorup-Zwick and Chapter 6 for Brady-Cowen.

21

Chapter 5

Thorup-Zwick (TZ) compact
routing

The Thorup-Zwick universal1 compact routing scheme employs use of ‘landmark’2

nodes and node ‘clusters’ to achieve routing between source-destination pairs.
Landmarks are globally known nodes, and as such are contained within in the
routing table of every node in the graph. A node’s cluster comprises of any nodes
which it requires next hop information about in order to complete routing of any
packets toward that destination. Section 5.1 provides a description of the Thorup-
Zwick scheme, section 5.2 explains the implementation process, and section 5.3
summarises this chapter.

5.1 Description

Section 5.1.1 provides detail on how landmarks are determined and the importance
of a node’s clusters. Section 5.1.2 details the routing procedure of the algorithm.
Finally, section 5.1.3 provides a discussion of this scheme.

5.1.1 Landmarks and clusters

The TZ scheme makes use of landmark nodes and node clusters. How these
landmarks and clusters are calculated is described here.

Previous attempts to determine landmarks by Cowen relied upon creating a dom-
inating set, using these nodes as landmarks. In the Thorup-Zwick scheme land-
marks are selected randomly with a uniform probability from, initially, all nodes.
Once these landmarks are selected, each node in the graph is assigned the land-
mark closest to it. Each node’s cluster is then calculated based on these distance,
and the distance of all other nodes to the landmark set.

1Can be applied to a graph regardless of its structure. For example, trees, or grids
2There is no universally acknowledged name for these nodes. Thorup and Zwick [39] refer to

these nodes as ‘centers’.

22

a lgor i thm landmark (G, s)
landmarkSet = ∅
potentialLandmarks = V // V = v e r t i c e s o f G

whi le potentialLandmarks 6= ∅ do
{

landmarkSet ← landmarkSet ∪ sample (potentialLandmarks , s
)

// func t i on sample () randomly s e l e c t s s nodes to become
landmarks

f o r a l l w ∈ V do
// determine every nodes c l u s t e r
C lus te r (w) ← { v ∈ V | δ (w, v) < δ (LandmarkSet , v) }}

// i f a node ’ s c l u s t e r i s too la rge , we must s e l e c t more
landmarks

potentialLandmarks ← { w ∈ V | |Cluster(w)| > 4n/ s }
}
r e turn landmarkSet

Listing 5.1: The TZ landmark selection algorithm [39]

Should this nodes cluster exceed a specified limit that node is then considered a
candidate for becoming a landmark in the next iteration of the landmark selection.
This algorithm continues until all nodes have a cluster size not exceeding the
limit. The threshold and the probability of a node being selected as a landmark
are dependent on a value s, such that 1 ≤ s ≤ n, where n is the number of
nodes in the graph. The probability that a node is selected as a landmark is
s/|potential landmarks|, and the limit for a nodes cluster size is 4n/s. Thorup
and Zwick recommend a value of s such that s =

√
(n/log n), allowing for a

maximum routing table size of 6
√

(n log n) comprising maximum cluster size of

4
√

(n log n) and maximum landmark set size of 2
√

(n log n).

Clusters are required to ensure packets can be routed from a landmark to the des-
tination node, without this cluster information packet loops would occur between
landmarks and the first hop from that landmark to the destination. This would
result in any node not directly connected to a landmark being unable to receive
data. This is shown diagrammatically in Figure 5.1, if nodes do not maintain
information relating to their cluster, a packet loop may occur between nodes a
and c for any packet destined for node d (follow arrows ‘step 1’ and ‘step 2a’). If
instead cluster information is maintained at nodes c and b, packets addressed to
node d will be correctly forwarded from node c, and b, to d (arrows ‘step 1’ and
‘step 2b’).

The cluster of a node is constructed using the equation specified in Eq. 5.1. This
equation states that a node v is in w’s cluster if w is closer to v than v is to its
landmark. The bunch of a node (B(v)) is the inverse of its cluster, as shown using
the Eq. 5.2. The bunch of a node is simply any node closer to v than v is to its

23

c

b

a

d

To | Via
 a | a

To | Via
 a | a
 d | d

To | Via
 a | b

To | Via
 a | a
 d | d

Center

Additional
routing table
entry

Additional
routing table
entry

Send a packet from Node a to Node d [label: (d, a, c)]

Step 1

Step 2b

Step 2a

Figure 5.1: Why do we need clusters?

landmark. The bunch formula is useful for proving properties of the TZ scheme,
as well as calculating a nodes cluster (see Section 5.2.2 for details).

C(w) = {v ∈ V |δ(w, v) < δ(A, v)} (5.1)

B(v) = {w ∈ V |δ(w, v) < δ(A, v)} (5.2)

5.1.2 Routing

To route using the TZ scheme you must know the destination’s name, the desti-
nations landmark, and the port that landmark uses to route traffic towards the
destination; these three components make up the ‘label’ of a node. Routers within
the network make routing decisions based entirely on these labels. For example,
in Figure 5.1 the label of node d is (d, a, c) where d is the destination, a is d’s
landmark, and the next hop for traffic to d is node c. The TZ scheme is a labeling
scheme as the nodes in the network are renamed or labeled for the purpose of
routing correctly.

To route from a source, a, to a destination, b, using the TZ scheme proceeds as
follows: procure the name of b’s landmark node, l, route packet towards l (possible
due to all nodes containing next hop information for all landmarks). Upon reaching
l the packet is routed towards b (possible as nodes in-between l and b will contain
next hop information for b). Upon reaching b routing is complete, and the packet
is successfully delivered. This is the simplest scenario for this routing scheme
resulting in the worst case path stretch on this transmission, reasons for this will
be covered in detail in Section 5.1.1. This routing procedure is analogous how
the postal service works. Mail for the recipient is delivered to the destinations
local sorting office (the landmark), before being routed locally to the destination
address.

24

 to next
4 4
7 9
1 1
8 9
9 9

 to next
4 3
7 6
8 8

 to next
4 4
7 5

 to next
4 6
7 7

 to next
4 4
7 4
1 1

 to next
4 2
7 3

 to next
4 4
7 6

 to next
4 5
7 7
9 9
8 8

 to next
4 9
7 9
9 9

1

2

3

4

5

9

6

8

7

4 Landmark

2 Node and its cluster

Figure 5.2: A 9 node graph showing TZ routing table information.

Routing via a landmark then onward to the destination can increase the distance
travelled by a packet. There is a limit imposed by this due to the nature of this
routing procedure, no Thorup-Zwick path is ever more than 3 times the shortest
path between a and b (Stretch 3). This is proved mathematically using the triangle
inequality and symmetry by Thorup and Zwick [39].

On receiving a packet with label (x, land(x), port(land(x), x)) routing decisions
made by a node, say y, are shown in Listing 5.2.

5.1.3 Discussion

Within the Thorup-Zwick scheme, nodes are sent from a source to a landmark then
onwards towards the destination, with a worst possible path stretch of 3. Clusters
not only allow packets to be routed from a landmark to their destination, but also
allow for paths shorter than source to destination via a landmark to be discovered.
To illustrate this, consider a packet with source node 4, destined for node 8 (label:
(8, 7, 6)) in Figure 5.2. The routing decision at 4 (send toward the landmark
(7)) results in the packet being sent to 5. Node 5 follows the same strategy and
sends to node 6. Node 6 contains node 8 within its cluster, and routes using
this information, similarly for node 9. As you see, the packet destined for node
8 from node 4, never reached the landmark node 7. It is possible that a packet
can be sent from a source to a destination without interacting with a landmark
node, it certain situations the path exhibited by a packet within the Thorup-Zwick

25

i f y = x :
Reached de s t i n a t i on : Done .

e l s e :
i f x i s a landmark or in y ’ s c l u s t e r :

look i t up x in l o c a l rout ing tab l e and forward i t
e l s e :

Extract the landmark in fo rmat ion from l a b e l . [land (x)]
i f y = cent (x) : // y i s the landmark o f x

forward us ing the l abe l ’ s port in fo rmat ion . [port (
land (x) , x)]

e l s e :
look up cent (x) in l o c a l rout ing tab l e and forward i t

Listing 5.2: Routing decision in the TZ scheme

routing scheme may match the shortest possible path between the source and the
destination (i.e. Stretch-1).

It is possible for the paths exhibited between two nodes to follow different routes
depending on the direction travelled. Consider node 2 and node 8 in Figure 5.2.
Source 2, destination 8 follows path: 2 → 4 → 5 → 6 → 9 → 8 (length 5);
meanwhile, source 8, destination 2 follows path: 8 → 9 → 3 → 4 → 2 (length 4).
These paths are not identical, in fact, it is possible to have a source-destination
pair such that traffic travelling in one direction exhibit stretch-1, while traffic
travelling in the opposite direction exhibit stretch-3.

5.2 Implementation

Implementation of the TZ compact routing scheme followed three distinct stages
that lead on from one another. These are distance calculations, landmark selec-
tion, and simulation of the routing mechanism. These will be summarised in the
following sections.

5.2.1 Distance information

It is important that every node know the distance from itself to every other node
for the process of calculating next hop information and calculating a nodes bunch
and cluster. As such an implementation of Dijkstra’s algorithm and an adaption
of Breadth First Search were used to calculate distances from each node to all
other nodes in the graph, as well as recording nodes traversed to reach that node.

The distance calculation results in a file formatted as shown in Figure 5.3.

This distance information file is read in by the landmark selection algorithm and
the routing simulator by the instance of this AS to allow it to complete the next
hop information in its routing table.

26

1 2 3 2

2 1 3

3 0

4 1 3

5 3 3 2 1
.
.
.

(1) Destination node.

(4) Next hop.
If this column is
empty the next
hop, is the
destination node
itself.
e.g., next hop to
AS5 is AS2; next
hop to AS4 is AS4
itself

(3 -> Last) The nodes visited on
route to this destination.
e.g., AS3 to AS5 traverses AS3
-> AS2 -> AS1 -> AS5

(2) Distance to that node.

Label format: (Column_number) Description

Figure 5.3: The distance file (.dij) file format.

f o r w in V:
f o r v in W:

i f (d i s t (w, v) < d i s t (land (v) , v)) :
w. addToCluster (v)

Listing 5.3: Calculating clusters using clusters (see Eq. 5.1)

5.2.2 Landmarks algorithm

The landmark selection algorithm follows the pseudo-code outlined in Figure ??.
An interesting take on this algorithm that allows a noticeable performance increase
in the clustering section is the use of the bunches equation, rather than the clusters
equation. Using the clusters equation results in code resembling Listing 5.3 which
is O(n2) in time complexity, where n is the number of nodes in the graph. However,
utilising the fact that the inverse of a bunch is a nodes cluster, we can produce code
resembling Listing 5.4 which results in O(nm) where m is between 0 ≤ m ≤ n. As
the algorithm proceeds m is guaranteed to substantially smaller than n, as more
and more landmarks are added resulting in smaller clusters. The bunch of a node
is easily computed as a ‘filter’ operation on all nodes to produce a list of nodes
with distance less than the distance between this node and its landmark. This
filter operation in many programming languages, for instance Scala, Python and
Haskell.

The landmark selection algorithm results in two types of files, one global file
representing the landmark set, and one file per node in the graph, representing
that nodes landmark, landmark port, and the members of its cluster. The format
of these files are specified in Figure 5.4.

27

f o r v in V:
bunch = v . getBunch ()

f o r w in bunch :
w. addToCluster (v)

Listing 5.4: Calculating clusters using bunches (see Eq. 5.2)

32

46

23

7
.
.
.

An AS number one per line

(a) The Center file format (one
global file). This file represents the
ASs that have been randomly se-
lected to be landmarks.

32 12

3

29

5
.
.
.

The AS number of this nodes center

The next hop that the
center (i.e., 32) must
forward traffic on to reach
this node.

The cluster of this node.
One AS per line.

(b) A cluster and center informa-
tion file (one per AS). This file rep-
resents one nodes center and clus-
ter information.

Figure 5.4: Center and cluster file formats

28

5.2.3 Routing

To modify the existing network simulator to preform compact routing involved
modifying the existing routing decision components, and the addition of a mech-
anism to read in the pre-computed routing table information from disk.

The routing decision was changed to code implementing the pseudo-code from
Listing 5.2. The routing table itself was constructed by reading in the distance
information and cluster information files for the AS this instance represents, as
well as the global landmarks file. The routing information then consists of one
routing entry for each cluster member and each landmark, next hop information
is procured from the distance information file by using the 4th column for each
AS, as highlighted in Figure 5.3.

Control of the test traffic for the simulator is controlled from one host. This host
is responsible for parsing the source and destination (represented as a label) from
within a file, and then informing the source AS’s instance to send data to the
destination. The AS instance will then consult the routing information it has and
route accordingly. Look-up of the host responsible for a particular AS is done
by consulting the master NameServer and maintaining a cache of recently used
AS to host mappings to increase the throughput of the TrafficGenerator class.
The traffic file is sorted numerically by AS number to allow for dispatching of all
traffic descriptions for a particular AS to be completed at once. This provided a
substantial decrease in processing time.

5.3 Summary

The Thorup-Zwick compact routing scheme is a landmark based routing scheme.
It utilises landmark nodes as well as clusters to construct a worst-case stretch-3
routing algorithm. The pre-processing for the Thorup-Zwick scheme, landmark
selection algorithm, was implemented alongside a simulator capable of routing this
compact routing scheme.

29

Chapter 6

Brady-Cowen (BC) compact
routing

This chapter describes, in detail, the Brady-Cowen tree based compact routing
scheme. Section 6.1 explains the concepts used by the Brady-Cowen algorithm, as
well as the other schemes it utilises to produce the final additive stretch routing
scheme. Section 6.2 details the implementation of the Brady-Cowen algorithm to
be used within the simulations.

6.1 Description

The Brady-Cowen routing scheme creates several spanning trees out of a given
graph. These trees are then processed using a routing algorithm provided by
Thorup and Zwick [39] for very efficient routing in tree graphs. Each tree is also
processed such that the label assigned to a node contains information to allow the
distance to any other node to be calculated. Each of these steps, and how they
related to routing, are explained in the remainder of this section.

6.1.1 Routing table construction

The Brady-Cowen creates a forest of spanning trees, and creates one routing table
entry per tree. To create this forest (denoted τ) they first creating a spanning
tree that encompasses the entire graph (G) originating from the node with the
highest connectivity (broken lexicographically if there are multiple candidates).
This node of highest connectivity is denoted by h, and the spanning tree with h
as the root is denoted T0. The remaining trees of the forest, τ , are constructed by
use of the concept of a d-core (I), d-fringe (F), connected components and finally,
‘extra’ edges (eG, eF , or eI , depending on where these extra edges are located),.

First, d is any positive, even integer. The d-core of a graph consists of any node,
and any edges between those nodes, at most distance d/2 from h, the highest
degree node. This results in a core of diameter d. The d-fringe of a graph consists
of any node not in the d-core, and all edges between those nodes.

30

When considering the fringe and the edges it shares in common with the spanning
tree T0, there will be nodes that are physically connected in the graph, however
are no longer connected in the fringe due to the spanning tree being a subset
of all edges in the full graph. A collection of nodes that are connected in the
original graph but are now disjoint have edges reinstated to form a connected
component. However, the missing edges of a connected component are restored
such that connectivity to all nodes in the connected component is possible, but
there are no cycles within that connected component of the graph, i.e., it must
also form a tree. Finally, extra edges are any edge within a connected component
that would cause it to become acyclic.

Figure 6.1 provides a diagrammatic view of the concepts of the d-core, d-fringe
and connected components.

The Brady-Cowen scheme then creates one tree per connected component, and one
spanning tree per extra edge, such that the tree originates from that edge. Should
the number of extra edges be less than five, Brady and Cowen highly recommend
using a heuristic: If there are less than five extra edges, randomly select up to
five edges from fringe to act as extra edges. This heuristic allows for lower stretch
paths to be achieved than if only the tree T0 and connected components are used,
as they proved within the Brady-Cowen paper.

The forest, τ , is simply: the initial spanning tree, T0; all the spanning trees derived
from the extra edges, or the heuristic; and all the trees formed by connected
components.

These trees are used to provide the routing within the Brady-Cowen scheme, only
after being processed with the Thorup-Zwick tree compact routing scheme [39],
and Peleg’s Proximity-Preserving labels [33]. These concepts are detailed below.

6.1.2 Thorup-Zwick compact routing scheme for trees

The Thorup-Zwick tree compact routing scheme [39] is a re-labeling scheme that
can achieve constant time forwarding of packets. The key to its efficiency is this
labeling process. This section outlines this labeling scheme, as well as the infor-
mation required by a router and packet headers utilising this scheme.

This scheme utilises a variable b, which can be any positive integer. This variable is
used in determining if a node is consider a light node or a heavy node (alternatively,
a light or heavy child). Each node has a weighting (sv), that is the number of
descendants it has, including itself. A node is considered heavy if it shares at
least 1/b nodes in common with its parent. For convenience the root of the tree
is considered to be heavy. Each node has a light level, this is the number of light
nodes in between the root and the current node, itself included.

Given this information, nodes are given a label by traversing light nodes before
heavy nodes using depth-first search ordering.

The routing table contained within a node is made up of the following parts. Its
label as determined by depth-first search (v); its light level (lv); the number of its
largest descendant (fv); the number of its first heavy child (hv); the number of

31

1

2

3

5

9

6

8

4 7

3 Root of tree

Connected component

d-Core

Edge used in tree
Edge not used in tree
Direction of tree expansion

Figure 6.1: A 9 node graph showing BC concepts

heavy children and an enumeration of those heavy children encapsulated into one
array (Hv); and finally, a list of ports to the heavy children contained in another
array (Pv). The correspondence between the heavy children array and the port
array is such that H[1] and P[1] give the name and port number of the same heavy
child, H[2] and P[2] are the same, and so forth; while H[0] contains the number of
heavy children, and P[0] is the port information to reach this nodes parent.

A packets header in this scheme is the destinations label (v), and the port infor-
mation to be used at each node that needs to forward this packet to a light child
(the array, Lv). Should a node, when making a routing decision require to pass to
a light child, the node will use its light level (lv) as an index into the array of port
information contained in the packet header. This will result in the forwarding
port information being acquired.

The routing process in its entirety is described as pseudo-code in Listing 6.1.

From the process listed, it is clear to see that a nodes routing decision is clearly
independent of the size of the network, resulting in a constant time forwarding
algorithm.

6.1.3 Proximity-preserving labels

The Peleg proximity-preserving labeling scheme [33] is a processing step that pro-
duces labels for nodes in a tree, such that the node can be identified uniquely,

32

Packet de s t ined f o r v with header (v , Lv) a r r i v e s at node w
with rout ing tab l e (w, fw , hw, Hw, Pw, lw)

i f w = v :
done // we are the d e s t i n a t i on

e l s e :
i f v i s not in the range (w, fw) :

// i t i s not one o f w’ s descendants
forward i t to the parent us ing Pw[0]

e l s e i f v i s in the range (hw, fw) :
// i t i s a descendant o f one o f w’ s heavy ch i l d r en
Search Hw f o r the appropr ia t e heavy ch i ld ,
and use the cor re spond ing entry in Pw to forward i t .

e l s e :
// i t i s one o f our l i g h t ch i l d r en
Use Lv [lw] to r e t r i e v e the port from the packet

header ,
to forward to the c o r r e c t l i g h t ch i l d

Listing 6.1: TZ in Trees routing decision

and more importantly, distance information can be extracted from the label to
determine the distance between that node and any other node in the tree.

The scheme is a repeated two stage process, first find the separator of a tree, then
perform a partial labeling of all the nodes. The separator of a tree is the node
that if it were to be removed from the tree, creates multiple sub-trees containing
less than half the nodes of the original fully connected tree. The next iteration of
the labeling process is performed on the resultant sub-trees created from removing
the separator. A node is considered fully labeled once it has been processed as a
separator, and the labeling process is complete when all nodes are fully labeled.

On finding the separator, each node is assigned a tuple containing: the separator’s
name; the distance of the current node from the separator; and which sub-tree this
node is in (the separator receives tree number zero, while the remaining trees are
arbitrarily numbered). For example, should the separator of the tree be node a,
the tuple assigned to a is (a, 0, 0); A node b of distance 2 away from node a, could
be assigned the tuple (a, 2, 3) assuming that the separator a caused at least 3
sub-trees to be formed.

A nodes label is simply all of the tuples assigned to it from the start of the labeling
process until this node itself is selected as the separator, maintained in order of
occurrence.

Given two nodes’ labels it is possible to calculate the distance between those nodes.
This is possible as each label contains the distance information to the separator
during each stage of the de-construction. To calculate the distance between any
two nodes we simply need to find a point in time when they were on different sides
of a separator or, when one node is the separator. These are easily determined;

33

Given a Label (u) and Label (v) , where Label (foo) = l i s t o f (
separator , d i s tance , sub−t r e e) tup l e s .

i f s i z e o f Label (v) = 1 :
re turn d i s t anc e f i e l d in f i r s t tup l e o f Label (u)

i f s i z e o f Label (u) = 1 :
re turn d i s t anc e f i e l d in f i r s t tup l e o f Label (v)

o the rwi s e :
examine the tup l e at the head o f both Label (u) and Label

(v)
i f u and v are in d i f f e r e n t sub−t r e e s :

r e turn the sum of the d i s t anc e f i e l d s

i f u and v are in the same sub−t r e e :
r e c u r s i v e l y c a l l t h i s f unc t i on us ing the t a i l o f both

Label (u) and Label (v) , r e tu rn ing the r e s u l t

Listing 6.2: The Peleg distance calculation

either case occurs when the nodes are assigned different sub-tree number during an
iteration. Once we find this iteration, we simply add the distance fields from the
tuples originating from that iteration of the labeling process. Listing 6.2 provides
pseudo-code for the recursive distance calculation function.

6.1.4 Routing table construction, revisited

The first stages of processing the graph was to create a forest of trees, τ = T0, T1...
. Each of these trees is subjected to processing by the Thorup-Zwick tree com-
pact routing scheme, and the proximity-preserving labeling scheme. As previously
stated, each node will contain a routing entry for every tree it is a member of.
This entry is simply the tree number, Thorup-Zwick routing table appended with
the proximity-preserving label. The labels used for routing in the Brady-Cowen
scheme are concatenation of the tree number, the Thorup-Zwick label and the
proximity-preserving label from every tree.

6.1.5 Routing

The Brady-Cowen scheme provides routing services by using the routing scheme
provided by Thorup-Zwick (Listing 6.1). To allow for this, the source of a packet
must calculate the best tree to use for the transfer. The proximity-preserving
labels allow for a source to calculate the distance between the source and the
destination using the local routing table and the destinations label. The source
then selects the tree that has the shortest distance traversed from the trees the
source and destination share. Once this tree is selected, the traffic is routed using

34

the Thorup-Zwick routing table for the selected tree. Only the source of a packet
need perform the calculation, the intermediate nodes and the destination only
require the tree number and the Thorup-Zwick label corresponding to that tree,
maintaining the constant time forwarding.

6.2 Implementation

Implementation of the Brady-Cowen compact routing scheme can be dissected into
finding the initial spanning tree, gathering the d-core, and therefore the fringe.
Processing of the fringe to determine connected components and extra edges. If
necessary, utilisation of the heuristic is applied to ensure sufficient number of trees.
Finally, pre-processing is finished by applying the compact routing for trees by
Thorup-Zwick and the proximity-preserving labels. All of the key implementation
details of the stages are outlined in the following sections.

6.2.1 Spanning tree

The construction of spanning trees is performed by used of a breadth-first search
approach, returning the tree as a result. This function is heavily utilised: initially
to construct the first spanning tree, and then the core itself; to determine and
process connected components; and generate the spanning trees cause by extra
edges or the Brady-Cowen heuristic. The fringe of the graph is determined by
performing the set difference between the graph and the nodes in the core.

6.2.2 Connected components and extra edges

Connected components are determined by taking the fringe generated by the pro-
cess mentioned above, and iterating through the nodes creating spanning trees
until all nodes have been included in a spanning tree, or have been determined to
be a lone node just off the core. The spanning trees created are the tree used for
each connected component, and will require processing by Thorup-Zwick and the
proximity-preserving schemes.

Extra edges are any edges between nodes in a connected component that are not in
the spanning tree created while determining the component. To determine these
extra edges, the edges used in the tree are removed from a representation of the
connected component, the remaining edges are automatically considered a extra
edge. Since starting a spanning tree using this edge, is the same as if a spanning
tree is created starting from a node connected to this edge, a node from one end
of the edge is remembered and a spanning tree will be created from this point.

35

6.2.3 Thorup-Zwick tree routing

All the spanning trees created in the processes highlighted above are then pro-
cessed using the Thorup-Zwick scheme as discussed in Section 6.1.2. This involves
the use of a depth-first search and labeling recursive function. Unfortunately the
implementation of this function is not ‘tail-recursive’, the last line of the function
is not a recursive call. Should this function be tail-recursive the scala compiler
would create iterative code for this function – reducing memory footprint in terms
of stack utilisation. At present this code when utilised requires a very generous
allocation of stack memory from the Java Virtual Machine. A modification to this
code would be to either make the function tail recursive, if this is at all possible,
or to produce an iterative counter part.

The result of this function is the fully specified Thorup-Zwick in trees routing
table and routing label for every node in the specified tree.

6.2.4 Proximity-preserving labels

The proximity-preserving labels function makes interesting use of a post-order
traversal and knowledge of the number of nodes in a graph. Each child after being
traversed will inform the parent of the number of descendants it has, allowing the
parent node to label each edge with the number of nodes that can be reached using
that edge. In addition to this, once all children have been processed, it is possible
for the parent node to determine how many nodes are reachable using the edge to
its parent.

On completion of the traversal every node has edge weightings for every edge
connected to it. The separator is determined easily now. The node with the
minimum difference between all its edge weights is the separator. In the case of
two nodes being candidates for the separator role, the first one processed is used.

The traversal process is then repeated for each sub-tree produced by using the
separator from the previous iteration. The process ends when there are no more
sub-trees.

The runtime of the processing steps mentioned in the past sections is heavily
influenced by the number of connected components and extra edges detected. As
will be illustrated in the d-core analysis in Section 7.1.2, the runtime to process a
graph can be in the order of minutes, or may exceed 2 weeks.

6.2.5 Routing

The modification required to complete a Brady-Cowen simulator were similar to
that for the Thorup-Zwick simulator. Each AS would have to read in its routing
table from the disk, this required modification to the AutonomousSystem class.
The simulator must be able to make routing decisions on packets, this was per-
formed by creating a new class to hold routing table information as well as perform
the routing logic outlined in Listing 6.1. Finally, the simulator must also be able

36

// tree num (name , l a rg e s t de s c endant , l a rge s t heavy ,
heavy array , por t ar ray , l i g h t l e v e l) p e l e g l a b e l . . .

0 (6 3 02 , 6 3 02 , 6 3 03 , [0] , [2 0 9] , 2) (701 ,2 ,449) , (209 ,1 ,237) ,
(26570 ,0 ,0)

1 (11800 , 1 1800 , 1 1801 , [0] , [2 0 9] , 3) (20485 ,7 ,1) , (1239 ,2 ,604)
, (209 ,1 ,225) , (26570 ,0 ,0)

Listing 6.3: An example routing table for a node in 2 trees

// tree num (name , l i g h t pa th) p e l e g l a b e l . . .
0 (6302 , [2 09 , 26570]) (701 ,2 ,449) , (209 ,1 ,237) , (26570 ,0 ,0)
1 (11800 , [1239 , 209 , 26570]) (20485 ,7 ,1) , (1239 ,2 ,604) ,

(209 ,1 ,225) , (26570 ,0 ,0)

Listing 6.4: An example routing labels for a node in 2 trees

to send traffic, this required the generation of a new TrafficGenerator class.

To facilitate an AS to read its routing table from the disk, the necessary files
must be distributed across the network. This required modification of shell scripts
to distribute the files required by a specific AS to the machine running that AS
instance. After distribution, parsing of the files is all that is required by the
AutonomousSystem class. The file format for a routing table is specified in List-
ing 6.3.

The routing decision was implemented as described by the Thorup-Zwick scheme
in Listing 6.1, there were no significant deviations from the routing decision de-
scribed.

The traffic generation required reading of a specific traffic file, and communication
with the source AS of the traffic. This was performed by performing a look up in
the NameServer and communicating directly with the machine responsible for that
AS. The source AS is then supplied with the label representing the destination.
The source AS then performs its routing decision based on its routing table and
the supplied label.

Listing 6.5 shows an example traffic file entry. This states that AS1 should send
a packet using tree 0 to TZ label (6302,[209,26570]), the remaining tuples are the
Peleg proximity-preserving label which are not required for routing, however, are
left in for sanity checking purposes.

The Brady-Cowen simulator benefited from the speed-up mentioned in the Thorup-
Zwick routing section (Section 5.2.3). In fact, the Brady-Cowen simulator is the
reason the optimisation was discovered; its input is sorted by default. The traffic
file for the Brady-Cowen simulator does not require a return packet to be inserted
to test the reverse path; in Brady-Cowen the reverse path will always equal the
forward path, they will be routed through the same tree.

37

// source AS tree num (dest inat ion name , l i g h t pa th)
p e l e g l a b e l . . .

1 0 (6302 , [2 09 , 26570]) (701 ,2 ,449) , (209 ,1 ,237) ,
(26570 ,0 ,0)

Listing 6.5: An example traffic entry used by the TrafficGenerator

6.3 Summary

The Brady-Cowen compact routing scheme utilises the Thorup-Zwick compact
routing scheme for trees, as well as the Peleg proximity-preserving labels. The
Brady-Cowen scheme creates a collection of trees spanning various areas of the
graph, then applies these two algorithms to those trees to provide routing services.
Determination of which tree provides routing is calculated from the label and a
nodes local routing table, the tree that produces the shortest path according to the
proximity-preserving labels is utilised for traffic. This process was implemented
into a Scala program to allow for this pre-processing to take place, before being
used within our simulator.

38

Chapter 7

Experiment details

The experiment aims to evaluate the performance of the Thorup-Zwick and Brady-
Cowen compact routing algorithms on snapshots of the Internet AS topology taken
between the years 1998 and 2009. Primarily, the experiment looks to see the
effect on routing table sizes and path stretch when running the Thorup-Zwick and
Brady-Cowen compact routing schemes on these topology snapshots, as compared
to BGP routing using shortest paths..

The fundamental variables of the experiment are the choice of compact routing
algorithm and the topology snapshot being simulated. The Thorup-Zwick and
Brady-Cowen compact routing schemes have been discussed in chapters 5 and 6.

The topology snapshots are acquired from CAIDA [1]. This data is provided as
annotated pairs of AS numbers, representing an edge between those two AS as
well as the inferred relationship between the ASes (i.e., peer-to-peer, customer-to-
provider). This data is collected by aggregating the views observed from multiple
peering points within the Internet. Heuristics are then applied to it to determine
the AS relationships [14]. This data has its limitations, it is not possible to view all
edges within the Internet topology due to ASes not advertising all paths available
to them. Attempts have been made to find and add these additional edges to
snapshots by utilising peer-to-peer clients [11].

The Thorup-Zwick algorithm has an element of variability within it, namely the
landmark selection algorithm. Due to the random nature of this algorithm, some
pre-experiment analysis to determine if there are patterns in the selection of the
landmark set will be performed. This will allow for analysis into the ability of
the landmark selection algorithm to cause bias. The results of this analysis are
presented in Section 7.1.1.

The Brady-Cowen algorithm has two variables defined within it. Brady-Cowen
recommend a value of b = 2 for the Thorup-Zwick compact routing in trees algo-
rithm. However, they do not recommend the value of d. They do state that the
size of d-core should be chosen to ensure less than ten extra edges in the d-fringe.
To this extent, some experimentation with different values of d is required to de-
termine the extra edge count of the fringe. Details of this analysis can be found
in Section 7.1.2.

39

To further evaluate the effects of the landmark selection algorithm, fifteen different
landmark sets from the same snapshot (March 2004) will be compared to deter-
mine if the landmark selection algorithm can affect the stretch values as well as
the routing table sizes. Fifteen landmark algorithm instances will provide enough
output data to observe patterns emerging between the instances. The evaluation
will be done by simulating the fifteen landmarks sets generated on the same snap-
shot, with identical traffic sent through each instance. The traffic sent through
the simulator will be structured such that every node will send to 1% of the the re-
mainder of the graph. The 1% of traffic from each node will be randomly selected
before the running of any landmark set instance. Each landmark set instance will
then be subjected to the exact same pairs. A packet returning in the opposite
direction will then be sent. This will allow for a comparison of the forward versus
reverse stretch of each AS pair, since it is possible that these paths are different
in the Thorup-Zwick scheme.

Only 1% of the possible destinations within a snapshot are simulated as this should
allow for a preliminary view of the performance of the Thorup-Zwick and Brady-
Cowen compact routing schemes within the time constraints of the project. With
this quantity of traffic it is possible to simulate both algorithms on the twelve
yearly snapshots. If the project were substantially longer in duration, all possible
pairs of source and destinations would be simulated to provide a full analysis of
the compact routing schemes on these snapshots.

After performing the analysis of the potential effects of the landmark selection
algorithm on any results, it will be possible to use other snapshots to determine
the stretch values. These snapshots will be subjected to similar tests. Each node
will sent to 1% of the remainder of the graph, and a response packet will be sent
back. The Brady-Cowen scheme will have the same experiment performed on it,
using the same pairs for that year, however, only traffic in one direction need be
simulated as the forward and reverse paths in the scheme will utilise the same
tree for routing. By performing this analysis on the different snapshots it will
be possible to observe the performance of both schemes in relation to how the
Internet has grown and changed over the 1998 to 2009 time period.

Finally, as a contrast to randomly selecting destinations, an experiment will be
conducted on graph snapshots such that every AS will send data to ASes derived
from the list of the top 100 websites in terms of traffic volume. This list is acquired
from Alexa (http://www.alexa.com/topsites). The conversion from URL to
IP prefix and AS number was performed by querying the Domain Name System
(DNS), and use of the whois service provided by Team Cymru (http://www.
team-cymru.org/Services/ip-to-asn.html). This will provide an alternative
view of how the Internet would be affected by compact routing deployment by
simulating using more realistic traffic patterns.

7.1 Understanding compact routing parameters

The following sections discuss the results gathered before the simulations began.
Section 7.1.1 details the results of performing multiple landmark selection runs on

40

the 20040301 CAIDA AS-level Internet snapshot. This aimed to find an patterns
in terms of the selected landmarks. Section 7.1.2 details the analysis required to
find suitable values for d to obtain less than ten extra edges in the d-fringe of the
various snapshots.

7.1.1 Landmark selection algorithm for the Thorup-Zwick
algorithm

The landmark selection process was completed 1611 times on the 2004 CAIDA AS-
level snapshot. This is a sufficient number of runs to see if a pattern is emerging
from the landmark sets calculated, as well as being possible within a constrained
time frame. The March 2004 snapshot was selected for its size, it is not extremely
large, and it is not too small. This allows for a compromise in processing time
and the results acquired from the analysis.

From the landmarks selected a handful of ASes were frequently selected as a
landmark node. These nodes had node degrees substantially higher than the mean
node degree. The mean node degree for the 2004 snapshot is 4.5 neighbours, nodes
that are frequently selected by the landmark selection algorithm exhibit a node
degree considerable higher than this average (normally exceed 100 neighbours).
This is an interesting, non-obvious side-effect of the landmark selection algorithm
itself which helps to explain the low stretch factors observed later in section 9.1.1.
The reason they are so frequently chosen is as follows: every node within the graph
is a candidate for landmark selection; later iterations of the landmark selection
algorithm only choose landmarks from the nodes that exceed the cluster constraint
(i.e., the nodes cluster side exceeds the value 4n/s); nodes with high node degree
are most likely to exceed this value.

Figure 7.1 shows the relationship between node degree and frequency of being
chosen as a landmark. It is clear that nodes with high degree stand a greater
chance of being selected as a landmark. Nodes that appear in greater than 20%
of the landmark sets have node degree greater than 100 (with a few exceptions).
The landmark selection algorithm does still have a high percentage of variance
in landmark set, of the 16655 possible nodes in the 2004 snapshot, 7747 different
nodes were selected. However, there are certain nodes that are selected a substan-
tial amount of the time, that suggests that the variation between the 15 landmark
sets we have choose to simulate will be minimal. The results of that simulation
are deferred until chapter 8.

The nodes selected most frequently (i.e, in more than 80% of the landmark selec-
tion instances) by the landmark selection algorithms are shown in Table 7.1. This
is a superset of the ASes known to be “Tier 1” AS [2]. A Tier 1 AS is defined as
an AS that does not act as a customer for any other AS, as a result they make all
of their data exchanges with no cost incurred. This list is heavily debated, with
many people refuting the idea of a Tier 1 AS outright. As such, acquiring a list

1150 calculations dispatched for this experiment, 4 failures due to machines being rebooted.
The 146 successful runs combined with 15 for the landmarks experiment that had already been
performed produces 161 landmark sets.

41

0 %

20 %

40 %

60 %

80 %

100 %

 0 500 1000 1500 2000 2500

F
re

qu
en

cy
 o

f s
el

ec
tio

n

Node degree

March 2004 (7747 unique)

Figure 7.1: Occurrence rate of AS in landmark set versus node degree

of Tier 1 ASes from a reliable source is difficult. Table 7.2 contains a list of Tier
1 AS as acquired from Wikipedia (as also used by Oliveira et al. [32]). As can be
observed, the frequently selected landmarks by the landmark selection algorithm
closely match up with the list of so called Tier 1 AS.

7.1.2 Deriving values of ’d’ for the Brady-Cowen algorithm

The Brady-Cowen compact routing scheme requires that the d-fringe of a graph
contain no more than 10 extra edges. However, the value of d required to achieve
this aim is unknown as it is dependent on the topology of the network. As such,
core and fringe size analysis has been performed on all twelve snapshots from
1998 to 2009 to find the number of extra edges contained within that snapshot at
various values of d. The aim is to find the value of d that results in less than ten
extra edges in each snapshot. The results of these analysis can be found in the
tables below. As stated in the Brady-Cowen description (chapter 6) d must be
a positive even number, it represents the diameter of the core. This diameter is
constructed by including every node up to d/2 distance from the highest degree
node.

42

AS Number AS Name or Description (* indicates ‘Tier 1’ AS)
701 UUNET - MCI Communications Services, Inc. d/b/a Verizon Business *
2914 NTT-COMMUNICATIONS-2914 - NTT America, Inc. *
7018 ATT-INTERNET4 - AT&T WorldNet Services *
3549 GBLX Global Crossing Ltd. *
3356 LEVEL3 Level 3 Communications *
209 ASN-QWEST - Qwest Communications Company, LLC *
1239 SPRINTLINK - Sprint *
3561 SAVVIS - Savvis *
6461 MFNX MFN - Metromedia Fiber Network
3303 SWISSCOM Swisscom (Switzerland) Ltd
1299 TELIANET TeliaNet Global Network *
13237 LAMBDANET-AS European Backbone of LambdaNet
4637 REACH Reach Network Border AS
702 AS702 Verizon Business EMEA - Commercial IP service provider in Europe
4589 EASYNET Easynet Global Services
3257 TINET-BACKBONE Tinet SpA
3491 BTN-ASN - Beyond The Network America, Inc.
12956 TELEFONICA Telefonica Backbone Autonomous System
6762 SEABONE-NET Telecom Italia Sparkle
6939 HURRICANE - Hurricane Electric, Inc.
5511 OPENTRANSIT France Telecom - Orange - Worldwide IP Backbone
6453 GLOBEINTERNET TATA Communications *
286 KPN KPN Internet Backbone
6539 GT-BELL - Bell Canada
174 COGENT Cogent/PSI
2497 IIJ Internet Initiative Japan Inc.

Table 7.1: List of ASes selected frequently (>80% occurrence rate in landmark
sets) by the landmark selection algorithm

AS number AS Name or Description
7018 AT&T
3549 Global Crossing (GBLX)
3356 Level 3 Communications (L3)
1299 TeliaSonera International Carrier
2914 NTT Communications (Verio)
209 Qwest
1239 Sprint
6453 Tata Communications (formerly Teleglobe)
701 Verizon Business (formerly UUNET)

(702, 703) (also owned by Verizon)
3561 Savvis

Table 7.2: List of Tier 1 AS

43

March 1998

d d-Core size % of nodes in core Num of connected components Num of extra edges
2 702 20.42% Excessive 194
4 2214 64.41% 856 20
6 3220 93.68% 190 0
8 3415 99.35% 21 0
10 3436 99.97% 1 0
12 3437 100.0% 0 0

March 1999

d d-Core size % of nodes in core Num of connected components Num of extra edges
2 1067 22.52% Not yet started -
4 3310 69.86% 1092 13
6 4528 95.56% 189 0
8 4721 99.64% 16 0
10 4737 99.97% 1 0
12 4738 100.0% 0 0

March 2000

d d-Core size % of nodes in core Num of connected components Num of extra edges
2 1518 21.85% Not yet started -
4 4951 71.26% Not yet started -
6 6651 95.73% 275 0
8 6928 99.72% 19 0
10 6947 100.0% 0 0

March 2001

d d-Core size % of nodes in core Num of connected components Num of extra edges
2 2258 21.79% Not yet started -
4 7349 70.92% Not yet started -
6 9937 95.89% 386 1
8 10335 99.73% 26 0
10 10361 99.99% 1 0
12 10362 100.0% 0 0

44

March 2002

d d-Core size % of nodes in core Num of connected components Num of extra edges
2 2583 19.97% Not yet started -
4 9290 71.83% Not yet started -
6 12449 96.25% 397 7
8 12889 99.65% 39 0
10 12929 99.96% 4 0
12 12933 100.0% 0 0

March 2003

d d-Core size % of nodes in core Num of connected components Num of extra edges
2 2514 16.76% Not yet started -
4 9791 65.29% Not yet started -
6 14124 94.18% 813 2
8 14963 99.77% 31 0
10 14994 99.98% 2 0
12 14996 100.0% 0 0

March 2004

d d-Core size % of nodes in core Num of connected components Num of extra edges
2 2357 14.15% Not yet started -
4 10295 61.81% very, very large 120
6 15715 94.35% 876 1
8 16614 99.75% 40 0
10 16654 99.99% 1 0
12 16655 100.0% 0 0

March 2005

d d-Core size % of nodes in core Num of connected components Num of extra edges
2 2333 12.22% Not yet started -
4 11496 60.22% Still running (> 2 weeks) -
6 17847 93.48% 1102 2
8 18995 99.50% 92 0
10 19088 99.98% 2 0
12 19090 100.0% 0 0

45

March 2006

d d-Core size % of nodes in core Num of connected components Num of extra edges
2 2371 10.97% Not yet started -
4 12369 57.26% Still running (> 2 weeks) -
6 20022 92.70% large amounts 3
8 21462 99.37% 131 0
10 21593 99.97% 5 0
12 21598 100.0% 0 0

March 2007

d d-Core size % of nodes in core Num of connected components Num of extra edges
2 2348 9.60% Not yet started -
4 12925 52.85% Still running (> 2 weeks) -
6 22529 92.12% many 5
8 24275 99.26% 165 0
10 24442 99.95% 10 0
12 24452 99.99% 2 0
14 24454 100.0% 0 0

March 2008

d d-Core size % of nodes in core Num of connected components Num of extra edges
2 2481 9.06% Not yet started -
4 14231 52.01% Still running (> 2 weeks) -
6 25534 93.33% 1678 2
8 27246 99.59% 110 0
10 27356 99.99% 1 0
12 27357 100.0% 0 0

March 2009

d d-Core size % of nodes in core Num of connected components Num of extra edges
2 2304 7.36% Not yet started -
4 21153 67.63% Still running (> 2 weeks) -
6 30007 95.93% 1171 0
8 31201 99.75% 68 0
10 31269 99.97% 8 0
12 31277 100.0% 0 0

From the tabular results above, as well as the graphical representation in Fig-
ure 7.2, it can be seen that all AS-level snapshots exceed ten extra edges (as
defined by the Brady-Cowen scheme, chapter 6) when the number of nodes within
the core is less than approximately 70% of the graph’s size. Each graph snapshot
falls below the 70% threshold at d=4. To fulfil the requirement that the extra
edge count of the fringe should be less than 10, d must be greater than 4.

46

0 %

20 %

40 %

60 %

80 %

100 %

 0 2 4 6 8 10 12 14

P
er

ce
nt

ag
e

of
 n

od
es

 in
 d

-c
or

e

d value

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009

Extra edge

Figure 7.2: Core size with relation to extra edge count

Many of the snapshots for the value d=6 have zero extra edges, this is dis-
advantageous in terms of the stretch exhibited by packets in the system. With
no extra edges, only the trees within connected components and the single span-
ning tree encompassing the entire graph are used for routing. This has the effect
of turning the Internet into a tree, causing any source-destination pair with the
source and destination in different connected components having to traverse the
core – incurring a path increase of d hops (the size of the core). This situation
is the reason for the existence of the Brady-Cowen heuristic (section 6.1). This
heuristic adds extra spanning trees originating from within the fringe, allowing
for alternative routes between connected components, some that may by-pass the
core completely.

The value of d=6 with the use of the Brady-Cowen heuristic, will provide the test
bed for our experiments. This will guarantee at least five extra edges, but no more
than ten, the range Brady and Cowen determine this scheme incurs small stretch
while maintaining small routing tables.

7.2 Summary

Our experiment will run several simulations of both the Thorup-Zwick and Brady-
Cowen compact routing schemes on snapshots of the Internet AS-level graph.
These Internet graphs have been gathered from CAIDA [1] such that they span
twelve years (1998 to 2009). Analysis of the parameters of the compact routing

47

algorithms revealed a pattern within the Thorup-Zwick landmark selection algo-
rithm, and also determined that a value of d=6 is ideal for the Brady-Cowen
simulator for all snapshots.

48

Chapter 8

Thorup-Zwick landmark selection

This chapter presents further analysis of the landmark selection algorithm utilised
by the Thorup-Zwick routing scheme. This was done by running the landmark
selection algorithm on the March 2004 snapshot fifteen times, these landmark sets
were then simulated ensuring the same traffic was simulated between simulations.
This allows for the determination of how the landmark selection algorithm affects
the observed path stretch and routing table sizes. The March 2004 snapshot was
chosen as it was the smallest snapshot available at that time, while still providing
sufficient quantity of nodes to provide room for the landmark selection algorithm
to made different decisions. Fifteen instances of the landmark selection were run,
this decision is a compromise between time constraints and the statistical power
of the data.

The results of each snapshot is presented as six graphs representing: (a) the path
stretch incurred by all packets; (b) and (c) the subset of paths that exhibit stretch-
3 and stretch-2; (d) the longest path witnessed in the simulator; (e) a comparison
of the stretch incurred on the forward packet versus the reverse packet; and finally,
(f) the routing table sizes of all nodes within the snapshot.

8.1 Stretch

The effect of path stretch is determined utilising graphs (a) through (e) on the
various snapshots. These will now be discussed.

The inclusion of the path stretch incurred by all packets us shown in subfigure (a)
of figures 8.2 through 8.2. These are plotted on a log scale to allow all possible
stretch values to be witnessed on the graph. This information allows for the
calculation of mean path stretch within the snapshot, a primary research goal. It
allows for clear illustration of how that mean path stretch was derived, as well as
allowing for the percentage/number of packets exhibiting a specific stretch value
to be determined. The favourable outcome for a graph of this type is many paths
exhibiting stretch-1 while very few exhibit stretch-3.

As can be observed from the graphs, there is a significant skew in the graph
towards low stretch values. Stretch-1 is the most prevalent value within every

49

graph, with Stretch-1.x values being the next popular stretch values. Very few
packets experience a path stretch of 3, in fact, it is the stretch value with the
least amount of packets (ignoring stretch values not observed at all). This pattern
is good, this shows a distinct skewing of stretch values towards stretch-1. This
results in many packets exhibiting shortest path or near shortest path routing in
the compact routing scheme. Further analysis of the stretch-3 paths follows.

Subfigure (b) in figures 8.2 through 8.2 represents the stretch-3 paths observed
within the simulator, providing information on their shortest path length. This is
an analysis of the worst-case performance of the Thorup-Zwick scheme, showing
how often it occurs and what path lengths have been affected by a three times
multiplicative increase. The ideal for this graph would present very few paths
exhibiting this stretch, and if included, a small shortest path length to minimise
the effect of a three times larger path.

The results show that the shortest path length for the packets exhibiting stretch-3
are only 1 or 2 hops long. This stretch increase causes them to exhibit path length
of 3 or 6. This is very good, as if a larger original path was subjected to stretch-3
the distance traversed through the network would be undesirable, however, path
lengths of 3 or 6 hops are acceptable. The largest number of packets exhibiting this
stretch factor is visible in figure 8.4(b), approximately 180 packets are stretch-3; in
comparison to the 5.5 million packets simulated this value is minuscule. Overall,
the 15 landmark sets perform similarly producing similar quantities of the various
stretch values. The similarity can be further depicted in figure 8.1 which shows
the mean path stretch of each landmark set side by side.

The paths exhibiting stretch-3 with original shortest path 1 can be adapted to
produce stretch-1 paths by utilising an addendum to the Thorup-Zwick scheme
produced by Krioukov et al. [26]. This modification states that a node will contain
routing information for all directly connected neighbours. This would ensure that
all pairs of nodes with a shortest path length of 1 utilise this link, providing
stretch-1 paths. There are two possible stretch values affected by this addendum,
stretch-3 paths (previously covered) and stretch-2 paths.

To fully witness the effect of the Krioukov et al. addition to the TZ scheme, paths
exhibiting stretch-2 have been plotted alongside their original shortest paths in
subfigure (c) of figures 8.2 to 8.2. Any stretch-2 paths with original path length
of 1, can be removed by utilising the modification.

The stretch-2 profiles of the various snapshots show very little variation in general.
As can be shown from the graphs it is possible to remove approximately 250
stretch-2 paths from this graph if the Krioukov et al. modification is employed.
This totals approximately 350 paths could be removing in total (when combined
with the stretch-3 path information) allowing the mean path length to be lowered
slightly.

Another potential worst-case aspect of the compact routing schemes is visible by
viewing the largest path length encountered within the simulator subfigure (d) of
figures 8.2 to 8.2. The longest paths graph represents all the packets that expe-
rienced this largest path and shows the shortest possible path for those packets.
Ideal behaviour of the compact routing schemes would result in only paths with

50

large shortest paths appearing in this graph. This would show that larger shortest
paths do not exhibit stretch-3, larger shortest paths exhibiting large multiplicative
stretch increase would be a very negative aspect of these schemes.

The longest paths observed within the simulations are either 10 to 11 hops long,
these are comprised of original shortest path lengths of 7, 8, or 9. This is stretch-
1.5 in the worst case (11/7). This is result is good as there are small shortest
path lengths contained within the data set which would represent a path being
significantly stretched (ie stretch of 2 or 3). Figure 8.9(d) shows that landmark
set 9 has a substantially more paths exhibiting the longest observed path, this is
clearly affects the mean stretch value of the data set as can be shown in figure 8.1.
However, the effect of this is minimal when considering the difference. Landmark
set 9 has a mean stretch of 1.11, while most other landmark sets produce a mean
stretch of approximately 1.08. The larges paths within the 2004 graph is a 10 hop
path, the result of applying either mean stretch value is a increased path length
of 11. This shows that this difference is not significant in practical terms.

Due to its design paths within the Thorup-Zwick scheme are not symmetric, the
path from node a to node b is not necessarily the same as the path between node
b and node a. As a result, the path stretch incurred by traffic be be larger in
the forward direction than in the reverse, or vice versa. It could also be possible
for a packet to exhibit stretch-1 paths both ways, or even stretch-3 in both di-
rections. The stretch comparison graphs, subfigure (e) in figures 8.2 to 8.2 are a
visual representation of the path stretch incurred by a packet. Ideally, the stretch
experienced by a packet will be small in both directions, or at least show a trend
toward the majority of traffic exhibiting this trend. Large amounts of paths ex-
hibiting stretch-3 both directions would be a problem for the compact routing
schemes.

The comparison of forward to reverse stretch shows that the majority of packets
exhibit small stretch values in both directions, a small proportion of pairs exhibit
a larger path in one direction, and approximately 30 paths are unfortunate to
experience stretch-3 in both the forward and reverse directions. This clustering
effect toward bottom left corner (i.e., low stretch both directions) shows that the
stretch experienced by the majority of the network is low.

8.2 Routing tables

The routing table sizes of the landmark sets are presented in subfigure (f) of
figures 8.2 to 8.2. This graph depicts the routing tables within the snapshot,
sorted by largest routing table to smallest routing table. Smaller routing table
sizes are the core reason for the existence of compact routing. This graph will
demonstrate the smaller sizes of the routing tables, and allow for a distribution to
be seen visually. The nodes with the smallest routing table size are the landmarks
selected by the landmark selection algorithm, every node higher than the points
on the far right of the graph are non-landmark nodes with a cluster. The larger
the cluster the further to the left of the graph the node will be. An ideal for
this graph is low routing table sizes in general, as well as many nodes with near

51

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

 2 4 6 8 10 12 14

M
ea

n
S

tr
et

ch

Landmark set

Path Stretch

Figure 8.1: Mean path stretch for each landmark set

minimum routing table sizes. This graph when observed with the path stretch
graph will allow for clear analysis of the benefits (or lack of) of compact routing.

The routing table graphs presented show a large amount of nodes with small
routing tables containing approximately 100 entries. This is very small, the entire
graph contains 16,655 nodes, which if represented by a distance vector routing
algorithm would require 16,655 entries in every node. Across the landmark sets,
there are only a hand full of nodes with larger than average routing table sizes.
The average of the largest routing table size is approximately 360, with the largest
routing table being witnessed in landmark set 9 (Figure 8.9(f)) at 649 entries. The
larger routing table in landmark set 9 is off set by the fact that this landmark set
has fewer landmarks, resulting in rest of the nodes having fewer routing table
entries - it is a counterbalancing effect. Even largest routing tables, which only
affect a few nodes, are substantially smaller than that required by the distance
vector approach. The variation in routing table sizes across the landmark selection
algorithm instances is very small if the entire graph is considered as a whole.

8.3 Summary

It can be seen that there is a minor variation in the stretch values and the routing
table sizes between the different landmark sets calculated. Each sample instance
demonstrates a dominance of stretch-1 paths, with many pairs exhibiting sym-
metrical path stretch. There is also very few stretch-3 paths. The largest paths

52

observed consist of pairs of nodes with shortest paths of considerable length being
subjected to low stretch values. The variation between landmark sets is not sub-
stantial, and it will be possible to select one landmark set per snapshot to evaluate
the performance of the Thorup-Zwick compact routing scheme without unfairly
biasing the results.

53

0.001 %

0.01 %

0.1 %

1 %

10 %

100 %

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

P
er

ce
nt

ag
e

of
 p

at
hs

Stretch

Stretch Distribution

20040301-run2-stretchAll

(a) Path stretch (log scale)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 1 2 3

N
um

be
r

of
 n

od
es

 e
xh

ib
iti

ng
 s

tr
et

ch
 3

Length of shortest possible path

Stretch 3.0

20040301-run2-stretch3.0

(b) Stretch 3 original path comparison

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 1 2 3 4 5

N
um

be
r

of
 n

od
es

 e
xh

ib
iti

ng
 s

tr
et

ch
 2

Length of shortest possible path

Stretch 2.0

20040301-run2-stretch2.0

(c) Stretch 2 original path comparison

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32

 4 5 6 7 8 9 10 11 12

N
um

be
r

of
 n

od
es

Length of shortest possible path

Original path length of all 10 hop path(s)

20040301-run2-biggestPaths

(d) Longest path versus the original path
length

(e) Stretch comparison forward path versus
reverse path

(f) Routing table sizes

Figure 8.2: TZ results on the March 2004 snapshot using landmark set 2

54

0.001 %

0.01 %

0.1 %

1 %

10 %

100 %

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

P
er

ce
nt

ag
e

of
 p

at
hs

Stretch

Stretch Distribution

20040301-run3-stretchAll

(a) Path stretch (log scale)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 1 2 3

N
um

be
r

of
 n

od
es

 e
xh

ib
iti

ng
 s

tr
et

ch
 3

Length of shortest possible path

Stretch 3.0

20040301-run3-stretch3.0

(b) Stretch 3 original path comparison

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 1 2 3 4 5

N
um

be
r

of
 n

od
es

 e
xh

ib
iti

ng
 s

tr
et

ch
 2

Length of shortest possible path

Stretch 2.0

20040301-run3-stretch2.0

(c) Stretch 2 original path comparison

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32

 4 5 6 7 8 9 10 11 12

N
um

be
r

of
 n

od
es

Length of shortest possible path

Original path length of all 11 hop path(s)

20040301-run3-biggestPaths

(d) Longest path versus the original path
length

(e) Stretch comparison forward path versus
reverse path

(f) Routing table sizes

Figure 8.3: TZ results on the March 2004 snapshot using landmark set 3

55

0.001 %

0.01 %

0.1 %

1 %

10 %

100 %

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

P
er

ce
nt

ag
e

of
 p

at
hs

Stretch

Stretch Distribution

20040301-run4-stretchAll

(a) Path stretch (log scale)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 1 2 3

N
um

be
r

of
 n

od
es

 e
xh

ib
iti

ng
 s

tr
et

ch
 3

Length of shortest possible path

Stretch 3.0

20040301-run4-stretch3.0

(b) Stretch 3 original path comparison

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 1 2 3 4 5

N
um

be
r

of
 n

od
es

 e
xh

ib
iti

ng
 s

tr
et

ch
 2

Length of shortest possible path

Stretch 2.0

20040301-run4-stretch2.0

(c) Stretch 2 original path comparison

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32

 4 5 6 7 8 9 10 11 12

N
um

be
r

of
 n

od
es

Length of shortest possible path

Original path length of all 11 hop path(s)

20040301-run4-biggestPaths

(d) Longest path versus the original path
length

(e) Stretch comparison forward path versus
reverse path

(f) Routing table sizes

Figure 8.4: TZ results on the March 2004 snapshot using landmark set 4

56

0.001 %

0.01 %

0.1 %

1 %

10 %

100 %

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

P
er

ce
nt

ag
e

of
 p

at
hs

Stretch

Stretch Distribution

20040301-run5-stretchAll

(a) Path stretch (log scale)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 1 2 3

N
um

be
r

of
 n

od
es

 e
xh

ib
iti

ng
 s

tr
et

ch
 3

Length of shortest possible path

Stretch 3.0

20040301-run5-stretch3.0

(b) Stretch 3 original path comparison

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 1 2 3 4 5

N
um

be
r

of
 n

od
es

 e
xh

ib
iti

ng
 s

tr
et

ch
 2

Length of shortest possible path

Stretch 2.0

20040301-run5-stretch2.0

(c) Stretch 2 original path comparison

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32

 4 5 6 7 8 9 10 11 12

N
um

be
r

of
 n

od
es

Length of shortest possible path

Original path length of all 10 hop path(s)

20040301-run5-biggestPaths

(d) Longest path versus the original path
length

(e) Stretch comparison forward path versus
reverse path

(f) Routing table sizes

Figure 8.5: TZ results on the March 2004 snapshot using landmark set 5

57

0.001 %

0.01 %

0.1 %

1 %

10 %

100 %

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

P
er

ce
nt

ag
e

of
 p

at
hs

Stretch

Stretch Distribution

20040301-run6-stretchAll

(a) Path stretch (log scale)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 1 2 3

N
um

be
r

of
 n

od
es

 e
xh

ib
iti

ng
 s

tr
et

ch
 3

Length of shortest possible path

Stretch 3.0

20040301-run6-stretch3.0

(b) Stretch 3 original path comparison

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 1 2 3 4 5

N
um

be
r

of
 n

od
es

 e
xh

ib
iti

ng
 s

tr
et

ch
 2

Length of shortest possible path

Stretch 2.0

20040301-run6-stretch2.0

(c) Stretch 2 original path comparison

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32

 4 5 6 7 8 9 10 11 12

N
um

be
r

of
 n

od
es

Length of shortest possible path

Original path length of all 10 hop path(s)

20040301-run6-biggestPaths

(d) Longest path versus the original path
length

(e) Stretch comparison forward path versus
reverse path

(f) Routing table sizes

Figure 8.6: TZ results on the March 2004 snapshot using landmark set 6

58

(a) Path stretch (log scale) (b) Stretch 3 original path comparison

(c) Stretch 2 original path comparison (d) Longest path versus the original path
length

(e) Stretch comparison forward path versus
reverse path

(f) Routing table sizes

Figure 8.7: TZ results on the March 2004 snapshot using landmark set 7. Stretch
data (a) through (e) corrupted while on storage media.

59

0.001 %

0.01 %

0.1 %

1 %

10 %

100 %

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

P
er

ce
nt

ag
e

of
 p

at
hs

Stretch

Stretch Distribution

20040301-run8-stretchAll

(a) Path stretch (log scale)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 1 2 3

N
um

be
r

of
 n

od
es

 e
xh

ib
iti

ng
 s

tr
et

ch
 3

Length of shortest possible path

Stretch 3.0

20040301-run8-stretch3.0

(b) Stretch 3 original path comparison

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 1 2 3 4 5

N
um

be
r

of
 n

od
es

 e
xh

ib
iti

ng
 s

tr
et

ch
 2

Length of shortest possible path

Stretch 2.0

20040301-run8-stretch2.0

(c) Stretch 2 original path comparison

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32

 4 5 6 7 8 9 10 11 12

N
um

be
r

of
 n

od
es

Length of shortest possible path

Original path length of all 10 hop path(s)

20040301-run8-biggestPaths

(d) Longest path versus the original path
length

(e) Stretch comparison forward path versus
reverse path

(f) Routing table sizes

Figure 8.8: TZ results on the March 2004 snapshot using landmark set 8

60

0.001 %

0.01 %

0.1 %

1 %

10 %

100 %

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

P
er

ce
nt

ag
e

of
 p

at
hs

Stretch

Stretch Distribution

20040301-run9-stretchAll

(a) Path stretch (log scale)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 1 2 3

N
um

be
r

of
 n

od
es

 e
xh

ib
iti

ng
 s

tr
et

ch
 3

Length of shortest possible path

Stretch 3.0

20040301-run9-stretch3.0

(b) Stretch 3 original path comparison

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 1 2 3 4 5

N
um

be
r

of
 n

od
es

 e
xh

ib
iti

ng
 s

tr
et

ch
 2

Length of shortest possible path

Stretch 2.0

20040301-run9-stretch2.0

(c) Stretch 2 original path comparison

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32

 4 5 6 7 8 9 10 11 12

N
um

be
r

of
 n

od
es

Length of shortest possible path

Original path length of all 10 hop path(s)

20040301-run9-biggestPaths

(d) Longest path versus the original path
length

(e) Stretch comparison forward path versus
reverse path

(f) Routing table sizes

Figure 8.9: TZ results on the March 2004 snapshot using landmark set 9

61

0.001 %

0.01 %

0.1 %

1 %

10 %

100 %

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

P
er

ce
nt

ag
e

of
 p

at
hs

Stretch

Stretch Distribution

20040301-run10-stretchAll

(a) Path stretch (log scale)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 1 2 3

N
um

be
r

of
 n

od
es

 e
xh

ib
iti

ng
 s

tr
et

ch
 3

Length of shortest possible path

Stretch 3.0

20040301-run10-stretch3.0

(b) Stretch 3 original path comparison

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 1 2 3 4 5

N
um

be
r

of
 n

od
es

 e
xh

ib
iti

ng
 s

tr
et

ch
 2

Length of shortest possible path

Stretch 2.0

20040301-run10-stretch2.0

(c) Stretch 2 original path comparison

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32

 4 5 6 7 8 9 10 11 12

N
um

be
r

of
 n

od
es

Length of shortest possible path

Original path length of all 11 hop path(s)

20040301-run10-biggestPaths

(d) Longest path versus the original path
length

(e) Stretch comparison forward path versus
reverse path

(f) Routing table sizes

Figure 8.10: TZ results on the March 2004 snapshot using landmark set 10

62

0.001 %

0.01 %

0.1 %

1 %

10 %

100 %

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

P
er

ce
nt

ag
e

of
 p

at
hs

Stretch

Stretch Distribution

20040301-run1-stretchAll

(a) Path stretch (log scale)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 1 2 3

N
um

be
r

of
 n

od
es

 e
xh

ib
iti

ng
 s

tr
et

ch
 3

Length of shortest possible path

Stretch 3.0

20040301-run11-stretch3.0

(b) Stretch 3 original path comparison

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 1 2 3 4 5

N
um

be
r

of
 n

od
es

 e
xh

ib
iti

ng
 s

tr
et

ch
 2

Length of shortest possible path

Stretch 2.0

20040301-run11-stretch2.0

(c) Stretch 2 original path comparison

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32

 4 5 6 7 8 9 10 11 12

N
um

be
r

of
 n

od
es

Length of shortest possible path

Original path length of all 10 hop path(s)

20040301-run11-biggestPaths

(d) Longest path versus the original path
length

(e) Stretch comparison forward path versus
reverse path

(f) Routing table sizes

Figure 8.11: TZ results on the March 2004 snapshot using landmark set 11

63

0.001 %

0.01 %

0.1 %

1 %

10 %

100 %

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

P
er

ce
nt

ag
e

of
 p

at
hs

Stretch

Stretch Distribution

20040301-run12-stretchAll

(a) Path stretch (log scale)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 1 2 3

N
um

be
r

of
 n

od
es

 e
xh

ib
iti

ng
 s

tr
et

ch
 3

Length of shortest possible path

Stretch 3.0

20040301-run12-stretch3.0

(b) Stretch 3 original path comparison

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 1 2 3 4 5

N
um

be
r

of
 n

od
es

 e
xh

ib
iti

ng
 s

tr
et

ch
 2

Length of shortest possible path

Stretch 2.0

20040301-run12-stretch2.0

(c) Stretch 2 original path comparison

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32

 4 5 6 7 8 9 10 11 12

N
um

be
r

of
 n

od
es

Length of shortest possible path

Original path length of all 10 hop path(s)

20040301-run12-biggestPaths

(d) Longest path versus the original path
length

(e) Stretch comparison forward path versus
reverse path

(f) Routing table sizes

Figure 8.12: TZ results on the March 2004 snapshot using landmark set 12

64

0.001 %

0.01 %

0.1 %

1 %

10 %

100 %

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

P
er

ce
nt

ag
e

of
 p

at
hs

Stretch

Stretch Distribution

20040301-run13-stretchAll

(a) Path stretch (log scale)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 1 2 3

N
um

be
r

of
 n

od
es

 e
xh

ib
iti

ng
 s

tr
et

ch
 3

Length of shortest possible path

Stretch 3.0

20040301-run13-stretch3.0

(b) Stretch 3 original path comparison

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 1 2 3 4 5

N
um

be
r

of
 n

od
es

 e
xh

ib
iti

ng
 s

tr
et

ch
 2

Length of shortest possible path

Stretch 2.0

20040301-run13-stretch2.0

(c) Stretch 2 original path comparison

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32

 4 5 6 7 8 9 10 11 12

N
um

be
r

of
 n

od
es

Length of shortest possible path

Original path length of all 10 hop path(s)

20040301-run13-biggestPaths

(d) Longest path versus the original path
length

(e) Stretch comparison forward path versus
reverse path

(f) Routing table sizes

Figure 8.13: TZ results on the March 2004 snapshot using landmark set 13

65

0.001 %

0.01 %

0.1 %

1 %

10 %

100 %

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

P
er

ce
nt

ag
e

of
 p

at
hs

Stretch

Stretch Distribution

20040301-run1-stretchAll

(a) Path stretch (log scale)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 1 2 3

N
um

be
r

of
 n

od
es

 e
xh

ib
iti

ng
 s

tr
et

ch
 3

Length of shortest possible path

Stretch 3.0

20040301-run14-stretch3.0

(b) Stretch 3 original path comparison

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 1 2 3 4 5

N
um

be
r

of
 n

od
es

 e
xh

ib
iti

ng
 s

tr
et

ch
 2

Length of shortest possible path

Stretch 2.0

20040301-run14-stretch2.0

(c) Stretch 2 original path comparison

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32

 4 5 6 7 8 9 10 11 12

N
um

be
r

of
 n

od
es

Length of shortest possible path

Original path length of all 10 hop path(s)

20040301-run14-biggestPaths

(d) Longest path versus the original path
length

(e) Stretch comparison forward path versus
reverse path

(f) Routing table sizes

Figure 8.14: TZ results on the March 2004 snapshot using landmark set 14

66

0.001 %

0.01 %

0.1 %

1 %

10 %

100 %

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

P
er

ce
nt

ag
e

of
 p

at
hs

Stretch

Stretch Distribution

20040301-run15-stretchAll

(a) Path stretch (log scale)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 1 2 3

N
um

be
r

of
 n

od
es

 e
xh

ib
iti

ng
 s

tr
et

ch
 3

Length of shortest possible path

Stretch 3.0

20040301-run15-stretch3.0

(b) Stretch 3 original path comparison

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 1 2 3 4 5

N
um

be
r

of
 n

od
es

 e
xh

ib
iti

ng
 s

tr
et

ch
 2

Length of shortest possible path

Stretch 2.0

20040301-run15-stretch2.0

(c) Stretch 2 original path comparison

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32

 4 5 6 7 8 9 10 11 12

N
um

be
r

of
 n

od
es

Length of shortest possible path

Original path length of all 10 hop path(s)

20040301-run15-biggestPaths

(d) Longest path versus the original path
length

(e) Stretch comparison forward path versus
reverse path

(f) Routing table sizes

Figure 8.15: TZ results on the March 2004 snapshot using landmark set 15

67

Chapter 9

Compact routing over time

This chapter presents the results of simulating the Thorup-Zwick and Brady-
Cowen compact routing schemes on real-world AS-level Internet snapshots pro-
vided by CAIDA [1]. The results with respect to Thorup-Zwick is presented in
section 9.1, and Brady-Cowen will be discussed in section 9.2.

9.1 Thorup-Zwick

The evaluation of the Thorup-Zwick compact routing scheme on the yearly snap-
shots will be presented in a format resembling that of chapter 8.

9.1.1 Stretch

The effect of stretch will be determined using subfigures (a) through (e) on each
of the figures, i.e., similar to that of section 8.1.

The stretch distribution graphs can be found in subfigure (a) in figures 9.1.4
through 9.1.4. These show the same trend witnessed in the landmark selection
experiment. The most prevalent stretch value is stretch 1, by a significant margin.
Stretch-1.x values are the next most frequently observed, with stretch-3 being
very low (< 0.01% rate of occurrence on all graphs). The results are very good;
resulting in a low average stretch of approximately 1.09. This can be witnessed
more clearly in figure 9.1, where it is also possible to see the variation of compact
routing as graph size increases.

Subfigure (b) in figures 9.1.4 through 9.1.4 depicts the number of stretch-3 paths
within the snapshots, providing the original shortest path for comparison purposes.
It can be seen that the graphs exhibit stretch-3 (the worst case) on paths of original
shortest path length 1 or 2. This is good as it ensures there are not very large paths
within the graph; path lengths of 3 and 6 are acceptable. A notable exception to
this is in figure ?? where there are 15 instances of a path of length 12 due to a
shortest path of length 4 being subjected to a stretch of 3. This is undesirable, due
to the large path length involved, however, due to the corruption of the longest

68

path information (Figure 9.10(d)) we cannot prove this.

Similarly as was observed in the landmark selection, the various snapshots over
time produce some paths that exhibit stretch-2 that can be removed by use of
the Krioukov et al. [26] addendum to the Thorup-Zwick scheme. This addendum
continues to lower the mean path stretch of the network, however slight that
change may be. This can be observed in subfigure (c) in figures 9.1.4 through
9.1.4.

The biggest paths observed on the snapshots showed a mixture of results, see
subfigure (d) in figures 9.1.4 through 9.1.4. Most snapshots had biggest paths of
approximately 11 hops. These consisted of shortest path lengths of 7, 8, or 9,
producing a over all worst stretch of 1.5. This is similar to the results from the
landmark analysis (chapter 8). However, various snapshots produced interesting
results. The 1998 snapshot had a worst path length of 12 based on a stretch-3
increase on a path of length 4, similarly for the 2007 snapshot, a path was elongated
to 15 hops from shortest path length of 5 hops. The 2003 graph observed its
longest path as a stretch-2 increase on a a path of length 5. These stretch values
would prove inconvenient for the source and destination in question, however each
snapshot only had one such path of this type. To contrast this, the 2009 snapshot
had its longest path consisting of a stretch-1 path of length 11, showing that there
is no elongation to this already long path.

The comparison of forward versus reverse stretch is presented in subfigure (e) of
figures 9.1.4 through 9.1.4. As was observed in the landmark selection experiment,
the majority of paths observe small stretch in both directions, with the the most
common being stretch-1 both ways. There are a few outliers once again, that
exhibit either stretch-3 both ways, or a larger stretch in either the forward or
reverse directions. The clustering effect of the points show that most points exhibit
very low stretch.

9.1.2 Routing tables

The routing table sizes for each snapshot are presented in subfigure (f) in fig-
ures 9.1.4 through 9.1.4. As the snapshots progress from 1998 to 2009, the average
routing table size increases very slowly. The 1998 snapshot has an average routing
table size of 40 entries, while the 2009 graph has 140. However, in this time the
graph size increased from 3437 nodes to 33103 nodes. The routing tables have
increase in size by 3.5 times; while the graph has 9.5 times larger. This shows the
sub-linearly scaling nature of the compact routing scheme. Small routing tables,
and the sub-linear scaling, provide a very strong reason for utilisation of compact
routing schemes on very large graphs.

The routing tables for the Internet snapshots over time follow the pattern out-
lined in Section 8.2. Many nodes have small routing table sizes, while a minority
maintain larger routing table sizes. In comparison to the routing tables produced
by a distance vector algorithm, these larger routing tables are actually tiny.

69

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 1.18

 1.2

 1998 2000 2002 2004 2006 2008

Stretch

Figure 9.1: Average path stretch over time for the Thorup-Zwick compact routing
scheme

9.1.3 Popular Traffic

This experiment was never performed. Unfortunately time constraints did not
allow enough time for the popular traffic files to be processed by the simulator.
This experiment is deferred for future work.

9.1.4 Thorup-Zwick over time

The utilisation of the snapshots between the years 1998 to 2009 allowed for us to
observe how the Thorup-Zwick compact routing scheme reacts to larger graphs in
terms of stretch and routing table size. The use of the snapshots over a period of
twelve years also allows for us to see how compact routing may react in the future.

Figure 9.1 demonstrates the mean stretch values of the Thorup-Zwick compact
routing scheme over time. It is clear to see that although the value fluctuates,
the scheme provides stretch of approximately 1.09 consistently over the years.
This is achieve while maintaining slowly growing routing tables, as previously
mentioned the routing table over the twelve year period has increase by 100 entries.
This shows that the Thorup-Zwick compact routing scheme has great scalability
properties, while exhibiting very low stretch.

70

9.2 Brady-Cowen

The Brady-Cowen scheme implementation is mostly complete, but a bug in the
pre-processing code led to incorrect results. The Peleg proximity-preserving labels
[33] utilised by the simulator are not always correct. This invalidates the results
of any runs of the Brady-Cowen scheme simulator.

This bug has been identified and can be easily resolved. The pre-processing pro-
gram does not correctly generate the resultant sub-trees after choosing a separator,
causing the separator to be contained within at least one sub-tree. Since this sep-
arator is not removed, and its connectivity data still exists, it is selected as the
separator in the next iteration. However, on this iteration it is properly removed.
This results in incorrect Peleg proximity-preserving labels due to the repeated
separator being inserted to the nodes label and routing table.

The fix involves ensuring proper disconnection of the chosen separator from the
current working representation of the graph. After fixing of the bug, it would be
possible to re-process the Internet snapshots to produce correct routing table and
node label information. This process is time consuming (O(days)), and so this
analysis is left as future work.

9.2.1 Stretch

The results for this section were affected by pre-processing problems, and could
not be run on the simulator. This experiment is deferred for future work.

9.2.2 Routing tables

When processed by the Brady-Cowen scheme every snapshot, except for one
(March 2002), was given five additional spanning trees, either due to extra edges
or use of the heuristic. The March 2002 snapshot is the exception, it contained
seven extra edges. When combined with the original spanning tree, as well as the
trees from connected components, this resulted in the snapshots having routing
tables of size 6 or 7 (8 or 9 in the 2002 snapshot). Nodes located within the core
of the scheme will have a routing table of the lower bound (6 or 8), while nodes
located within a connected component will contain a higher number of entries (7
or 9). Table 9.1 presents the percentage of nodes in each snapshot with respect to
each routing table size.

Due to an implementation decision, the early version of the program that supplied
the data for Table 9.1 considered nodes in the fringe with connections only to the
core, to be a connected component of size one. This approach does not encompass
the real definition of a connected component, and as such the values presented are
lower and upper bounds for the minimum and maximum table sizes, respectively.

The routing table size of the Brady-Cowen scheme is unchanging over the various
snapshots, consistently precessing worst-case routing table sizes of 7 entries. This
provides this scheme with unprecedented scalability properties as more nodes are

71

Snapshot Nodes with routing table size 6 (or 8*) Nodes with routing table size 7 (or 9*)
(minimum) (maximum)

1998 93.68% 6.32%
1999 95.56% 4.44%
2000 95.73% 4.27%
2001 95.89% 4.11%
2002 96.25%* 3.75%*
2003 94.18% 5.82%
2004 94.35% 5.65%
2005 93.48% 6.52%
2006 92.70% 7.30%
2007 92.12% 7.88%
2008 93.33% 6.77%
2009 95.93% 4.07%

Table 9.1: Routing table sizes for the Brady-Cowen scheme

added to the graph.

9.2.3 Popular Traffic

This experiment was never performed. Unfortunately time constraints did not
allow enough time for the popular traffic files to be processed by the simulator.
This experiment is deferred for future work.

9.2.4 Brady-Cowen over time

In terms of routing table sizes the Brady-Cowen is clearly unaffected by the in-
creasing size of the Internet AS-level graph. This scheme consistently presents
routing table sizes of six or seven entries regardless of snapshot for the value d=6,
with the sole exception of the 2002 snapshot which requires up to nine routing
table entries. This trait of the Brady-Cowen scheme suggests it has very strong
scalability properties.

Unfortunately due to the failure of the pre-processing stage of the Brady-Cowen
scheme there are no results for the stretch over time for this scheme. This is work
that is heavily suggested as useful future work.

9.3 Summary

The Throup-Zwick algorithm appears to exhibit very low average stretch, a result
similar to experiments performed on power law random graphs [27, 8, 12, 15].
Routing table sizes experienced by nodes within the Thorup-Zwick compact rout-
ing scheme are small containing on average only 1% of the graph to maintain

72

correct forwarding and routing. Stretch-3 paths are rarely encountered, and many
of them can be eliminated with use of the Krioukov addendum to the Thorup-
Zwick scheme. Pairs of nodes with largest shortest path sizes appear to be treated
fairly by the Thorup-Zwick scheme, with the large paths only experiencing stretch
increases of 1.3.

Unfortunately, due to problems encountered, the path stretch for Brady-Cowen
cannot be analysed at this point. Routing table sizes are very promising, and
paired with low stretch, this scheme could prove very favourable.

73

0.001 %

0.01 %

0.1 %

1 %

10 %

100 %

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

P
er

ce
nt

ag
e

of
 p

at
hs

Stretch

Stretch Distribution

19980301-run1-stretchAll

(a) Path stretch (log scale)

 0

 50

 100

 150

 200

 0 1 2 3 4 5 6

N
um

be
r

of
 n

od
es

 e
xh

ib
iti

ng
 s

tr
et

ch
 3

Length of shortest possible path

Stretch 3.0

19980301-run1-stretch3.0

(b) Stretch 3 original path comparison

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 1 2 3 4 5

N
um

be
r

of
 n

od
es

 e
xh

ib
iti

ng
 s

tr
et

ch
 2

Length of shortest possible path

Stretch 2.0

19980301-run1-stretch2.0

(c) Stretch 2 original path comparison

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 4 5 6 7 8 9 10 11 12

N
um

be
r

of
 n

od
es

Length of shortest possible path

Original path length of all 12 hop path(s)

19980301-run1-biggestPaths

(d) Longest path versus the original path
length

(e) Stretch comparison forward path versus
reverse path

(f) Routing table sizes

Figure 9.2: TZ results on the March 1998 snapshot

74

0.001 %

0.01 %

0.1 %

1 %

10 %

100 %

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

P
er

ce
nt

ag
e

of
 p

at
hs

Stretch

Stretch Distribution

19990301-run1-stretchAll

(a) Path stretch (log scale)

 0

 50

 100

 150

 200

 0 1 2 3 4 5 6

N
um

be
r

of
 n

od
es

 e
xh

ib
iti

ng
 s

tr
et

ch
 3

Length of shortest possible path

Stretch 3.0

19990301-run1-stretch3.0

(b) Stretch 3 original path comparison

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 1 2 3 4 5

N
um

be
r

of
 n

od
es

 e
xh

ib
iti

ng
 s

tr
et

ch
 2

Length of shortest possible path

Stretch 2.0

19990301-run1-stretch2.0

(c) Stretch 2 original path comparison

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 4 5 6 7 8 9 10 11 12

N
um

be
r

of
 n

od
es

Length of shortest possible path

Original path length of all 10 hop path(s)

19990301-run1-biggestPaths

(d) Longest path versus the original path
length

(e) Stretch comparison forward path versus
reverse path

(f) Routing table sizes

Figure 9.3: TZ results on the March 1999 snapshot

75

(a) Path stretch (log scale) (b) Stretch 3 original path comparison

(c) Stretch 2 original path comparison (d) Longest path versus the original path
length

(e) Stretch comparison forward path versus
reverse path

(f) Routing table sizes

Figure 9.4: TZ results on the March 2000 snapshot. No stretch results as this
snapshot causes the class loader to misplace essential files required by the simula-
tor.

76

0.001 %

0.01 %

0.1 %

1 %

10 %

100 %

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

P
er

ce
nt

ag
e

of
 p

at
hs

Stretch

Stretch Distribution

20010301-run1-stretchAll

(a) Path stretch (log scale)

 0

 50

 100

 150

 200

 0 1 2 3 4 5 6

N
um

be
r

of
 n

od
es

 e
xh

ib
iti

ng
 s

tr
et

ch
 3

Length of shortest possible path

Stretch 3.0

20010301-run1-stretch3.0

(b) Stretch 3 original path comparison

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 1 2 3 4 5

N
um

be
r

of
 n

od
es

 e
xh

ib
iti

ng
 s

tr
et

ch
 2

Length of shortest possible path

Stretch 2.0

20010301-run1-stretch2.0

(c) Stretch 2 original path comparison

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 4 5 6 7 8 9 10 11 12

N
um

be
r

of
 n

od
es

Length of shortest possible path

Original path length of all 10 hop path(s)

20010301-run1-biggestPaths

(d) Longest path versus the original path
length

(e) Stretch comparison forward path versus
reverse path

(f) Routing table sizes

Figure 9.5: TZ results on the March 2001 snapshot

77

0.001 %

0.01 %

0.1 %

1 %

10 %

100 %

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

P
er

ce
nt

ag
e

of
 p

at
hs

Stretch

Stretch Distribution

20020301-run1-stretchAll

(a) Path stretch (log scale)

 0

 50

 100

 150

 200

 0 1 2 3 4 5 6

N
um

be
r

of
 n

od
es

 e
xh

ib
iti

ng
 s

tr
et

ch
 3

Length of shortest possible path

Stretch 3.0

20020301-run1-stretch3.0

(b) Stretch 3 original path comparison

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 1 2 3 4 5

N
um

be
r

of
 n

od
es

 e
xh

ib
iti

ng
 s

tr
et

ch
 2

Length of shortest possible path

Stretch 2.0

20020301-run1-stretch2.0

(c) Stretch 2 original path comparison

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 4 5 6 7 8 9 10 11 12

N
um

be
r

of
 n

od
es

Length of shortest possible path

Original path length of all 11 hop path(s)

20020301-run1-biggestPaths

(d) Longest path versus the original path
length

(e) Stretch comparison forward path versus
reverse path

(f) Routing table sizes

Figure 9.6: TZ results on the March 2002 snapshot

78

0.001 %

0.01 %

0.1 %

1 %

10 %

100 %

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

P
er

ce
nt

ag
e

of
 p

at
hs

Stretch

Stretch Distribution

20030301-run1-stretchAll

(a) Path stretch (log scale)

 0

 50

 100

 150

 200

 0 1 2 3 4 5 6

N
um

be
r

of
 n

od
es

 e
xh

ib
iti

ng
 s

tr
et

ch
 3

Length of shortest possible path

Stretch 3.0

20030301-run1-stretch3.0

(b) Stretch 3 original path comparison

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 1 2 3 4 5

N
um

be
r

of
 n

od
es

 e
xh

ib
iti

ng
 s

tr
et

ch
 2

Length of shortest possible path

Stretch 2.0

20030301-run1-stretch2.0

(c) Stretch 2 original path comparison

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 4 5 6 7 8 9 10 11 12

N
um

be
r

of
 n

od
es

Length of shortest possible path

Original path length of all 10 hop path(s)

20030301-run1-biggestPaths

(d) Longest path versus the original path
length

(e) Stretch comparison forward path versus
reverse path

(f) Routing table sizes

Figure 9.7: TZ results on the March 2003 snapshot

79

0.001 %

0.01 %

0.1 %

1 %

10 %

100 %

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

P
er

ce
nt

ag
e

of
 p

at
hs

Stretch

Stretch Distribution

20040301-run1-stretchAll

(a) Path stretch (log scale)

 0

 50

 100

 150

 200

 0 1 2 3 4 5 6

N
um

be
r

of
 n

od
es

 e
xh

ib
iti

ng
 s

tr
et

ch
 3

Length of shortest possible path

Stretch 3.0

20040301-run1-stretch3.0

(b) Stretch 3 original path comparison

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 1 2 3 4 5

N
um

be
r

of
 n

od
es

 e
xh

ib
iti

ng
 s

tr
et

ch
 2

Length of shortest possible path

Stretch 2.0

20040301-run1-stretch2.0

(c) Stretch 2 original path comparison

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 4 5 6 7 8 9 10 11 12

N
um

be
r

of
 n

od
es

Length of shortest possible path

Original path length of all 10 hop path(s)

20040301-run1-biggestPaths

(d) Longest path versus the original path
length

(e) Stretch comparison forward path versus
reverse path

(f) Routing table sizes

Figure 9.8: TZ results on the March 2004 snapshot using landmark set 1

80

0.001 %

0.01 %

0.1 %

1 %

10 %

100 %

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

P
er

ce
nt

ag
e

of
 p

at
hs

Stretch

Stretch Distribution

20050307-run2-stretchAll

(a) Path stretch (log scale)

 0

 50

 100

 150

 200

 0 1 2 3 4 5 6

N
um

be
r

of
 n

od
es

 e
xh

ib
iti

ng
 s

tr
et

ch
 3

Length of shortest possible path

Stretch 3.0

20050307-run2-stretch3.0

(b) Stretch 3 original path comparison

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 1 2 3 4 5

N
um

be
r

of
 n

od
es

 e
xh

ib
iti

ng
 s

tr
et

ch
 2

Length of shortest possible path

Stretch 2.0

20050307-run2-stretch2.0

(c) Stretch 2 original path comparison

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 4 5 6 7 8 9 10 11 12

N
um

be
r

of
 n

od
es

Length of shortest possible path

Original path length of all 11 hop path(s)

20050307-run2-biggestPaths

(d) Longest path versus the original path
length

(e) Stretch comparison forward path versus
reverse path

(f) Routing table sizes

Figure 9.9: TZ results on the March 2005 snapshot

81

0.001 %

0.01 %

0.1 %

1 %

10 %

100 %

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

P
er

ce
nt

ag
e

of
 p

at
hs

Stretch

Stretch Distribution

20060306-run2-stretchAll

(a) Path stretch (log scale)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 1 2 3 4 5

N
um

be
r

of
 n

od
es

 e
xh

ib
iti

ng
 s

tr
et

ch
 3

Length of shortest possible path

Stretch 3.0

20060306-run2-stretch3.0

(b) Stretch 3 original path comparison

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 1 2 3 4 5

N
um

be
r

of
 n

od
es

 e
xh

ib
iti

ng
 s

tr
et

ch
 2

Length of shortest possible path

Stretch 2.0

20060306-run2-stretch2.0

(c) Stretch 2 original path comparison (d) Longest path versus the original path
length

(e) Stretch comparison forward path versus
reverse path

(f) Routing table sizes

Figure 9.10: TZ results on the March 2006 snapshot. No longest path result due
to corrupt result file.

82

0.001 %

0.01 %

0.1 %

1 %

10 %

100 %

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

P
er

ce
nt

ag
e

of
 p

at
hs

Stretch

Stretch Distribution

20070305-run2-stretchAll

(a) Path stretch (log scale)

 0

 50

 100

 150

 200

 0 1 2 3 4 5 6

N
um

be
r

of
 n

od
es

 e
xh

ib
iti

ng
 s

tr
et

ch
 3

Length of shortest possible path

Stretch 3.0

20070305-run2-stretch3.0

(b) Stretch 3 original path comparison

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 1 2 3 4 5

N
um

be
r

of
 n

od
es

 e
xh

ib
iti

ng
 s

tr
et

ch
 2

Length of shortest possible path

Stretch 2.0

20070305-run2-stretch2.0

(c) Stretch 2 original path comparison

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 4 5 6 7 8 9 10 11 12

N
um

be
r

of
 n

od
es

Length of shortest possible path

Original path length of all 15 hop path(s)

20070305-run2-biggestPaths

(d) Longest path versus the original path
length

(e) Stretch comparison forward path versus
reverse path

(f) Routing table sizes

Figure 9.11: TZ results on the March 2007 snapshot

83

(a) Path stretch (log scale) (b) Stretch 3 original path comparison

(c) Stretch 2 original path comparison (d) Longest path versus the original path
length

(e) Stretch comparison forward path versus
reverse path

(f) Routing table sizes

Figure 9.12: TZ results on the March 2008 snapshot. No stretch results due to
simulator failing to initialise with this dataset

84

0.001 %

0.01 %

0.1 %

1 %

10 %

100 %

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

P
er

ce
nt

ag
e

of
 p

at
hs

Stretch

Stretch Distribution

20090331-run2-stretchAll

(a) Path stretch (log scale)

 0

 50

 100

 150

 200

 0 1 2 3 4 5 6

N
um

be
r

of
 n

od
es

 e
xh

ib
iti

ng
 s

tr
et

ch
 3

Length of shortest possible path

Stretch 3.0

20090331-run2-stretch3.0

(b) Stretch 3 original path comparison

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 1 2 3 4 5

N
um

be
r

of
 n

od
es

 e
xh

ib
iti

ng
 s

tr
et

ch
 2

Length of shortest possible path

Stretch 2.0

20090331-run2-stretch2.0

(c) Stretch 2 original path comparison

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 4 5 6 7 8 9 10 11 12

N
um

be
r

of
 n

od
es

Length of shortest possible path

Original path length of all 11 hop path(s)

20090331-run2-biggestPaths

(d) Longest path versus the original path
length

(e) Stretch comparison forward path versus
reverse path

(f) Routing table sizes

Figure 9.13: TZ results on the March 2009 snapshot

85

Chapter 10

Comparison of algorithms

The previous chapter presented results of simulating the Thorup-Zwick and Brady-
Cowen compact routing schemes on snapshot of the Internet AS topology. These
schemes show potential for being very scalable inter-domain routing protocols.
This chapter provides a comparison of the Thorup-Zwick and Brady-Cowen schemes
with BGP, the current inter-domain routing protocol.

BGP is currently experiencing large routing tables due to de-aggregation of prefixes
and the address space’s natural growth [29]. This thesis aimed to explore the
ability of compact routing to reduce routing table size. Figure 10 shows the
routing table sizes over time for the Thorup-Zwick and Brady-Cowen compact
routing schemes as well as the BGP. The BGP as previously mentioned is a prefix
based routing scheme, for the purposes of comparison Figure 10 has the routing
table sizes of BGP if it utilised AS numbers instead. This dissolves BGP to a
distance vector algorithm, from its original form as a path vector approach.

As can clearly be seen in Figure 10.1(a), the routing table sizes of BGP have
increased linearly reaching a size of 31277 entries in March 2009. The table size
for the Thorup-Zwick algorithm fluctuates as time progresses but maintains much
smaller routing tables consistently over the years. The Thorup-Zwick algorithm
in March 2009 produces a worst-case routing table size of 476 entries (1.5% of
the size of BGP). The Brady-Cowen scheme routing table sizes can be witnessed
in Figure 10.1(b). These routing tables do not fluctuate, but instead maintain a
consistent worst-case routing table of size seven entries (0.02% of the size of BGP).
The year 2002 provides an exception this, when the maximum routing table sizes
were 9 entries in size.

This information clearly presents the routing state savings possible by utilisation of
compact routing schemes. Both compact routing schemes produce routing tables
substantially smaller than that of BGP, with the Brady-Cowen compact routing
scheme coming out on top with the smallest routing table sizes. Although this
comes at a cost of higher complexity than the Thorup-Zwick scheme.

The compact routing schemes provide this substantially lower routing table size at
a cost, increasing path length of traffic traversing the network. However, as can be
shown in Figure 9.1 the Thorup-Zwick compact routing scheme exhibits an average
path stretch of approximately 1.1. This stretch value is low, in fact it is most likely

86

0

5000

10000

15000

20000

25000

30000

35000

 1998 2000 2002 2004 2006 2008

R
ou

tin
g

ta
bl

e
si

ze

Year

BGP
TZ
BC

(a) Routing table size

1

10

100

1000

10000

100000

 1998 2000 2002 2004 2006 2008

R
ou

tin
g

ta
bl

e
si

ze

Year

BGP
TZ
BC

(b) Routing table size (log scale)

Figure 10.1: Routing table size over time BGP, TZ and BC

on par with the stretch of BGP. Packets in BGP are subjected to the local policy
of each AS which may choose to route a packet on a sub-optimal path, increasing
the path length on that packet. However, without simulation of the BGP on the
snapshots for 1998 to 2009, we cannot provide direct comparison. Similarly for
the Brady-Cowen compact routing scheme. Stretch comparison between the three
schemes mentioned here is highly recommended as future work.

The routing table size reduction offered by compact routing schemes is certainly
substantial, and is a favourable trait of these schemes. These schemes show re-
silience to the AS-level graphs increasing in size and provide consistently low rout-
ing table sizes over time; demonstrating the ability of compact routing schemes to
provide sub-linearly scaling routing tables.

87

Chapter 11

Conclusion

This dissertation has presented two compact routing schemes, Thorup-Zwick and
Brady-Cowen, it has detailed their operation and the stages necessary to imple-
ment these schemes. Two distributed simulation environments were created to
allow the analysis of routing table sizes and path stretch of these compact routing
schemes. The results show that routing table sizes due to these compact routing
algorithms are significantly smaller than a shortest path routing approach (e.g.,
distance vector), as well as exhibiting in small mean path stretch of approximately
1.1. This is a significant finding, allowing a substantial reduction in routing state
while incurring only a small side-effect on path stretch. The routing tables scale
sub-linearly with respect to graph size increases. These factors suggest compact
routing is a favourable candidate for a scalable routing protocol.

11.1 Future Work

Unfortunately due to time constraints it was not possible to perform simulations on
the Brady-Cowen compact routing scheme. This is future work that would benefit
the advancement of the compact routing field. It would allow for comparison
with the Thorup-Zwick compact routing scheme as well as other potential routing
protocols. Simulation of BGP path stretch relative to the shortest distance on the
unannotated graph, to allow for a direct comparison is also recommended.

Within this project, it was possible to evaluate the effect of the Thorup-Zwick
landmark selection algorithm on path stretch and routing table sizes, as it could
be a potential area of bias. The Brady-Cowen compact routing scheme also has
a random element to it; the Brady-Cowen heuristic randomly picks up to five
edges from the fringe should less than five extra edges be detected within the
fringe. This random element has the ability affect on the results of simulating
the Brady-Cowen compact routing scheme. As such, analysis of the effects of the
Brady-Cowen heuristic is recommended before performing a comprehensive study
of the Brady-Cowen scheme.

Another aspect of the experiment that could not be performed due to time con-
straint was the use of popular websites to produce more realistic traffic within the

88

simulators (see chapter 7). This would allow for analysis of how frequently used
paths contend with path stretch. If frequently utilised paths exhibit large stretch
this degrades the through-put of the Internet, and would be a disadvantage to-
wards the use of compact routing schemes. Ways to avoid this large increase in
path stretch would have to be devised to allow a favourable outcome for compact
routing.

The experiment performed for this dissertation analysed the longest path wit-
nessed within the simulator as a metric to determine the effect of path stretch.
Another approach to determining the effect of path stretch would be to observe
the stretch exhibited by the source-destination pairs that exhibit the largest short-
est path within the graph. A large multiplicative stretch on these already large
paths would be detrimental to the use of compact routing. This test case must be
analysed to see if it is a problem.

The landmark set is determined by a the landmark selection algorithm. This
algorithm is random in nature, and as such may have sub-optimal spread of the
landmarks. It may be the case that several landmarks are placed close together on
the first iteration of the landmark selection algorithm. This results in additional
routing table entries in all nodes. From a theoretical perspective, it would be
interesting to see if it is possible to reduce a landmark set after all the cluster
constraints have been satisfied. This would reduce the routing table size in a large
quantity of nodes, however, would such a change radically affect path stretch? A
heuristic or algorithm to reduce the landmark set would have to be devised, this
may prove challenging.

The compact routing schemes utilised in this dissertation are valid only within the
static graph model. The real-world Internet does not follow this model; node and
link failures can happen at any time. As such, for compact routing to be deployed
on the inter-domain scale, it would have to be able to deal with such failures, as
well as the addition of more nodes and links. As such future work in the compact
routing field could research ways to make existing compact routing schemes fit for
purpose, or research new compact routing schemes to perform this task. This is a
substantial amount of work.

Another potential weakness in compact routing is its inability to allow businesses
to implement policy within their domain. AS administrators require that they
can perform traffic engineering, multi-homing, and other requirements. A future
route for research would allow for the policy to be integrated into a compact
routing scheme, or again, a new scheme devised that allows this policy. This is
another requirement should compact routing wish to become a potential inter-
domain routing protocol. This is substantial work.

11.2 Summary

Compact routing schemes show great potential for reducing routing table sizes,
as well as maintaining a sub-linear growth of the routing tables as graph size in-
creases. This has been demonstrated by simulating two compact routing schemes

89

by Thorup-Zwick and Brady-Cowen on real-world Internet AS-level topology snap-
shots over twelve years. This resulted in both schemes producing very small rout-
ing tables in comparison to the currently operating inter-domain protocol. This
routing table state reduction comes at the cost of increase path lengths for packets,
however, this path stretch has been shown to be consistently very low in simu-
lations. Further investigation into the feasibly of compact routing schemes as a
replacement to the current inter-domain routing protocol is recommended due to
the merits previously highlighted.

90

Bibliography

[1] The CAIDA AS relationships dataset. http://caida.org/data/active/as-
relationships/, April 2010.

[2] Tier 1 network – wikipedia. http://en.wikipedia.org/wiki/Tier 1 network,
April 2010.

[3] J. Abley, K. Lindqvist, E. Davies, B. Black, and V. Gill. IPv4 multihoming
practices and limitations. RFC4116, Internet Engineering Task Force, July
2005.

[4] I. Abraham, C. Gavoille, D. Malkhi, N. Nisan, and M. Thorup. Compact
name-independent routing with minimum stretch. ACM Transactions on
Algorithms, 4(3):1–12, 2008.

[5] M. Arias, L. J. Cowen, K. A. Laing, R. Rajaraman, and O. Taka. Compact
routing with name independence. In SPAA ’03: Proceedings of the 15th
annual ACM symposium on Parallel algorithms and architectures, pages 184–
192, San Diego, California, USA, June 2003. ACM.

[6] H. Ballani, P. Francis, T. Cao, and J. Wang. Making routers last longer
with ViAggre. In NSDI’09: Proceedings of the 6th USENIX symposium on
Networked systems design and implementation, pages 453–466, Berkeley, CA,
USA, 2009. USENIX Association.

[7] J. Behrens and J. J. Garcia-Luna-Aceves. Distributed, scalable routing based
on link-state vectors. In SIGCOMM ’94: Proceedings of the conference
on Communications architectures, protocols and applications, pages 136–147,
London, United Kingdom, August/September 1994. ACM.

[8] A. Brady and L. J. Cowen. Compact routing on power law graphs with addi-
tive stretch. In ALENEX ’06 Proceedings of the 8th workshop on Algorithm
engineering and experiments, pages 119–128, January 2006.

[9] M. Caesar, T. Condie, J. Kannan, K. Lakshminarayanan, and I. Stoica.
ROFL: routing on flat labels. In SIGCOMM ’06: Proceedings of the 2006
conference on Applications, technologies, architectures, and protocols for com-
puter communications, pages 363–374, Pisa, Italy, September 2006. ACM.

[10] E. Chen. Route refresh capability for BGP-4. RFC2918, Internet Engineering
Task Force, September 2000.

91

[11] Kai Chen, David R. Choffnes, Rahul Potharaju, Yan Chen, Fabian E. Bus-
tamante, Dan Pei, and Yao Zhao. Where the sidewalk ends: extending the
Internet as graph using traceroutes from P2P users. In CoNEXT ’09: Proceed-
ings of the 5th international conference on Emerging networking experiments
and technologies, pages 217–228, Rome, Italy., December 2009. ACM.

[12] W. Chen, C. Sommer, S. Teng, and Y. Wang. Compact routing in power-law
graphs. In Proceedings of the 23rd international symposium on Distributed
computing. Springer-Verlag LNCS 5805, September 2009.

[13] L. J. Cowen. Compact routing with minimum stretch. Journal of Algorithms,
38(1):170–183, 2001.

[14] X. Dimitropoulos, D. Krioukov, M. Fomenkov, B. Huffaker, Y. Hyun,
kc claffy, and G. Riley. AS relationships: inference and validation. ACM
SIGCOMM Computer communication review, 37(1):29–40, 2007.

[15] M. Enachescu, M. Wang, and A. Goel. Reducing maximum stretch in compact
routing. In INFOCOM ’08: The 27th conference on Computer communica-
tions, pages 336–340, Phoenix, Arizona, April 2008. IEEE.

[16] D. Farinacci, V. Fuller, D. Meyer, and D. Lewis. Locator/ID separation
protocol (LISP). Internet-draft, Internet Engineering Task Force, January
2010. Work in progress.

[17] L. Gao. On inferring autonomous system relationships in the Internet.
IEEE/ACM Transactions on Networking, 9(6):733–745, December 2001.

[18] C. Gavoille and M. Gengler. Space-efficiency for routing schemes of stretch
factor three. Journal of Parallel distributed computing, 61(5):679–687, 2001.

[19] B. Halabi. Internet Routing Architectures. Cisco Press, 1997. ISBN:
1562056522.

[20] G. Huston. Commentary on inter-domain routing in the Internet. RFC3221,
Internet Engineering Task Force, December 2001.

[21] L. Iannone and O. Bonaventure. On the cost of caching locator/id mappings.
In CoNEXT ’07: Proceedings of the 2007 ACM CoNEXT conference, pages
1–12, New York, USA, December 2007. ACM.

[22] E. Karpilovsky and J. Rexford. Using forgetful routing to control BGP table
size. In CoNEXT ’06: Proceedings of the 2006 ACM CoNEXT conference,
pages 1–12, Lisboa, Portugal, December 2006. ACM.

[23] F. Kastenholz. ISLAY a new routing and addressing architecture. Internet-
draft, Internet Engineering Task Force, May 2002. Work in progress.

[24] L. Kleinrock and F. Kamoun. Hierarchical routing for large networks, per-
formance evaluation and optimization. Computer networks, 1(3):155–174,
January 1977.

92

[25] A. Korman. Improved compact routing schemes for dynamic trees. In PODC
’08: Proceedings of the 27th ACM symposium on Principles of distributed
computing, pages 185–194, Toronto, Canada, August 2008. ACM.

[26] D. Krioukov, k c claffy, K. Fall, and A. Brady. On compact routing for the
Internet. ACM SIGCOMM Computer communication review, 37(3):41–52,
2007.

[27] D. Krioukov, K. Fall, and X. Yang. Compact routing on Internet-like graphs.
In INFOCOM ’04. 23rd annual joint Conference of the IEEE Computer and
communications societies, pages 209–219, Hong Kong, PR China, March
2004.

[28] L. Mathy and L. Iannone. Lisp-dht: Towards a dht to map identifiers onto lo-
cators. In CoNEXT ’08: Proceedings of the 2008 ACM CoNEXT Conference,
pages 1–6, Madrid, Spain, December 2008. ACM.

[29] D. Meyer, L. Zhang, and K. Fall. Report from the IAB workshop on routing
and addressing. RFC4984, Internet Engineering Task Force, September 2007.

[30] S. Milgram. The small world problem. Psychology Today, 1:61–67, May 1967.

[31] M. O’Dell. 8+8 an alternative addressing architecture for IPv6. Internet-
draft, Internet Engineering Task Force, October 1996. Work in progress.

[32] R. Oliveira, D. Pei, W. Willinger, B. Zhang, and L. Zhang. The
(in)Completeness of the observed Internet AS-level structure. IEEE/ACM
Transactions on Networking, 18(1):109–122, February 2010.

[33] D. Peleg. Proximity-preserving labeling schemes and their applications. In
WG ’99: Proceedings of the 25th international workshop on Graph-theoretic
concepts in computer science, pages 30–41, Ascona, Switzerland, June 1999.
Springer-Verlag.

[34] B. Quoitin, L. Iannone, C. de Launois, and O. Bonaventure. Evaluating the
benefits of the locator/identifier separation. In MobiArch ’07: Proceedings of
2nd ACM/IEEE international workshop on Mobility in the evolving Internet
architecture, pages 1–6, Kyoto, Japan, August 2007. ACM.

[35] Y. Rekhter, T. Li, and S. Hares. A border gateway protocol 4 (BGP-4).
RFC4271, Internet Engineering Task Force, January 2006.

[36] E. Rosen, A. Viswanathan, and R. Callon. Multiprotocol label switching
architecture. RFC3031, Internet Engineering Task Force, January 2001.

[37] S. D. Strowes and C. Perkins. Towards a graph simulator for analysis of inter-
domain routing and forwarding behaviour. Submission to IEEE International
Conference on Communications ’10.

[38] L. Subramanian, M. Caesar, C. T. Ee, M. Handley, M. Mao, S. Shenker, and
I. Stoica. HLP: a next generation inter-domain routing protocol. In SIG-
COMM ’05: Proceedings of the 2005 conference on Applications, technolo-
gies, architectures, and protocols for computer communications, pages 13–24,
Philadelphia, Pennsylvania, USA, August 2005. ACM.

93

[39] M. Thorup and U. Zwick. Compact routing schemes. In SPAA ’01: Proceed-
ings of the 13th annual ACM symposium on Parallel algorithms and archi-
tectures, pages 1–10, Crete Island, Greece, July 2001. ACM.

94

