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ABSTRACT
In current implementations of low-level networking stacks,
performance is favoured over safety, security, and correct-
ness of applications. Despite modern languages and abstrac-
tions being available for higher levels of networking stacks,
these have so far been dismissed due to the stringent perfor-
mance requirements. This paper proposes using ownership
types with move semantics to introduce the same level of
safety and abstraction which is expected at higher levels of
the stack, without sacrificing the expected performance.

1. INTRODUCTION
There have been numerous attempts to design and imple-

ment safer and more robust ways to interact with network
protocol implementations[13, 19, 11, 16], however all major
implementations in use today are still written in C and C++.
There has been a lack of adoption of these new methodolo-
gies for low level networking, for reasons including their ease
of use and existing, legacy code bases. Perhaps the most
pertinent reason for lack of adoption is performance — as
hardware supports increasingly high throughput, every CPU
cycle begins to count. Current methods to meet these per-
formance requirements involve partially or completely by-
passing the operating system, and, as a result, sacrificing
many of the useful and important guarantees the operating
system provides.

Modern systems programming languages provide a way to
re-introduce many guarantees which have been sacrificed in
the name of performance, without introducing unnecessary
overhead. In this paper, I exploit ownership types, move se-
mantics, and zero-overhead abstractions to introduce guar-
antees such as freedom from data-races and memory safety
without garbage collection to low level networking. In sec-
tion 3, I present a compiler plugin for the Rust program-
ming language[7], a language which provides these guaran-
tees, to introduce an embedded domain specific language
(eDSL) to specify the layout of packets. Additionally, the ex-
tension can automatically generate much of the error-prone
bit-manipulation typically required for packet manipulation,
which is discussed in section 3.1.

To provide the necessary performance for the implemen-
tation, I utilise the netmap library[28], which a provides
high performance networking API which may be utilised to
provide higher throughput than offered by the operating sys-
tem. How this is integrated into Rust, with a sensible and
safe abstraction, is discussed in section 2. Benchmarks and
performance metrics, showing the performance is compara-
ble to using netmap with C are shown in section 4.

This paper provides three key contributions:

• An embedded domain specific language for the Rust

programming language enabling simple and efficient
packet manipulation, which takes advantage of the fea-
tures discussed in section 2.

• An algorithm for converting between arbitrary length
and offset, unsigned, network-endian values and host-
endian values.

• Performance metrics demonstrating comparable per-
formance with equivalent, unsafe, C code.

2. ABSTRACTIONS FOR HIGH PERFOR-
MANCE NETWORKING

There are many libraries for low-level networking which
offer superior performance to what the operating system can
provide[2, 5]. These typically work in user-space, bypassing
the operating system and providing direct access to hard-
ware. This introduces a number of risks either in the form
of sharing memory between multiple user-space processes
and the kernel, or by allowing network interface cards direct
access to arbitrary memory locations.

Whilst it is possible for trusted processes to interact safely
with these APIs, it is not enforced, allowing a programming
mistake to have unforeseen and unfortunate consequences.
Modern programming languages, such as Rust, provide a
number of useful features which make it possible to build
safe abstractions for these libraries — these will be discussed
in the rest of this section.

Memory safety is a guarantee that a particular program
will not corrupt memory, nor read or write from invalid
memory locations. This guarantee is provided by many
popular languages such as Java and Python, but is usually
enforced by convention in lower level languages such as C
and C++. When programmers inevitably make mistakes,
or overlook an important detail, this can lead to process
crashes, incorrect behaviour, and even security vulnerabil-
ities. This is particularly problematic if your process po-
tentially has access to arbitrary memory locations via the
network interface card, since it any potential issues in the
program can lead to multi-process or whole system failures
— not just individual processes.

The traditional means to introduce memory safety into a
language is garbage collection — this is what Java, Python
and Haskell all use. This introduces a (usually unpredictable)
runtime overhead, required to find and collect dead objects.
Additionally, more advanced algorithms for garbage collec-
tion may require precise type information to be available, or
the ability to freely move objects in memory. These trade-
offs are often considered unacceptable for systems programs,
causing a lack of adoption in languages like C or C++,
where only conservative collection algorithms are possible.
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In C++, techniques such as Resource Acquisition Is Initial-
isation (RAII) and smart pointers are typically preferred,
which have a predictable overhead, but rely on convention
for correctness.

Ownership types, combined with lifetimes[30], enable mem-
ory safety without using garbage collection, as well as guar-
anteeing data-race freedom — this makes it a useful concept
for creating safe APIs. Under an ownership system, a par-
ticular piece of code is said to own a particular variable,
meaning it has complete, unique control over its value —
no other thread or part of the code may read or modify its
value. When a function is called with an owned value, the
ownership is moved to that function, and access is no longer
permitted in the calling function.

In many situations, functions do not require ownership
of data, only a view of it. In these cases, values may be
borrowed, either mutably or immutably by other parts of a
program. There may only be a single mutable reference to
any given variable at once, or alternatively many immutable
references. It is not possible to have both mutable and im-
mutable references to a variable at the same time. Values
are said to be borrowed for a particular lifetime. A lifetime
is typically delimited by a code block. A value borrowed
within a block is said to have the lifetime of that block,
and will no longer be valid once the block of code is ter-
minated. This can be used to prevent dangling references,
which would lead to memory un-safety.

Combining ownership with lifetimes enables memory safety
without the overhead of a garbage collector, as well as en-
forcing data-race freedom — since only a single mutable
binding to a variable can exist at any given time, threads
cannot contend for access. Another interesting consequence
of this design is that APIs can be designed to enforce correct
access patterns — owning a value guarantees unique control
over it.

In low-level networking applications, correct management
of buffers is essential, and ownership types can enforce this.
Once the given memory and data structures are correctly
initialised, it is possible to use the type system to statically
guarantee that incorrect operations do not occur. For ex-
ample, an abstraction can be built such that end-user code
never holds ownership of a memory block, only borrowed
references. Since these references have a bounded lifetime,
it is possible to know when it is safe to re-use buffers for new
packets.

Rust is a modern systems language which offers ownership
types with lifetimes, in addition to other useful features. In
Rust, code is memory safe by default, however it is possi-
ble to perform unsafe memory manipulation when necessary
— providing the exposed interface is logically safe. Since
APIs for low-level networking are written in C and C++,
it is impossible for them to expose a verifiably safe inter-
face. It is for this reason that Rust provides a means to
execute unsafe code. Unsafe code in Rust is delimited us-
ing the unsafe keyword. There are two key things to note
about this approach — the only place unsafe memory op-
erations can occur in a Rust program is within an unsafe
block. This makes it simple to locate, audit, and verify
any potentially dangerous behaviour. Secondly, code within
an unsafe block must expose a safe interface to the code
within.

Whilst it would be possible (if unsettling) to use unsafe
APIs directly, the typical approach is to create a minimal,

safe, wrapper around an unsafe API instead. In this manner,
any unsafe operation may be constrained to a small, re-
usable piece of code.

There are many additional features of Rust which make
it a sensible choice for writing abstractions for high per-
formance, low-level networking. Traits (similar to Haskell’s
type classes[17] or Java’s interfaces), enable abstract defini-
tions of functionality, and provide a means to perform both
static and dynamic dispatch of method calls. This allows the
creation of zero-overhead abstractions, without resorting to
duck-typing as C++ does. Rust also provides algebraic data
types and pattern matching, which provide a simple and ef-
fective way of handling errors, amongst other things.

2.1 Building the Abstraction
In this section, I discuss how these features can be used to

build a safe and efficient API for interacting with the netmap
library. There are three key stages to ensuring safe interac-
tion with the netmap API: lifetime management; sending
packets; and receiving packets. Note that this API has been
simplified for the purposes of this paper.

Correct lifetime management for netmap works the same
way as any API which provides a file descriptor or other
object which must be constructed before use and destruc-
ted upon completion. The RAII idiom is used to guarantee
this — first, the file descriptor is initialised, and stored in a
structure. The structure must have a destructor which can
then run the necessary clean-up code once it is no longer in
use. All operations on the descriptor must also be defined
for the structure which wraps it — the descriptor should not
be accessed directly.

An example of this idiom can be seen in listing 1. A
structure, NmDesc, is defined with a single, private member
containing a mutable pointer to the file descriptor. There is
a constructor method, new(), which takes the name of an
interface as a string, and converts it to a C string (appends
a null byte). The descriptor is initialised, with an unsafe
block denoting a potential lack of memory safety within. If
initialisation succeeded, we return a new structure repre-
senting the descriptor, otherwise, we return the error which
occurred whilst constructing it. Finally, the Drop trait is im-
plemented, to define the behaviour to occur once the struc-
ture goes out of scope. Note that all unsafe interactions
are confined to two small blocks which are easy to find and
verify, and the file descriptor will always be closed once the
NmDesc structure goes out of scope.

Netmap provides access to a number of ring buffers which
are directly accessible by the network interface card, and
programs using the library. Writing directly to these buffers
enables zero-copy construction of packets, providing the abil-
ity to quickly send and receive packets. While the process
for sending packets is not inherently unsafe, it is difficult to
get right, and this functionality can be encapsulated, whilst
providing a more correct interface.

An overview of how this is achieved is shown in listing 2.
By using a callback, which uses static dispatch, and will
likely be inlined, we can provide the user with a way to con-
struct packets in place, with only borrowed access to the
buffer — this access will cease once the callback has com-
pleted. This also allows high performance, whilst abstract-
ing the more complex logic of how exactly packets are sent
into library code. The function is designed to enable a large
number of packets to be sent with the minimal number of
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struct NmDesc {
desc: *mut nm_desc

}
impl NmDesc {

fn new(iface_name: &str)
-> io::Result<NmDesc> {
let c_name = CString::new(iface_name);

let fd = unsafe {
nm_open(c_name.unwrap().as_ptr(),

ptr::null(),
0,
ptr::null())

};

if fd.is_null() {
Err(io::Error::last_os_error())

} else {
Ok(NmDesc { desc: fd })

}
}

}
impl Drop for NmDesc {

fn drop(&mut self) {
unsafe {
nm_close(self.desc);

}
}

}

Listing 1: An example of using RAII in Rust to enforce
correct the correct lifetime for a file descriptor.

system calls. By specifying the num_packets parameter to
be a larger number, as many packets will be sent as there
are slots available for them, before resorting to a system
call to send the packets and free up the buffers. Many im-
plementation details are omitted in this example, and the
implementation has been restricted to Ethernet packets —
a trait could be used to support other packet types.

Receiving packets works in a similar manner to sending
packets, however it provides an external iterator as an in-
terface, rather than using a statically dispatched callback.
A next() method is provided to get the next packet. The
most interesting thing to note is that the lifetime of packets
returned by the next() method of the iterator is only valid
until its next call — this enables the buffers to be released
to netmap to receive more packets immediately once they
are no longer needed, and there are guaranteed to be no
references to the packets remaining.

3. AN EMBEDDED DOMAIN SPECIFIC LAN-
GUAGE FOR PACKET PROCESSING

Domain specific languages (DSLs) are languages which
provide simpler or more expressive ways to describe func-
tionality for specific purposes than typical general purpose
languages. There have been many attempts at designing do-
main specific languages for packet processing, which have a
number of desirable features, as well as a number of flaws[10,
21, 25, 23]. Each language introduces a different set of func-
tionality, ranging from introducing type safety or simplifying
protocol composition, however there are a range of issues in-

impl NmDesc {
pub fn build_and_send<F>(&mut self,

num_packets: usize,
packet_size: usize,
func: &mut F)

-> io::Result<()>
where F : FnMut(MutEthernetPacket)

{
let pollfd = self.get_poll_fd();
let mut idx = 0usize;
while idx < num_packets {
if unsafe { poll(&mut pollfd, 1, -1) } {

return Err(io:Error::last_os_error());
}
for i in (*self.desc).first_tx_ring ..

(*self.desc).last_tx_ring + 1 {
if idx >= num_packets {
break;

}
let buf = unsafe {

self.get_buf_for_ring(i)
};

let mep = MutEthernetPacket::new(buf);
func(mep);
unsafe {
self.advance_pointers();

}
}

}
}

}

Listing 2: An overview of how the abstraction for sending
works.

cluding poor performance or being unable to express certain
packet types. Some of these languages are discussed in more
detail in section 5.2.

Poor performance is not a ubiquitous issue amongst DSLs,
however there are many implementations of them which do
not perform as well as equivalent hand-written C or C++.
This causes the languages to have little appeal, particularly
in scenarios where there are already existing C or C++ im-
plementations — regardless of additional safety guarantees.

Many attempts to write DSLs involve a separate pre-
processing step to generate code for the target language, or
create an entirely new language to tackle the problem. This
leads to poor integration with the host language, making
their usage more intrusive to development. It is desirable
to use a general purpose language, without reliance on an
external tool.

Many DSLs define the structure of packets using a new
and unusual syntax, which adds additional cognitive over-
head for the programmer. Some DSLs have poor support
for certain types of packet. If the DSL is unable to define
arbitrary or common types of packets, then it can only be
used some of the time and is of limited use. Additionally,
some DSLs provide poor support for custom field types —
it should be possible to define how to read and write cus-
tom values to and from the network, enabling the DSL to
be extended.

To combat these issues, I have implemented a new, em-
bedded DSL with the following features:
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• Integrated into the host Language.

The DSL uses standard Rust structure definitions to
define the layout of packets. There is no need to learn
a new syntax or language in order to specify the layout
of packets.

• High performance.

The DSL generates a lazy, zero-copy packet parser
which is able to avoid many bounds checks which would
usually be required for safety, by performing a single
check upon initialisation. This enables packets to be
parsed incredibly quickly, with no overhead for fields
which are not read from or written to.

• Support for a large range of packet types.

There are a number of features which enable many
different packet types to be defined and parsed. In
the event of an unusual field type which cannot be
handled automatically, it is possible to easily extend
the functionality using standard Rust code.

The DSL has been designed so that normal Rust struc-
ture definitions may be used, with some annotations. An
example of this can be seen in listing 3. There are several
things of note here, for example, the #[packet] attribute
is specified before the structure definition, which indicates
that the structure should be treated as a packet definition,
and differentiates it from regular Rust structures. Addition-
ally, the fields use custom integer types such as u16be and
u4. These specify that the fields as sixteen bit unsigned in-
tegers, which is in big endian format when on-the-wire; and
an unsigned four bit integer, respectively. There are addi-
tional attributes which are discussed in more detail in the
following paragraphs.

Given a packet definition, such as the one in listing 3 the
compiler plugin will generate a number of things. First, it
will generate mutable and immutable structures which may
be constructed using the underlying buffers which the oper-
ating system uses for sending and receiving packets. These
provide a simple method for representing on the wire pack-
ets, without introducing unnecessary overhead. These struc-
tures contain a number of generated accessors and mutators
which provide the necessary bit shifting for accessing each
field in the packet. It is necessary to introduce both muta-
ble and immutable structures, since Rust does not currently
provide a way to abstract over the mutability of field types
based on the mutability of the structure itself. Providing
both allows simple and flexible interaction with the packets.

Additionally, a number of traits will be implemented for
each of the structures. These provide a standard interface
for packets and mutable packets; support for debug printing
of packets; a way to convert on the wire packets to their
#[packet] equivalents; and a way to determine the size of
the packet. Finally, an iterator is created, to allow iterating
through fields containing vectors of the packet type.

The eDSL provides a number of integer types whose names
match the regular expression u[0-9]+(be|le)?. These
are unsigned integers of the specified size, in either big en-
dian (be) or little endian (le). These are simply aliases for
the next largest integer type supported by Rust, that is u8,
u16, u32, or u64. They serve as hints to the eDSL about

1https://github.com/libpnet/libpnet

#[packet]
pub struct Ipv4 {

version: u4,
header_length: u4,
dscp: u6,
ecn: u2,
total_length: u16be,
identification: u16be,
flags: u3,
fragment_offset: u13be,
ttl: u8,
#[construct_with(u8)]
next_level_protocol: IpNextHeaderProtocol,
checksum: u16be,
#[construct_with(u8, u8, u8, u8)]
source: Ipv4Addr,
#[construct_with(u8, u8, u8, u8)]
destination: Ipv4Addr,
#[length_fn = "ipv4_options_length"]
options: Vec<Ipv4Option>,
#[payload]
payload: Vec<u8>,

}

fn ipv4_options_length<’a>(
ipv4: &Ipv4Packet<’a>

) -> usize {
ipv4.get_header_length() as usize - 4

}

Listing 3: A possible implementation of an IPv4 packet def-
inition using the DSL. The definition of Ipv4Option and
IpNextHeaderProtocol have been omitted — these can
be found in the source code for libpnet1. The definition for
Ipv4Addr can be found in the Rust distribution.

how large the field is on the wire, and how to generate the
necessary bit manipulations to interact with the value. Any
values to be stored in these fields are host endian, removing
the cognitive overhead of bit manipulation from the pro-
grammer. If a value greater than the maximum for that
type is stored, the higher bits will be dropped when con-
verting the value to wire format (for example, attempting
to store 255 in a u7 would result in 128 on the wire). This is
an unfortunate trade-off, discussed in detail in section 3.2.

There are a number of attributes for fields within packets.
A field which is marked with the #[payload] attribute in-
dicates that the following field can be treated as the packet’s
payload, and will be used for chaining packets together. The
field must always have a type which is a vector of unsigned,
eight bit bytes — this matches the buffers which are pro-
vided by the operating system.

The #[length_fn] attribute enables support for arbi-
trary variable length fields. A function name is given as an
argument for the attribute, and when calculating field offsets
this method will be called, along with an immutable refer-
ence to the packet. The function should return the number
of bytes which the field will use.

The #[construct_with] attribute enables arbitrary,
user-defined field types to be used, and specifies a list of
primitive values which may be used to construct it. The
specified type should provide a method named new which
takes these arguments, and also an implementation of the
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PrimitiveValues trait, which, given a value of that field
type, will return a tuple of the same list of primitive values,
representing the value. This enables the value to be read
from, and written to wire format, without manually writing
bit shifts. Elaboration on why this attribute is required is
discussed in section 3.2.

3.1 Generating Bit Manipulations

Algorithm 1 Get a list of bit shifting operations to retrieve
a number of bits at a given offset

Require: offset ≤ 7 and size > 0
function get operations(offset, size)

calculate the number of output bytes
operations := []
for i = 0 to number of output bytes do

mask ← calculate mask
lshift ← calculate left shift
rshift ← calculate right shift
append (mask, lshift, rshift) to operations

end for
return operations

end function

As part of the DSL, I designed an algorithm to generate
the necessary bit shifts to extract an arbitrary number of bits
from an array of bytes, at a given offset. This is outlined in
algorithm 1. Considering the case where we want to get a
value, there are four key stages to calculate the correct bit
manipulations. First, it is necessary to calculate the number
of bytes in the output word. For a 32-bit integer this would
be four, and for a 33-bit integer this would be five. We may
then calculate the operations required to populate each of
those bytes.

First we generate a mask for the byte. This can be done
by masking the most significant min(total size of bits, 8) bits
of the byte, starting at the current offset.

Next, we calculate the left shift for the byte. For the first
byte of a 32-bit integer with an offset of zero, this would
be twenty-four — we have a single input byte, but want
to produce a 32-bit unsigned integer, so the value must be
shifted into position.

Finally, we calculate the right shift for the byte. This will
always be zero, except for the final output byte. If we have
a twelve-bit integer with an offset of two, first byte must
be shifted left ten places, and the second right shifted two.
This is because the least significant bit of the input bytes
will be two bits from the end of the byte, but must be the
least significant bit in the output byte.

A structure is generated to contain each of these values,
leading to a list of operations to perform to get a value. In
order to set the value, three things occur: the left and right
shift are reversed; the inverse of the calculated mask is used
to save bits in the array; and a new mask is calculated to
select bits from the input integer. This new mask is calcu-
lated by masking the n least significant bits of a byte, then
left shifting that mask by the original left shift value, where
n is the number of bits set in the original mask.

3.2 Challenges of DSL Implementation in Rust
Rust enables extensions to the language in two main forms

— macro rules, and syntax extensions (also known as com-
piler plug-ins). The former uses a declarative language which

matches tokens, and produces Rust code. They are useful
for reducing boiler-plate code, or for producing eDSLs which
have a direct correspondence with the source language. Syn-
tax extensions provide a framework to directly manipulate
the compiler’s abstract syntax tree, and provide a far more
powerful means of extending the language. Since it is nec-
essary to keep track of state to calculate offsets, the eDSL is
implemented as a syntax extension. Specifically, it is a dec-
orator, meaning that it provides an attribute (#[packet]),
which will expand to additional code.

There are a number of limitations to this approach.
First, syntax extensions which act as decorators are eval-

uated after parsing, but before type checking. Whilst this
simplifies the compilation process, it introduces a number
of problems for eDSLs. For primitive values, it is neces-
sary to assume that types with the correct name are also
the correct type — if the user defines their own types with
the same names as those which are special-cased in the plu-
gin, it will lead to type checking errors in generated code,
and there is no way to prevent this. Additionally, it leads
to (by necessity) making potentially incorrect assumptions
about the source code. For example, the plugin assumes
that user-defined field types will have a method named new,
which takes a number of parameters — but this cannot be
checked in advance of code generation, leading to confus-
ing error messages. It also introduces a number of unfor-
tunate attributes to the eDSL. For example, there is a
#[construct_with()] attribute, which allows the user
to specify what parameter types are required to construct a
user defined field type. This is necessary, since the type can-
not be inspected to deduce this information. This is also the
reason for using type aliases for primitive values, rather than
a structure which enforces values to be within the bounds of
the wire-format integer type. This limitation could be par-
tially overcome by implementing a lint pass which utilises
value-range propagation[27] to catch many invalid values at
compile time.

Another problem with this approach is that syntax exten-
sions are not part of the stable subset of the Rust language.
While they are widely used to implement a large variety of
functionality, including Quickcheck[12] style property based
testing2, structure serialisation and de-serialisation3, and
compile-time compiled regular expressions4, they are sub-
ject to unannounced breaking changes to the API, and will
not work on the stable channel of the Rust language. This
means that users of the stable language will not currently be
able to use the eDSL, and the eDSL may sporadically stop
working for users of the nightly versions. Since the API is
not stable, there are many parts which are overly verbose, or
not implemented in the most coherent or consistent manner.

There are other approaches which could be taken to this
problem. For example, the syntex project5 enables syntax
extensions to operate as a pre-processing step during compi-
lation. It provides a stable, versioned API to prevent break-
age, and provides the same interface as the compiler. It
does, unfortunately, introduce an extra step into compila-
tion, and still does not provide type information. To prop-
erly solve this problem, it would be necessary to modify the

2https://github.com/BurntSushi/quickcheck
3https://github.com/erickt/rust-serde
4https://github.com/rust-lang/regex
5https://github.com/erickt/rust-syntex
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Rust compiler to allow syntax extensions to have access to
type information.

4. EVALUATION
There are two parts to this evaluation — the improve-

ments made by introducing an embedded domain specific
language, and the performance of the whole system, from
the eDSL down to netmap. These are discussed in the fol-
lowing two sections.

4.1 Domain Specific Language
Creating an embedded domain specific language for de-

scribing packets has proven incredibly valuable, enabling
better expression of packet types, and finding bugs in exist-
ing, manually written packet implementations. In libpnet’s
definition of IPv4 packets alone, transitioning to the eDSL
uncovered a bug in the manually written bit manipulations
for setting the DSCP field; and enabled a more accurate
representation of the packet, allowing the IPv4 options field
to be simply expressed, where it was ignored before due to
implementation difficulty.

Additionally, introducing an eDSL dramatically reduced
the amount of code required to implement different packet
types. Table 1 shows the code size reduction in lines of
code once the DSL was introduced. This includes supporting
code, such as that required for calculating checksums, as well
as documentation comments. Packet types defined using the
eDSL used on average 2.66 times less code for the existing
packet types defined in libpnet. There was a 2.91 reduction
in the code required for IPv4 packets, despite additional
functionality being introduced in the conversion.

Original DSL Reduction

Ethernet 223 87 2.56×
IPv4 393 135 2.91×
IPv6 323 92 3.51×
UDP 394 240 1.64×

Table 1: Code size (in lines of code) for implementing dif-
ferent packet types before and after introducing the DSL,
along side their reductions.

There are, unfortunately some limitations with the cur-
rent implementation of the DSL. For example, it is unable
to express Real-time Transport Protocol (RTP)[29] packets,
since they have a field pinned to the end of the packet, re-
gardless of the length of previous fields. The DSL could be
extended to support this by introducing a new attribute to
pin fields to the end of the packet, rather than relying on an
already calculated offset.

4.2 Performance
To evaluate the performance, a range of tests were con-

ducted. The tests took place using two machines running
FreeBSD 10.1 — one with 64x AMD Opteron 6274 cores
and 500GB of RAM, the other with 8x Intel Xeon E5–2609
cores and 64GB RAM. Both machines were equipped with
Intel X540–T2 10 gigabit Ethernet cards, with flow control
disabled. Each port on the machine was connected directly
to another 10 gigabit Ethernet port on the other machine.
To get a baseline level of performance, the netmap tool pkt-
gen was used to send and receive packets, ranging from min-
imally sized packets of 60 bytes, to 250 bytes. The raw per-
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Figure 1: A graph showing the performance in packets per
second when receiving differently sized packets.

formance in packets per second was recorded at each packet
size. These tests were then repeated using the equivalent
Rust code, utilising the eDSL and the netmap backend.

Figure 1 shows the results of these tests. Both pkt-gen and
the Rust equivalent show similar performance, exhibiting
the expected 1/size behaviour, as well as an expected drop
in performance early on, which is caused by the network in-
terface cards being unable to efficiently handle packets which
are not multiples of 64 bytes for small packets. This shows
that the Rust code, which provides guarantees about mem-
ory and thread safety, as well as removing much of the need
to do manual bit manipulation, is sufficiently performant for
high-performance, low level networking. Whilst the graph
shows that the Rust code is slightly faster than the C code,
this is unlikely to be significant, and could be due to different
optimisation passes being used by the compiler. Both appli-
cations were compiled using the same LLVM backend, with
pkt-gen being compiled using clang -O3, and the Rust
code using cargo build -release. It is worth noting
that neither implementation manages to reach line rate —
this is a limitation of the test setup, since Netmap is able to
provide such speeds. The results show that Rust should be
able to perform at line rate, given the correct set up.

5. RELATED WORK
There has been significant work completed in the area of

network protocol implementation and high performance net-
working, some of the more relevant work is discussed here.

5.1 Systems Languages
There are many languages which could be suitable for

implementing safe abstractions over networking APIs, each
with different advantages and disadvantages. Due to the
need for high predictable performance, the language must
compile to native code and provide good control over the
hardware. There are many potential candidates for this,
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including D[9], Nim[3], Swift[6], and Rust.
The D programming language provides powerful compile-

time meta-programming support, with access to full type
information, making it a strong candidate for eDSL imple-
mentation. Additionally, it supports user defined attributes,
without extending the compiler. It relies on garbage collec-
tion for memory safety, however it provides a @nogc at-
tribute which would allow an API to guarantee that collec-
tion does not happen during critical parts of the code. Like
C++, it provides smart pointers which may be used to em-
ulate ownership semantics, but these cannot be statically
verified and incur a runtime overhead.

Swift is currently only supported on OS X, where high
performance APIs for low level networking only work on
Linux and FreeBSD. It uses automatic reference counting,
and require the programmer to explicitly mark weak refer-
ences in order to break cycles, and prevent memory leaks.
Since there is no explicit collection, it makes it viable to cre-
ate abstractions over APIs which require high performance,
however it does not offer memory safety, nor thread safety.

Nim, like D, offers powerful compile-time meta-programming.
It uses a non-tracing garbage collector, which allows it to
support soft real-time systems, however memory safety is
not enforced. It provides strong support for implementation
of DSLs, by providing the ability to directly manipulate the
abstract syntax tree.

Rust was chosen for this paper, since it enforces mem-
ory and thread safety through ownership types, does not
require garbage collection, and allows extensions to the lan-
guage through compiler plug-ins. There are a number of
limitations to this approach which have already been dis-
cussed — perhaps indicating that introducing ownership
types to another language, or introducing more powerful
meta-programming to Rust could be beneficial.

5.2 Domain Specific Languages
There have been many different attempts to implement

domain specific languages for network protocol implementa-
tions. Despite the large variety and strong guarantees often
provided, none of these have gained mainstream adoption,
and all major network protocol implementations still utilise
C and C++.

An early example of an eDSL for networking is FoxNet,
which extends Standard ML with support for primitive types
and continuations. It uses a similar design to the x-kernel[20],
which uses a single interface for all protocols, allowing sim-
ple protocol composition. This technique is powerful, and is
partially emulated in the design of libpnet, which this paper
builds upon. FoxNet’s main weakness is that it performs
poorly (four to ten times slower) in comparison to the x-
kernel, though this is not necessarily an inherent property
of the design.

The Prolac protocol language takes the approach of de-
signing a complete, object-orientated language from scratch
to enable protocol implementation. It uses an unfamiliar
syntax, and includes many mis-features, which can code to
silently break as it is extended. For example, it contains
implicit methods, which can cause code to silently break as
it extended. It has a focus on zero-overhead abstractions,
and manages to give similar performance to the Linux TCP
stack of the time.

PacketTypes is a packet description language which com-
piles to C, enabling type safe packet definitions for C. It has

a syntax similar to BNF, and can offer similar performance
to hand-written C. Unfortunately it has limitations which
mean it cannot express many types of packet — in particu-
lar those which require custom de-serialisation support. The
DSL in this paper avoids this issue by allowing custom field
types to be defined, extending the capabilities as necessary
for arbitrary protocols.

The Meta Packet Language (MPL), is an DSL for packet
definitions in OCaml, Java, and Erlang. The authors claim
that they are able to produce better performing code for
equivalent implementations of the SSH and DNS protocols,
whilst using less code and providing type safety. MPL is
possibly the most similar DSL to the one presented in this
paper, and offers useful functionality such as being able to
define variations of a packet in the definition. This is in con-
trast to the DSL in this paper where variations of a packet
would be handled using additional packet definitions. There
are advantages and disadvantages to both methods, and it
is not clear which is more useful.

One notable paper is Linear types for packet processing [14],
which exploits linear types as a mechanism for programming
high-performance networking hardware. It introduces the
PacLang language, and shows that linear typing is a viable
method of implementing network protocols, as well as mak-
ing it easier to reason about what the code is doing.

The PADS/ML data description language[15, 24] is de-
signed for the processing of ad-hoc data, not just network
protocols. It offers a syntax similar to Haskell’s Parsec li-
brary[22], and supports design-by-contract, enabling predi-
cates for error handling to be specified. It is not particularly
well suited to parsing packets, since it lacks the ability to
parse fields which are smaller than a byte in size, requir-
ing the user to manually shift bits to get the desired values
from a packet. There are a number of modern solutions such
as Apache Thrift6 or Google’s Protocol Buffers7 which have
similar issues.

5.3 High Performance Networking
Typical operating system APIs for low-level networking

such as Linux’s AF PACKET[4], FreeBSD and OS X’s Berke-
ley Packet Filter (BPF)[26, 1], and WinPcap[8], offer suffi-
cient performance for gigabit networking, however due to the
overheads of data copying and per-packet system calls per-
form poorly on faster networks. There have been a number
of attempts to introduce faster APIs without these limita-
tions, typically by moving the network stack into user-space.

Intel’s Data Plane Development Kit (DPDK) offers per-
formance of around 160 million minimum-sized packets per
second. It achieves this by enabling direct access to the net-
work interface card (NIC) from user-space (avoiding con-
text switches, system calls, and unnecessary copies); and
by requiring dedicated polling drivers to avoid system in-
terrupts. Platform specific details are abstracted using an
environment abstraction layer, and it supports both Linux
and FreeBSD.

PF RING Zero Copy (ZC) from ntop is a proprietary,
closed-source solution for saturating multiple ten-gigabit links
on Linux. It requires custom drivers to achieve this perfor-
mance, though offers a degraded performance mode involv-
ing a copy for unsupported drivers.

6https://thrift.apache.org/
7https://developers.google.com/
protocol-buffers/
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Both DPDK and PF RING ZC allow the NIC to write
directly to arbitrary memory locations, which means care
must be taken by the user to ensure that only valid memory
locations for the current process are read from, and written
to. This is incredibly unsafe, and abstracting these details
as discussed in section 2 would be of great benefit for these
APIs.

The PacketShader I/O Engine[18] is interesting, in that
it is designed to offload packet processing to the GPU, and
works directly with the IXGBE driver, rather than support-
ing multiple drivers. By exploiting the architecture of GPUs
it enables massively parallel packet processing, achieving
speeds of up to thirty-nine gigabits per second on commod-
ity hardware.

The Netmap Library offers similar performance to DPDK
and PF RING ZC, though offers superior safety guarantees
by leaving the operating system in charge of memory access,
and using system calls to synchronise buffers. The additional
cost of the system calls can be amortized over multiple reads
and writes.

6. CONCLUSIONS
Utilising a unique type system, which offers a sensible way

to introduce memory and thread safety to an unsafe API,
along side RAII and lifetimes has shown to be a sensible and
cheap way to exploit high performance networking libraries.
Introducing a domain specific language to describe pack-
ets has significantly reduced the amount of code required
to parse packets, whilst also abstracting details which are
difficult to get right manually such as bit manipulation.

By presenting an embedded domain specific language, and
building safe abstractions atop of unsafe APIs, I have shown
that it is possible to provide high performance in implement-
ing network protocols, without the need to sacrifice safety
guarantees.

6.1 Future Work
There are several useful directions in which to extend this

work. Introducing support for alternative high performance
back-ends with different safety trade-offs such as DPDK or
PF RING ZC would be an interesting task, and would show
if the guarantees given by uniqueness, memory safety, and
thread safety extend to APIs which provide even fewer safety
guarantees, or whether a different approach is needed.

It would also be useful to address some of the limitations of
the DSL — either by utilising another language, introducing
a pre-processor, or improving Rust’s support for compiler
plug-ins. Another task would be to implement additional
packet types using the DSL to verify its flexibility.
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