Un1vers1ty ‘ School of

0 G asgow | Computing Science

QUICsilver: Optimising QUIC for use with Real-Time
Multimedia Traffic

Vivian Band (2038561)
April 22, 2019

ABSTRACT

QUIC, a fully reliable stream-oriented transport protocol, is
gaining popularity but is too high-latency to use as a trans-
port for real-time multimedia playback.

As a userspace protocol, QUIC can be easily modified due
to not requiring kernel modifications. The retransmission
behaviours can be altered to be partially reliable rather than
fully reliable.

QUICsilver, the partially reliable QUIC implementation
developed in this project, performs selective retransmissions
based on deadline awareness to increase the throughput of
useful data while avoiding stalls to keep latency low.

This solution shows that QUIC can be modified within a
relatively short timeframe to better support real-time multi-
media applications which have strict latency bounds.

1. INTRODUCTION

According to The Zettabyte Era white paper by Cisco [3],
the percentage of Internet Protocol (IP)[1] traffic carrying
multimedia data will increase from 73% of all IP traffic in
2016 to 83% by 2021. Live video and online gaming are
commonly used applications on the modern Internet and
are predicted to form 13% and 4% of all IP traffic by 2021
respectively; these applications have strict latency bounds
in order to appear to respond in real-time to user input.

QUIC is a modern, fully-reliable userspace transport pro-
tocol which is being adopted as an alternative to the Trans-
mission Control Protocol (TCP)[11] for delay-tolerant client-
server applications. QUIC accounted for a over 30% of
Google’s outbound traffic in 2016 [?], and traffic using QUIC
as a transport protocol represented up to 9.1% of global In-
ternet traffic in 2018 [12]. However, standard QUIC not suit-
able for real-time applications due to high latencies caused
by head-of-line blocking as a result of its reliability guaran-
tees and in-order delivery of data to the application. QUIC
is a userspace protocol which uses the Userspace Datagram
Protocol (UDP) [9] as a substrate, and can be modified more
easily than kernel-level implementations of transport proto-
cols such as TCP. The lack of required behaviours in UDP al-
lows QUIC to be significantly modified, meaning that QUIC
can be adapted for use with real-time multimedia applica-
tions.

Real-time multimedia applications typically use the Real-
Time Transport Protocol (RTP) [13], an unreliable trans-
port protocol which runs over UDP. This lack of retransmis-
sions allows applications using UDP to maintain low latency,
but modifying QUIC to be partially reliable in that it will
perform selective retransmissions based on estimated play-
back deadlines has the potential to increase the throughput

of useful data compared to a fully unreliable transport like
RTP.

QUICsilver is a partially reliable implementation of QUIC
which achieves low-latency by allowing some packet loss,
subject to playback deadlines, in order to improve the through-
put of data to the receiver application. Video playback qual-
ity can be further improved by taking advantage of existing
retransmission behaviours in QUIC, allowing the retrans-
mission of video frames which will still be useful when they
reach the receiver as well as any dependent frames required
for live ones. The RTP packets sent by QUICsilver are also
protected by QUIC’s Transport Layer Security version 1.3
(TLS 1.3) [10] encryption mechanisms by default, offering
extra privacy to users compared to standard RTP, as well
as the potential for the parallel delivery of content through
multiplexed content streams.

This paper shows that partial reliability eliminates the
occurrence of stalls and cumulative playback delays encoun-
tered by standard, fully reliable QUIC by allowing a client
to skip lost packets if the playback deadline is approaching
for previously received packets with a higher packet num-
ber. This lack of stalling is observed for all loss rates; on
low-latency links, QUICsilver maintains the strict latency
bounds required for real-time applications even in challeng-
ing, high-loss environments.

The removal of items which will not be useful to the client
based on predicted playback deadlines is important to avoid
wasteful retransmissions, however, this results in I-frames
and P-frames only being retransmitted on low-latency links:
if 1 in every 10 frames sent is an I-frame, retransmissions of
stale I-frames which have live dependent P-frames are only
performed on links with a latency lower than 66.6ms. Be-
yond this, QUICsilver effectively functions as an unreliable
transport with added security and in-built support for mul-
tiplexed content streams.

The remainder of this paper is structured as follows. Sec-
tion 2 explores the background knowledge of sending video
content using RTP and section 3 reviews existing work on
optimising reliable transport protocols for multimedia con-
tent. The design of QUICsilver is explained in section 4,
and analysis of the tests performed to compare its perfor-
mance to standard QUIC is conducted in section 5. Future
work to improve QUICsilver is proposed in section 6, and
conclusions about using QUIC for multimedia which have
been gained from this project are discussed in section 7.

2. BACKGROUND
2.1 Video Frames

For multimedia applications, there are three types of video
frames: intra-frames (I-frames), predicted frames (P-frames),
and bidirectional predicted frames (B-frames). I-frames pro-
vide data for a whole image; the data required to specify this
for most resolutions is in excess of the QUIC payload size
of 1232 bytes, so a single I-frame must be sent using mul-
tiple QUIC packets (an I-frame is sent as 4 QUIC packets
in this project). P-frames only describe changes in a small
section of the display in relation to an I-frame; these are
small enough to be transmitted in a single QUIC packet in
their entirety, but the I-frame on which they depend must
be noted to ensure the changes are applied to the correct
base image. B-frames are even more compressed than P-
frames due to referring to previous and next video frames to
describe changes; B-frames are not included in this project
due to time constraints and a focus on reducing transmission
latencies rather than compression efficiencies.

(a) An example of an I-frame, detailing an entire
image

(b) An example of a P-frame applied to an I-frame
to change only the highlighted sections

Figure 1: Example of I-frames and P-frames

I-frames are sent to provide an initial image to work from
and to refresh the image being played back to correct any
glitches which may have occured as a result of P-frames
being applied to an incorrect I-frame. P-frames are sent
much more often, and make up the majority of sent video
frames for live video streaming.

2.2 Head-of-Line Blocking

Reliable transports such as QUIC and TCP suffer from
high latency due to head-of-line blocking. This occurs due
to the guaranteed, ordered delivery of data: in order to en-
sure that all data is delivered in-order to an application, the

protocol waits for missing packets to arrive before releasing
data which was received previously in packets with a higher
packet number.

Sender Network Receiver
QuICstack ; Application
PN 1
; =P E—0 .,
LE i
pEN cKJ ITplavhacl-c delay

ACK 6

yYvyYyYVYYVY

Figure 2: Head-of-line blocking in QUIC. The loss
of packet number 3 prevents any subsequent packets
being delivered to the application until it is received,
causing the blue packet to have a stack latency of 1.5
times the round-trip time and a playback delay of 1
round-trip time.

QUIC mitigates the impact of head-of-line blocking by us-
ing several streams demultiplexed over a single UDP socket.
Although head-of-line blocking still occurs in response to
loss, the obstruction is confined to a single stream rather
than blocking the entire connection, as happens with TCP.
However, this still causes unacceptably high latency for real-
time media data being delivered on this stream: as illus-
trated in figure 2, the total latency between the packet being
sent the first time and finally being received by the applica-
tion is 1.5 times the path’s round-trip time. Allowing some
loss under partial reliability is necessary to reduce stack to
application latency.

3. RELATED WORK

QUIC-R, a set of real-time extensions to QUIC suggested
by Perkins and Ott, contains valuable background informa-
tion about the evolution of video streaming technologies and
their potential place in QUIC. RTP was historically used to
stream media on less reliable networks from the mid-1990s,
but applications using this protocol are complex due to the
mechanisms required to mitigate the effects of packet loss
and out-of-order arrival. Dynamic Adaptive Streaming over
HTTP (DASH) is less complex, providing media content in
pre-encoded chunks through a series of HT'TP GET requests;
this approach has become more widely used as networks have
increased in quality and demand has risen for unidirectional
streaming (i.e. the content being sent is not impacted by
the actions of the receiver and therefore has more relaxed
latency bounds).

Adapting a mapping of RTP onto TCP specified in RFC
4751 [5] for use with QUIC is discussed in the QUIC-R pa-
per, but deemed unacceptable for applications with strict
latency bounds. This is due to problems with head-of-line
blocking which are inherent in all standard TCP stacks: any
packets received by a TCP socket with a sequence number

greater than the one held by a lost packet cannot be ac-
cessed by the application until this lost packet is received.
Even if content flows can be multiplexed within the applica-
tion, all flows are blocked by instances of packet loss even for
streams unrelated to the content within the lost packet. An
individual stream within QUIC does not suffer head-of-line
blocking due to loss on other streams within the connec-
tion as a result of streams being multiplexed over a UDP
socket, but the affected content does still encounter high la-
tency due to head-of-line blocking occurring within its own
stream. This is a problem for real-time multimedia appli-
cations where content delivered on parallel streams may be
require synchronisation, such as lip-synchronisation on video
calls.

3.1 Reliable and Unreliable QUIC Streams

The idea of marking some QUIC streams as either reliable,
partially reliable, or unreliable was proposed in an IETF
draft by Tiesel et al [14]. A separate draft by Lubashev
[6] elaborates on partial reliability and message abstractions
within QUIC, using single octet gaps to notify the appli-
cation of message boundaries and marking data written to
the transport as transmittable or non-retransmittable using
offset markers. This approach may work for real-time me-
dia through marking data sent before the most recently sent
I-frame as being ineligible for retransmission, but this does
not guarantee that retransmitted frames will arrive before
their respective playback deadlines; additional offset mark-
ers would be required to allow stale I-frames to be retrans-
mitted for dependent live P-frames while preventing stale
P-frames from being retransmitted. I-frames could be sent
at an increased frequency to minimise this issue, but this
would impact performance due to applications having to
process a large amount of image data more frequently as
well as potentially having to retransmit larger frames more
often.

An approach which is less generalised, but does not require
extensive configuration at the application level is explored
in a paper by Palmer et al [8]. Their extensions to QUIC,
named ClipStream, sends I-frames and end-of-stream mark-
ers reliably, while P-frames and B-frames are sent on unreli-
able streams. These unreliable streams perform opportunis-
tic transmission, sending new data instead of retransmitting
lost data. This is an improvement on marking contiguous
sections of data as retransmittable or non-retransmittable
due to less non-useful data being retransmitted, but it as-
sumes that resending P-frames and B-frames is always un-
necessary; retransmitting these frames if they will arrive be-
fore the playback deadline would improve media quality with
no significant disadvantages.

ClipStream requires an application to specify which type
of stream it wants to use for sending video files, but the
underlying complexities of video reassembly and reliability
are abstracted away in several shim layers and 200 lines of
modification to their chosen QUIC implementation, quic-
go. A reliable control stream containing multiplexing and
demultiplexing information co-ordinates the reads of QUIC
streams performed by the receiver, allowing it to reconstruct
the sent video file. It also uses a shim layer at the sender to
mark [-frames as reliable and P-frames and B-frames as un-
reliable, and another shim layer at the receiver to reassemble
the video frames in the correct order before passing this data
to the client application.

3.2 Deadline Awareness

The API required to use ClipStream is simple compared to
the partially reliable streams described by Tiesel and Luba-
shev, but all three of these approaches lack awareness of
playback deadlines for real-time media. This is less of an
issue for media playback where latency bounds are more re-
laxed, such as on-demand TV streaming services, but for
applications which should appear to respond to user inter-
actions in real-time, such as multiplayer gaming or video
conferencing, determining the usefulness of content before
(re-)sending it is vital for reducing the amount of unneces-
sary data sent.

Previous attempts have been made to implement deadline
awareness for partial reliability within reliable, byte-stream
oriented transports. TCP Hollywood, a transport proto-
col developed by McQuistin et al [7] for use with real-time
applications, has awareness of playback deadlines for real-
time applications to determine the usefulness of retransmit-
table content. If a message marked for retransmission will
not reach the receiver before its associated playback dead-
line, TCP Hollywood will send a different message which
will be useful under the same TCP sequence number in-
stead. These are known as inconsistent retransmissions, and
are analagous to placing different data into a retransmit-
ted STREAM frame in QUIC; ClipStream performs a similar
process, calling it ‘opportunistic transmission’. As of IETF
draft 16 of QUIC transport, QUIC endpoints may treat in-
consistent payloads as a PROTOCOL_VIOLATION error and re-
spond with a CONNECTION_CLOSE frame [4], however, it is
currently not mandatory. Inconsistent retransmissions could
be used as an optimisation for real-time applications using
QUIC, with the caveat that not all implementations of the
protocol are required to accept this behaviour, but there are
two reasons to simply send a new packet for the new pay-
load and not retransmit the old one: firstly, sending a new
packet would minimise the chances of the connection being
closed as a result of a protocol violation error. Secondly,
and more importantly, it is pointless to send an old packet
when a client will increment its read offsets based on play-
back deadlines rather than waiting on lost data: the new
data would never be passed to the application.

4. DESIGN

QUICsilver is a modified version of the ngtcp2 QUIC im-
plementation [2], and takes a different approach to partial
reliability to ClipStream [8]: instead of always sending I-
frames reliably and P-frames unreliably, packets containing
I-frames segments and P-frames are both eligible for retrans-
mission based on whether the server predicts that the packet
will reach the client in time to be useful for video playback.

Video frames transmitted as an RTP packet have an asso-
ciated 32-bit timestamp and 32-bit sequence number. The
RTP sequence number included as part of the QUIC payload
increases monotonically for each QUIC packet, regardless of
frame type, but the RTP timestamp section of the QUIC
payload is the same for all sections of an I-frame; the RTP
timestamp increments for each distinct frame, rather than
for each packet. Only the RTP timestamp and RTP se-
quence number were included as payloads in QUIC packets
for both standard QUIC and QUICsilver; no RTP payload
data (i.e. encoded video data) was included, as this did not
assist the main research question for this project: ‘how can

implementing partial reliability within QUIC can assist with
reducing latencies and playback delays for real-time media
applications?’

The client and server call read and write functions respec-
tively as callbacks triggered by a timer 60 times per second;
the gap between these calls is equivalent to 16.7ms and rep-
resents a 60 frames-per-second recording and playback rate
for live video (e.g. a one-to-one video call). The server
sends an RTP timestamp and an RTP sequence number as
the payload of a QUIC packet to represent sending media
data using RTP over QUIC.

4.1 Deadline Awareness at the Server

Before starting to send packets, the server has to calculate
what the playback deadline will be at the client when the
first packet arrives in terms of an RTP timestamp; this is
calculated as ((path_latency/16.7) * 3000) + 12000 to
allow a 4-frame playback buffer. Since the first frame sent
is always an I-frame, this calculated timestamp is inserted
into the first four packets sent to the client; failing to in-
crement it correctly will result in the client interpreting all
received data as stale, and never passing any data to the
application. Sequence numbers increment by 1 per packet
sent, while timestamps increment by 3000 per callback; the
latter is an arbitrary amount and mostly serves as a relative
measurement for determining which frames should be played
together and for estimating delay. Timestamps and sequence
numbers are supplied by the application and passed to the
stack through a send function call.

When the stack at the server sends a packet, it adds the
sent packet to the retransmit buffer for that specific stream
along with dependency information: given that I-frames are
sent once every 10 frames, the RTP timestamp within the
payload of a given packet can be used to calculate if a packet
contains a whole P-frame or an I-frame fragment. If the
packet is a P-frame, the most recently sent I-frame is added
as a dependency.

If a packet has been received by a client, an acknowl-
edgement is sent as normal and the corresponding item is
removed from the retransmit buffer in the same way as it
would be in standard QUIC. However, every time a packet is
sent, the stack at the server iterates through the retransmit
buffer to detect if packets are still useful based on predicted
deadlines: if the server predicts that an item containing a
P-frame in the retransmit buffer won’t reach the client in
time to be useful, it removes the item from the buffer. If the
item is a packet containing an I-frame, it is only removed
during liveness checks if there are no useful P-frames which
depend on it present in the retransmit buffer. This process
prevents stale data lingering in the retransmit buffer if the
client happens to skip over it without passing it to the ap-
plication and sending an acknowledgement, and it reduces
the volume of redundant data on the network by ensuring
that only useful data will be retransmitted.

4.2 Deadline Awareness at the Client

When the client application makes a read call as a result
of the 60fps callback, it increments its playback deadline by
3000 and attempts to retrieve data held within the stack. In
standard QUIC, the stack will pass data to the application
until it encounters a gap in the packet numbers received.
QUICsilver will also allow the application to access data
until there is a gap, but it will also increment the starting

offsets for read calls in response to playback deadlines: if a
missing packet would contain data with a timestamp below
the current playback deadline, it is considered stale and must
be skipped to avert stalls and maintain low latency. The 4-
frame buffer added to timestamps by the server attempts
to allow time to receive retransmitted data: the offset will
only be advanced when the playback deadline is imminent,
so the client will wait a maximum of 66ms for lost data
to arrive before incrementing the deadline and skipping it.
This waiting behaviour aims to improve the throughput of
useful data to the application without noticeably impacting
performance.

S. RESULTS

Server Client

50ms/100ms/150ms
link

Figure 3: Simulated mininet network used for test-
ing: data flowing from a server to a client over a link
with one of three defined latencies

Each test was performed using a simulated network on
mininet, consisting of a server node connected to a client
node over a single link with a specifically defined latency (fig-
ure 3). This link latency was varied between 50ms, 100ms,
and 150ms, and loss rates of 0%, 0.01%, 0.1%, and 1% were
introduced for tests on each latency. Each test ran for 300
seconds with client and server both operating at a framerate
of 60 fps; an I-frame was sent every 10th frame, consisting
of 4 QUIC packets to represent the fact that I-frames are
too large to be sent as a single QUIC payload.

Tests for guaranteed reliability used the ngtcp2 QUIC
stack with standard retransmission behaviours, while tests
for partial reliability used the QUICsilver implementation
with partial reliability behaviours described above.

5.1 Differences in Stack Latency

Stack latencies are defined as the delay between a packet
initially being sent to it being received by the client stack.
Variances in stack latency are caused by retransmissions and
are not affected by head-of-line blocking; this provides a
clearer picture of how frequently retransmissions actually
take place. Stack latency is also the same as the application
latency would be if the QUICsilver client immediately passed
received data to the application instead of attempting to
wait and deliver frames in order, so these tests also provide
information on how that version of the stack would perform
in terms of latency.

Stack latencies remain consistently within 15ms of the
path latency in QUICsilver for all loss rates (figure 4), but
have slightly more variance than stack latencies in the guar-
anteed reliability implementation in equivalent conditions.
This is due to the extra checks which are performed by the

server after sending a packet: each item in the retransmis-
sion buffer for the relevant stream is checked to see if it has
become stale and needs to be removed.

When loss is introduced on the link, the guaranteed re-
liability implementation begins to show an increase in the
number of higher stack latencies (figure 5). QUIC deter-
mines a packet is lost when it receives an acknowledgement
for a higher packet number; this requires a minimum of the
time taken to send the packet over the link, plus a multiple
of the total round trip time depending on how many times
the packet in question was lost in transit. This causes the
latency data to gather in bands: the latencies of lost packets
will be multiples of the total round-trip time on the link. In
contrast, QUICsilver maintains similar performance all rates
of loss; this is due to the server removing packets which will
not be useful to the client upon arrival from its retransmit
buffer without receiving an acknowledgement.

5.2 Differences in Application Latency

Measuring the delay between a packet initially being sent
and it reaching the application is vital for understanding
the frequency and magnitude of stalls which occur in video
playback at the client application. High application latencies
are caused by head-of-line blocking behaviours in standard
QUIC and the resulting stalls have a negative impact on the
quality of experience for end users.

QUICsilver achieves consistently lower application laten-
cies for all link latencies compared to standard QUIC with
guaranteed reliability (figure 6). Application latencies for
partially reliable QUIC have a greater range than stack la-
tencies due to the frame buffer: if there is a gap in received
packets, the stack will wait for the missing packet; if the
packet doesn’t arrive before its predicted playback deadline
expires, the read offsets for the stream are advanced and a
sequence of video frames with contiguous RTP timestamps is
passed to the application (this may only be a single frame).
This buffer was intended to be set as 4 frames, corresponding
to an additional latency of 66ms at a 60fps playback rate,
but was incorrectly set at a single frame during the 50ms
and 100ms tests. A single frame at 60fps is equivalent to
16.7ms; this is added to application latency in the event of
loss, with decreasing latencies following as subsequent blocks
of received frames are passed to the application. In the case
of 150ms tests, the buffer limit was set to the intended 4
frames; application latencies can be seen in bands at multi-
ples of 16.7ms to around a maximum of 66.6ms greater than
the link latency as a result.

The distinctive wide band present in all instances of QUIC-
silver tests is due to I-frames being sent as 4 QUIC packets
without a 16.7ms delay between them; four packets must be
delivered to the application within the same call, but iterat-
ing through the reorder buffer and removing relevant items
takes time to execute.

The bands in the standard QUIC application latencies are
caused by video frames being sent by the server at 16.7ms
intervals; the latency of each frame is increased by a multiple
of this until the missing packet is received at the client, even
though all of these frames are delivered to the application
within the same function call. The occasional spikes in 1%
loss test are caused by a packet being lost twice; these occur
at twice the round-trip time, plus two frame playback times
at 60fps, beyond the initial link latency.

This head-of-line blocking behaviour associated with guar-

anteed reliability does not affect 0% loss links, where stan-
dard QUIC achieves consistently lower application latencies
than QUICsilver, and has minimal impact on average appli-
cation latency in 0.01% loss links. However, for 0.1% and
1% loss scenarios, QUICsilver achieves consistently lower ap-
plication latencies: the latencies for fully reliable QUIC in
these circumstances are frequently a round-trip time higher
than the link latency, compared to a maximum of 66.6ms
when a 4-frame buffer is set.

600

1% loss
0.1% loss
500 0.01% loss
0% loss
400
@
£
2 300 A
c
]
]
-
200 A
100 4
0 T T T T T
0 50 100 150 200 250 300
Time elapsed (s)
(a) QUICsilver, 50ms
600
1% loss
0.1% loss.
500 A 0.01% loss
0% loss
400 4
w
£
g 300 A
c
2
©
-
200
100
0 T T T T T
0 50 100 150 200 250 300
Time elapsed (s)
(b) QUICsilver, 100ms
600
1% loss
0.1% loss.
500 A 0.01% loss
: 0% loss
400
w :
£
g 300 A
c
2
©
-
200
ittt oot oottt
100
0 T T T T T
0 50 100 150 200 250 300

Figure 4: Latency between server and client stack

Time elapsed (s)

(c) QUICsilver, 150ms

(QUICsilver, partial reliability)

600
1% loss
0.1% loss
500 0.01% loss
+ 0% loss
400
@
£
2 300 A
2 . .
]
]
-
200 A
R L e L e L L UL L TR R T I TERELL
100 4
0 T T T T T
0 50 100 150 200 250 300
Time elapsed (s)
(a) Standard QUIC, , 50ms
600
) . R + 1% loss
0.1% loss.
500 A + 0.01% loss
0% loss
400 4

i tme o e e e e e

e veaas e

Latency (ms)
w
(=3
o
!

200
100 - - - =
0 T T T T T
0 50 100 150 200 250 300
Time elapsed (s)
(b) Standard QUIC, , 100ms
600
500 Lo gun s e smegmnete et T L L
400 4
g c 1% \o‘lss
= 0.1% loss.
el 4 .
g 307 . 0.01%0ss .
= 0% loss -
- :
200 4 .
100
0 T T T T T
0 50 100 150 200 250 300

Time elapsed (s)

(c) Standard QUIC, 150ms

Figure 5: Latency between server and client stack

(standard QUIC, guaranteed reliability)

600 600

1% loss © 1% loss
+ 0.1% loss + 0.1% loss
500 - 0.01% loss 500 - 0.01% loss
+ 0% loss + 0% loss

]
a
]
a

Latency (ms)
<]

o
Latency (ms)
<]

o

200 A 200 A

ke = N g e o e et g et w A AE

o B B A e o v S ¥ Y
Py

100 100 4 S ity
' Rty
. .1 , i L. . e o———— 2 ot o 8 e 1St 0 08 BMOSR s $ 008 Sl < e 1)
Al 5 :
0 T T T T T 1 0 T T T T T
50 100 150 200 250 300 0 50 100 150 200 250 300
Time elapsed (s) Time elapsed (s)
(a) QUICsilver, 50ms (a) Standard QUIC, 50ms
600 600
+ 1% loss) . . + 1% loss
0.1% loss - - : . © 0.1% loss
500 + 0.01% loss 500 : : : . + 0.01% loss
0% loss : : : 0% loss

]
=1
]
=1

Latency (ms)
<]

o
Latency (ms)
<]

o

200 A 200 A

100
0 T T T T T 0 T T T T T
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Time elapsed (s) Time elapsed (s)
(b) QUICsilver, 100ms (b) Standard QUIC, 100ms
600 600 -
+ 1% loss 1% loss .
0.1% loss. © 0.1% loss .
500 + 0.01% loss 5004, : 0.01%loss :
0% loss - 0% loss
400 400 4
z z
£ £
& 300 A & 300 4
3 3
E - N - . - - E [
200 4 T T I T vy X 200 1}
100 100
0 T T T T T 0 T T T T T
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Time elapsed (s) Time elapsed (s)
(c) QUICsilver, 150ms (c) Standard QUIC, 150ms
Figure 6: Latency between server and client appli- Figure 7: Latency between server and client appli-
cation (QUICsilver, partial reliability) cation (standard QUIC, guaranteed reliability)

5.3 Differences in Playback Time

If a packet has been lost in transit, the head-of-line block-
ing behaviours within standard QUIC will delay delivering
all subsequent data until this missing packet has been re-
ceived. If there is no video data held in the application to
play during this delay (i.e. buffered data), the video will ap-
pear to stall. The exact delay caused by a packet lost once
is proportional to the path latency: figure 8a shows a delay
of 100ms, the round trip time of a 50ms link. Figure single-
100 shows a delay of 216ms on a 100ms link, equivalent to
a round trip time plus one frame playback time; this ex-
tra 16ms is likely due to these measurements being obtained
in terms of RTP playback timestamps, with a granularity
of 16ms per increment at 60fps. The delay for a loss on a
150ms link shown in figure 8c is 333ms, equivalent to one
round-trip time plus one frame playback time.

As the rate of loss on a link increases, the number of stalls
also increases. Table 1 shows the number of stalls which oc-
cured in the 100ms tests; naturally, the number of stalls be-
tween all latencies remain similar for each loss rate, but the
difference between intended playback time and actual play-
back time for each subsequent video frame becomes larger
at higher latencies (table 2). The graphs shown in figure 9
illustrate the magnitude of these differences.

Loss Rate Stalls Frames

Played
0% 0 100.0%
0.01% 2 100.0%
0.1% 12 100.0%
1% 198 100.0%

Table 1: Number of stalls and percentage of frames
played for standard QUIC, 100ms

Loss Rate | Latency Discrepancy Total latency
(ms) (s) (s)
0.01% 50 0.2 50.2
0.1% 50 1.2 51.2
1% 50 19.8 69.8
0.01% 100 0.43 100.43
0.1% 100 2.6 102.6
1% 100 42.8 142.8
0.01% 150 0.66 150.66
0.1% 150 4.0 154.0
1% 150 66.0 216.0

Table 2: Playback discrepancy and total latency for
a live-recorded frame to be played by the client ap-
plication at the end of each test run for each loss
rate and latency for standard QUIC

Table 2 shows the cumulative discrepancy between in-
tended playback time and actual playback time, as well as
the delay between a live-recorded frame being sent and being
played by the client application by the end of a 300 second
test run. The increase in this delay over time is illustrated
in figure 10.

Although 100% of the video frames in the media content
being sent are delivered to the client application with guar-

0.10 1

0.08 1

0.06

0.04 4

Cumulative delay in playback time (s)

0.02 4

0.00

T T T T T
37.6 37.7 37.8 379 38.0
Time elapsed (s)

(a) Single instance playback delay, 50ms

0.25 4

0.20 4

0.15 1

0.10 4

0.05

Cumulative delay in playback time (s)

0.00 T T T T T
22.4 22.5 22.6 22.7 22.8

Time elapsed (s)

(b) Single instance playback delay, 100ms

0.35 4

0.30

0.25 4

0.20 4

0.15 1

0.10 1

Cumulative delay in playback time (s)

0.05

0.00

T T T T
0.8 0.9 10 11 12
Time elapsed (s)

(c) Single instance playback delay, 150ms
Figure 8: Increase in cumulative playback delay as a

result of a single lost packet on various links (stan-
dard QUIC, guaranteed reliability)

100

300
—— 0% loss — 1% loss
—— 0.01% loss —— 0.1% loss
— 0.1% loss 2504 —— 0.01% loss
= 801 — 1% loss —— 0% loss
2 w
& ‘w 200
h=l
* 601 E
© 3
o]
5 2 150
2)
$ 40 =
k! E 100
= o T
E <
S
o
204
50
0 y T T T T 0 T T T T T
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Time elapsed (s) Intended playback time (s)
(a) Playback offsets, 50ms (a) Playback times, 50ms
100 300
—— 0% loss — 1% loss
—— 0.01% loss —— 0.1% loss
— 0.1% loss 2504 —— 0.01% loss
= 801 — 1% loss —— 0% loss
2 w
& ‘w 200
h=l
* 601 E
T 3
o]
5 2 150
2)
$ 40 =
k! E 100
= o T
E <
S
o
204
50
0 T T T U 0 T T T T T
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Time elapsed (s) Intended playback time (s)
(b) Playback offsets, 100ms (b) Playback times, 100ms
100 300
—— 0% loss — 1% loss
—— 0.01% loss —— 0.1% loss
— 0.1% loss 2504 —— 0.01% loss
= 801 — 1% loss 0% loss
2 w
& ‘w 200
h=l
* 601 E
T 3
o]
5 2 150
2)
$ 40+ =
k! E 100
= o T
E <
S
o
204
50
0 y T T T T 0 T T T T T
0 50 100 150 200 250 300 0 50 100 150 200 250 300

Time elapsed (s)

(c) Playback offsets, 150ms

Intended playback time (s)

(c) Playback times, 150ms

Figure 9: Differences between when a frame is
played out compared to the intended playback time
(standard QUIC, guaranteed reliability)

Figure 10: Differences between when a frame is
played out compared to when the frame was sent
(standard QUIC, guaranteed reliability)

anteed reliability behaviours, there is an increasing latency
between sending a frame and playing it at the client; the
longer an application is running, the greater this playback
discrepancy becomes. The path latencies in these tests were
constant, but path latencies ‘in the wild’ are variable, and
occasionally subject to spikes if a link is congested. The
total playback discrepancy suffered by an application would
sharply increase as a result of these spikes; a return to lower
latencies afterwards would not reduce it.

It should also be noted that this discrepancy is applied
to packets which have not been lost in transit: lost pack-
ets are subject to even higher latencies, and are increased
by multiples of the round-trip time depending on the num-
ber of times they are lost. As shown in figure 7, packets
which have been received before a missing packet but have a
higher packet number also suffer from increased application
latency. International Telecommunication Recommendation
G.114 recommends no more than 150ms latency “mouth-to-
ear” for audio communications [15]; the path latency must
be even smaller than this to allow for time to capture live
audio and video and to perform codec processing. Figure
7 shows that fully reliable QUIC stays within this limit at
0% and 0.01% loss for 50ms and 100ms links, but it often
exceeds even the “mouth-to-ear” limit at 0.1% and 1% loss
for all links; 0% and 0.01% loss flows on a 150ms link can-
not satisfy the recommended latency requirement due to the
link latency.

In the case of video streaming, content buffering can be
used to disguise stalls. For example, if a user wanted to
stream a 1 hour, pre-recorded video, the client might buffer
a given amount of content before starting playback. Given
that an I-frame is sent every 10th frame as 4 QUIC pack-
ets, 216,000 video frames will be sent using 280,800 QUIC
packets in total: 28 stalls can be expected to occur at 0.01%
loss, 281 stalls at 0.1% loss, and 2808 stalls at 1% loss. At
a cumulative latency increase of 100ms per lost packet on
a 50ms link, a buffer of 10 seconds should completely con-
ceal stalls for a 0.01% loss rate, and will conceal stalls at
0.1% loss until 1280 seconds (around 21 minutes) into play-
back, and until 128 seconds into playback for 1% loss. For
a 100ms link with a 216ms latency increase, a buffer of 10
seconds should completely conceal stalls for 0.01% loss, un-
til 601 seconds (about 10 minutes) into playback for 0.1%
loss, and until 60 seconds into playback for 1% loss. For
wired connections which are not subject to excess conges-
tion, the loss rate should be low enough that a 10 second
buffer would conceal stalls in a 1 hour streamed video en-
tirely, but this would not avert stalls for long with wireless
connections which are subject to greater rates of loss. Re-
gardless, buffering is not a feasible strategy for reducing the
number of stalls in real-time media delivery: live-generated
content cannot be buffered in advance, and buffering does
not reduce the cumulative playback delay created as a result
of stalls in fully reliable QUIC.

QUICsilver experiences no stalls due to incrementing stream

read offsets in response to playback deadlines: if there is a
gap in the data received on a given stream and there is data
approaching its playback deadline held in the reorder buffer,
the modified implementation will skip ahead to the live data
and will not wait for the preceding gap to be filled. This al-
lows the client to play received content without additional
delays caused by head-of-line blocking. The percentage of
‘useful frames’ in table 3 is calculated as the number of com-

10

plete I-frames and P-frames with an associated complete I-
frame, compared to the total number of unique frames sent
by the server; incomplete I-frames and their subsequent P-
frames are not useful for playback.

Loss Rate Stalls Useful frames
0% 0 100.0%

0.01% 0 100.0%

0.1% 0 99.644%

1% 0 95.472%

Table 3: Number of stalls and percentage of useful
frames played for QUICsilver

300

— 1% loss
0.1% loss
2504 — 0.01% loss
0% loss

=
© 200
E
5
x
%
8 150 4
g,
z
s
=
£ 100 A
g
<<

50

0 T T T T T

0 50 100 150 200 250 300
Intended playback time (s)
Figure 11: Differences between when a frame is

played out compared to when the frame was sent
(QUICsilver, partial reliability, all loss rates)

Fewer frames are played back at the client, which will re-
sult in occasional glitches in playback. Given that 1 in every
10 frames sent is an I-frame consisting of 4 QUIC packets,
there is a 70% chance that a dropped packet contains a P-
frame; at a playback rate of 60fps, this would result in an
absence of updated content for 16.7ms. If a dropped packet
contains a section of an I-frame, this will affect the sub-
sequent 9 P-frames which are dependent on it; this would
result in no the appearance of glitched content for 167ms
due to P-frames acting in reference to an incorrect I-frame.

As described in section 3, QUICsilver is capable of per-
forming retransmissions of live I-frames and P-frames, and
stale I-frames which are still required for live P-frames. A
4-frame delay adds a maximum of 66.6ms additional latency
between the server and the client application, which would
create a total maximum of 116.6ms on a 50ms link; this is al-
ready relatively high for a real-time application. Removing
this delay entirely results in the implementation achieving
the lowest possible latency while effectively transmitting P-
frames unreliably and retransmitting I-frames once at most.

Whether a stale I-frame can be retransmitted to enable
the playback of future P-frames depends on the path la-
tency: if an I-frame is sent once every 10 frames, there is a a
space of 150ms between I-frames being played back. Given
that a retransmission takes one round-trip time in total, an
I-frame fragment would enable the 9th subsequent P-frame

if it was sent over a 66.6ms latency link; lower latencies
would allow a larger number of associated P-frames to be
played successfully, while any latency above this would not
perform any retransmissions and would function as an un-
reliable transport. Sending I-frames less frequently would
allow a larger window for I-frame fragments to be retrans-
mitted, but the amount of glitched playback would increase
in proportion with the link latency; the longer an applica-
tion has to wait for a complete I-frame, the more P-frames
are played in reference to the incorrect I-frame.

For a test run of 300 seconds, 18,000 video frames are
sent. On average 180 of these are dropped in the worst-case
1% loss scenario; if 30% of these are I-frames and 70% are
P-frames, 11.01 seconds of playback in total are subject to
glitches across all latencies. This is higher than the total
playback offset in a 50ms connection subject to 1% loss for
standard QUIC (table 2), but the crucial difference between
these two outcomes is that the content received after a loss in
QUICsilver is played without any cumulative delay (figure
11): some playback quality is sacrificed for maintaining a
consistent low latency to allow for the level of responsiveness
required by real-time applications.

An application using guaranteed reliability could discard
stale frames and continue playback from the frame with the
closest RTP timestamp to the current playback deadline to
reduce this cumulative delay, but it would play fewer frames
than the partially reliable implementation: the minimum
and maximum absences of correctly updated content for par-
tially reliable QUIC for all link latencies are 16.7ms and
167ms respectively, while delays in the datasets gathered
for fully reliable QUIC range between 100ms and 333ms,
depending on the link latency. This shows that QUICsil-
ver results in improved throughput of useful data compared
to attempting to optimise applications on top of standard
QUIC for real-time behaviour.

6. FUTURE WORK

6.1 Congestion Control

Removing an item from the retransmission buffer in the
ngtcp2 implementation of QUIC is complex. The function
call used to receive an acknowledgement contains numerous
updates to congestion control statistics; simply attempting
to remove the item from the retransmit buffer by freeing
the associated memory causes a range of errors due to failed
assert checks elsewhere in the stack. As a result, falsi-
fied acknowledgements were created at the server to remove
stale entries which had not received an acknowledgement
from the client. This is problematic in that it causes the
client to believe there is no congestion on the network, and
this QUIC flow becomes overly aggressive compared to other
flows sharing the link as a result. This did not cause prob-
lems with testing on the simple one-to-one topology with a
known round-trip time and no co-existing flows described
in section 4, but the congestion control statistics must be
more carefully adjusted in future iterations to allow real-
time QUIC flows to be fair to other traffic on shared links.

6.2 Improved I-frame Handling

QUIC packets containing fragments of I-frames which will
not arrive in time to be played back themselves, but are
required for live P-frames are retransmitted by the server.
An implementation of real-time QUIC which immediately

11

passes data to the application upon arrival would deliver
these ‘stale’ fragments to the application, however, the im-
plementation of partial reliability which delivers video frames
in order does not; the stream read offsets at the client are
incremented upon the delivery of live data and the detection
of stale data, so these I-frame fragments are never passed to
the application.

Future refinements of QUICsilver would include mecha-
nisms to allow the client to determine if an incoming packet
contains an I-frame based on its associated RTP timestamp,
and introducing additional read offsets within a stream to
allow required stale I-frames to be read without also read-
ing stale P-frame data in the process. This would allow
complete frames to be delivered in-order to the application,
while continuing to drop stale P-frames and stale I-frames
with no live dependencies to minimise latency. I-frame pay-
loads would also need to be read as a complete block to allow
delivery to the application as a complete frame, as opposed
to the current method of being delivered as several separate
reads.

6.3 Multiple Streams

Real-time QUIC will allow multimedia application devel-
opers to use multiplexed streams to deliver data to an ap-
plication concurrently, but this significantly increases the
difficulty in developing these applications: the content re-
ceived from each stream needs to be co-ordinated in order
to be used by the application correctly. The tests in this
paper were performed using a single stream; further experi-
ments will focus on how to co-ordinate multiplexed streams
to optimise the quality of video playback.

7. CONCLUSIONS

7.1 Placement of Complexity

Passing QUIC payloads (i.e. RTP packets) to the applica-
tion as soon as they arrive avoids adding even more complex-
ity to an already extensive transport protocol, but it requires
application developers to implement mechanisms to reorder
incoming frames, assemble I-frames, and deal with frames
which are corrupted, incomplete, or missing dependencies;
the transport protocol effectively becomes RTP with selec-
tive retransmissions. This allows developers flexibility in ex-
actly how a given application should behave while improving
the amount of useful data received, but it increases both the
entry barrier to creating real-time multimedia applications
and the difficulty in maintaining them.

Delivering complete video frames in-order while allow-
ing gaps, as the implementation of real-time QUIC in this
project aims to do, removes the responsibility of frame re-
ordering and reconstruction from application developers, but
increases the complexity of QUIC while also restricting the
applications which can be developed: novel applications,
such as multiplayer gaming over QUIC, may require many
different types of messages other than I-frames and P-frames.
Awareness of these messages would need to be added within
the QUIC protocol in order for a receiver to be able to
parse stream information as a complete message, and for
the sender to be able to establish more complex dependen-
cies and retransmission behaviours; for example, an impor-
tant message such as a character receiving an item should
be transmitted with guaranteed reliability and only removed
from the retransmission buffer with a client-sent ACK, while

movement would use partial reliability and deadline-based
removal in a similar manner to P-frames. This is simply not
feasible given the wide range of behaviours and transmit-
table information that real-time applications could have.

7.2 Partial Reliability for Other Real-Time Ap-
plcations

The development of video-based real-time applications which

rely on a limited number of message types (I-frames and P-
frames) can be simplified by making QUIC aware of how to
parse these messages and pass them to the application as
complete frames in sequential order; this project has been
successful in achieving improved real-time video playback
performance using this approach. However, the increasing
popularity of real-time applications with variable informa-
tion and behaviour, such as augmented reality, virtual re-
ality, and multiplayer gaming, suggests that passing data
to the application as soon as it arrives is the better ap-
proach to take for a generalised real-time implementation
of QUIC. This prevents ossification in terms of which ap-
plications which can use real-time QUIC and also avoids
adding an unrealistic level of complexity to QUIC imple-
mentations. Creating a new partially reliable QUIC stream
type for use alongside guaranteed reliability streams would
ensure that key information reaches the receiver while al-
lowing low-latency for other content.

7.3 Utility of QUICsilver

Standard QUIC is more suited for high-quality video stream-

ing than QUICsilver: pre-existing content can be buffered in
advance to mask stalls, and 100% of frames are played with-
out glitches. Buffering pre-existing content could also be
performed with QUICsilver, but the stack and application
latencies would increase due to performing liveness checks
on many items which would be stored in the retransmit and
reorder buffers at the client and server respectively; this is
wasted time given that these checks to prevent stalls are not
necessary when stalls are already being masked by buffered
content.

However, QUICsilver provides far better performance for
applications which transmit data live and require timely
responses to user input than standard QUIC. It achieves
this by adjusting its stream read offsets and removing items
from its retransmit buffers in response to playback dead-
lines, yielding consistently lower application latencies at all
link latencies and loss levels. This results in intermittent
glitches in video playback, but over 95% of unique frames
sent by the server are played back without glitches even in
1% loss environments.

ClipStream, the alternate partially reliable QUIC imple-
mentation discussed in section 3 [8], encounters stalls very
rarely due to I-frames being transmitted reliably. QUIC-
silver, however, eliminates stalls completely though use of
deadline awareness, ensuring that zero cumulative playback
latency occurs at any loss rate and therefore preventing ex-
tended sessions of real-time media applications from suffer-
ing an increasing cumulative playback delay. This consis-
tent, predictable low-latency performance makes QUICsilver

12

a promising option for running responsive, real-time appli-
cations over QUIC.

8. ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr Colin Perkins, for
introducing me to the hydra that is the inner workings of the
modern Internet and for providing advice on how to make
contributions to an exciting new transport protocol. I would
also like to thank the many friends who helped keep morale
high through every newly discovered segmentation fault.

9.
[1]

REFERENCES

RFC 791: Internet Protocol: DARPA Internet
Program Protocol Specification. Sep 1981.

ngtep2. 2019 Apr.

CISCO. The Zettabyte Era: Trends and Analysis.
Cisco, (May 2015):1-29, 2015.

J. Iyengar and M. Thomson. QUIC: A UDP-Based
Multiplexed and Secure Transport,
draft-ietf-quic-transport-16. Oct 2018.

J. Lazzaro. RFC 4571: Framing Real-time Transport
Protocol (RTP) and RTP Control Protocol (RTCP)
Packets over Connection-Oriented Transport. 2006 Jul.
I. Lubashev. Partially Reliable Message Streams for
QUIC: draft-lubashev-quic-partial-reliability-03. 2018
May.

S. McQuistin, C. Perkins, and M. Fayed. TCP goes to
hollywood. Proceedings of the 26th International
Workshop on Network and Operating Systems Support
for Digital Audio and Video - NOSSDAV ’16, pages
1-6, 2016.

M. Palmer, T. Kriiger, B. Chandrasekaran, and

A. Feldmann. The QUIC Fix for Optimal Video
Streaming. (im):43-49, 2018.

J. Postel. RFC 768: User Datagram Protocol. Aug
1980.

E. Rescorla. RFC 8446: The Transport Layer Security
(TLS) Protocol Version 1.3. 2018 Aug.

J. Rey, D. Leon, A. Miyazaki, V. Varsa, and

R. Hakenberg. RFC 793: Transmission Control
Protocol: DARPA Internet Program Protocol
Specification. Sep 1981.

J. Riith, I. Poese, C. Dietzel, and O. Hohlfeld. A First
Look at QUIC in the Wild. Lecture Notes in
Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in
Bioinformatics), 10771 LNCS:255-268, 2018.

H. Schulzrinne, S. Casner, R. Frederick, and

V. Jacobson. RFC 3550: RTP: A Transport Protocol
for Real-Time Applications. Jul 2003.

P. Tiesel, M. Palmer, B. Chandrasekaran,

A. Feldmann, and J. Ott. Considerations for
Unreliable Streams in QUIC:
draft-tiesel-quic-unreliable-streams-01. 2017 Oct.

[15] I. T. Union. ITU-T Recommendation G.114. 2003
May.

[5]

[6]

[7]

8]

[9]
(10]

(11]

(12]

(13]

(14]

	Introduction
	Background
	Video Frames
	Head-of-Line Blocking

	Related Work
	Reliable and Unreliable QUIC Streams
	Deadline Awareness

	Design
	Deadline Awareness at the Server
	Deadline Awareness at the Client

	Results
	Differences in Stack Latency
	Differences in Application Latency
	Differences in Playback Time

	Future Work
	Congestion Control
	Improved I-frame Handling
	Multiple Streams

	Conclusions
	Placement of Complexity
	Partial Reliability for Other Real-Time Applcations
	Utility of QUICsilver

	Acknowledgements
	References

