

IETF Video Standards

A review, some history, and some reflections

Colin Perkins

Internet Engineering Task Force

"The goal of the IETF is to make the Internet work better"

Technical development of protocol standards: an open, international, vendor-neutral forum

Internet Engineering Task Force

Internet Multimedia Standards

- Media: secure RTP, WebRTC data channel
- Session descriptions: SDP
- Different control protocols for different purposes
 - Announcing multicast sessions: SAP
 - Control of streaming media: RTSP
 - Control of interactive conferencing: SIP
 - Control of telepresence: CLUE
 - Control of web-based interactive media: JSEP (WebRTC)
- Path discovery: ICE, STUN, TURN

Media: RTP

- Separate data and control channels
 - RTP media payload formats
 - RTCP source description, reception quality feedback, codec control
- Payload formats
 - Codec-specific packet formats → application level framing → robust, but complex
 - Each frame packetised for independent use, for low latency
 - IETF media codecs: Opus + NetVC
- Profiles
 - Standard + feedback + security
- Other extensions
 - XRBLOCK \rightarrow extended monitoring
 - Codec control and other feedback
 - Circuit breakers and congestion control

- RFC 1889 → RFC 3550 Dozens of extensions, payload formats, etc.
- Widely used: voice telephony, video conferencing, telepresence, IPTV...

Media: WebRTC Data Channel

- Direct peer-to-peer data channel between browsers operates without central server once connection established
- SCTP in secure UDP tunnel:
 - Tunnel → easy to deploy, incompatible with SCTP-level multihoming support
- Transparent data delivery:
 - Message-oriented abstraction
 - Multiple sub-streams
 - Full or partial reliability
 - Congestion controlled
- Potentially highly disruptive → trivial to build P2P applications with WebRTC and the data channel

Session Descriptions: SDP

v=0

o=jdoe 2890844526 2890842807 IN IP4 10.47.16.5 s=SDP Seminar i=A Seminar on the session description protocol u=http://www.example.com/seminars/sdp.pdf e=j.doe@example.com (Jane Doe) c=IN IP4 224.2.17.12/127 t=2873397496 2873404696 a=recvonly m=audio 49170 RTP/AVP 0 m=video 51372 RTP/AVP 99 a=rtpmap:99 h263-1998/90000

- Control protocols need to describe session to be controlled
 - Media transport + payload formats
 - Addresses and ports
 - Originator and purpose of session
 - Options and parameters
- SDP provides a standard format for this data → declarative mode
 - SDP very effective in this use case

Multicast Session Announcement: SAP

- Initial use case: multicast sessions on the Mbone
 - Session directory multicast declarative SDP
 - Multicast RTP media broadcast and interactive
 - Any source multicast (ASM)
- Experimental
 - ASM didn't scale for inter-domain use, security issues
 - Replaced by source-specific multicast \rightarrow intra-domain IPTV deployments

Managed IPTV: Multicast Delivery, Unicast feedback

- Evolution of multicast conferencing
- Source-specific IP multicast media
 - Provisioned and managed multicast in edge networks, but not interdomain
 - One multicast group per TV channel
 - Replicates cable TV experience, using low latency, efficient, multicast delivery
 - Provisioned set-top boxes decode media → managed service
- Media transport using MPEG-TS in RTP; unicast quality feedback and repair/catch-up
 - Aggregate reception quality feedback
 - up the tree, giving overall view statistics
- Managed multicast IPTV service can offer very high quality and low latency, but requires provisioning and managed clients – inflexible

Control of Streaming Media: RTSP

- Control protocol for real-time OTT streaming
 - Re-use existing IETF standards: declarative SDP and RTP media flows
 - Control protocol influenced by parallel development of HTTP and SIP
 - Originally media ran on UDP and control over TCP
 → extensions multiplexed media and control on a
 single TCP flow for ease of deployment
- Moderate commercial success
 - RealPlayer; 3GPP MBMS
 - Requires custom server infrastructure → expensive and doesn't integrate with web CDN
 - RTP media over UDP → very low latency; robust; unicast or multicast

Session Descriptions: SDP Offer/Answer

- Declarative SDP works for broadcast
 - Server announces a session
 - Clients join, based on description in announcement
- Interactive sessions require negotiation
 - An *offer* to communicate: lists codecs, options and addressing details, identity of caller
 - The answer subsets codecs and options to those mutually acceptable, supplies addressing details, and confirms willingness to communicate
 - RTP-based media then flows, peer-to-peer
- IETF re-used SDP as the negotiation format
 - SDP not designed to express options and alternatives
 - Insufficient structure in syntax, semantic overloading
 - Complex → but complexity not initially visible; too entrenched for alternatives to take off

Control of Interactive Conferencing: SIP

- SIP trapezoid inter-domain conferencing framework
 - SIP provides identity, location, and negotiation
 - Uses offer/answer model with SDP to negotiate media flows, codecs, addressing, etc.

- Initially simple framework, became complex and inflexible
 - Innovation at the speed of standardisation
 - How much complexity is inherent in the problem domain?
 - Multiparty calls inherently complex option negotiation, addressing, call setup
 - User location and call setup inherently complex multiple answers for a single user, which to accept?
 - How much due to interoperability with PSTN?
 - Considerable e.g., early media, fax-over-RTP, DTMF
 - Lessons for standardisation...

Control of Web-based Interactive Media: WebRTC

 Expose standard control API rather than standard signalling protocol – innovation above that JavaScript API, rather than by changing the protocol

- Features:
 - Media transport using modern RTP stack
 - Peer-to-peer data channel: SCTP over UDP
 - Javascript Session Establishment Protocol with custom applications
- Complexity of bundled media, JSEP signalling, and exposed SDP
- Obvious uses and extensions:
 - low-latency live unicast streaming
 - multicast IPTV

Control of Telepresence: CLUE

- SIP extensions for high-quality, multiscreen, telepresence
- The inflexibility of SIP coupled with the complexity of WebRTC bundled media and data channel

Path Discovery: ICE, STUN, and TURN

- Multimedia standards developed before wide deployment of NATs and firewalls
 - Assumed every host had a public IP address, that could be sent via SDP
 - Similar assumption to FTP
- This is no longer accurate need NAT traversal
 - STUN: determine NAT bindings
 - TURN: relay traffic via public server
 - ICE: systematic algorithm for use of STUN and TURN to find usable path
 - Complicates offer/answer
 - Don't know the addresses to use in the offer until ICE has completed
 - Don't know candidates to use in ICE until offer/answer has completed
 - Essential in modern deployments

Review of Internet Multimedia Standards Development

- Long-term development evolving standards
 - Network voice protocol (RFC 741; Nov. 1977)
 - Current framework (RTP, etc.): 1992 \rightarrow
- Architectural focus on reusable protocols
 - Community has not favoured common components
 - Continued fight against point solutions
 - Ad-hoc developments \rightarrow complexity
 - The architecture was designed for a network that no longer exists
 - Adaptive media, application level framing very robust, low latency, if you can afford the complexity
- Signalling is harder than everyone realises

An Alternative Architecture: HTTP Adaptive Streaming

- Reaction to the complexity of the Internet multimedia architecture
 - RTSP effective, not economically viable for initial deployments
 - Efficiency and scalability becoming much less critical
 - Lack of understanding of the RTSP, SDP, and RTP stack by web community

HTTP Adaptive Streaming

- Video encoded in multiple chunks
 - Independently decodable; 2-10 second duration; multiple encodings of each at different rates
 - Manifest file provides index
 - Client pull via cache hierarchy (CDN)
 - Monitor download rate, and choose what encoding rate to fetch next
 - Standard HTTP downloads
- Easy to deploy, but challenges:
 - Low latency streaming
 - Rate adaptation for congestion control
 - Impact of HTTP/2
 - Impact of QUIC
 - These are pushing in a direction RTP tried to solve

Concluding Remarks

- HTTP adaptive streaming succeeded because bandwidth is cheap and plentiful and it could leverage commodity CDN infrastructure
- The Internet multimedia standards trade some complexity for lower latency and robustness to loss
 - Application level framing, with intelligent endpoints
 - That used to make sense, and still does for some use cases interactive; RTSP+RTP have much relevance for modern streaming
- To develop the next generation video architecture, we need:
 - A de-ossified, multiplexed, path layer above which transport can evolve WebRTC has conclusively shown the limitations of the current approach
 - Interoperability between different media transport models a content centric view?