I Want My Internet TV
Understanding IPTV Performance in Residential Broadband Environments

Colin Perkins
What is Internet TV?

- Television service delivered using an Internet connection, rather than using a dedicated TV distribution network
 - Replacing the TV distribution network with an IP-based infrastructure
 - Service provided directly by a TV network, by the Internet Service Provider (ISP), or by a third party
 - Viewed using a dedicated device, or a computer, smartphone, etc.
Internet TV Performance

- Quality of Internet TV can be highly variable
- The network is shared with other traffic and is not optimised for TV distribution
 - Capacity is not guaranteed
 - Last-mile residential link behaviour is not well understood
Capacity is not Guaranteed

• Best effort packet delivery service

• Links are physically shared:
 • Wide-area network shared with other customers
 • ISPs oversell capacity – network cannot support full rate for all customers
 • Network congestion likely at peak times of day
 • Last-mile link shared with other residential users
 • Last mile link shared with other traffic to/from your home
 • Web browsing, file sharing, gaming, etc.

• Variable rate transport protocols ubiquitous
 • Most applications use rate-adaptive transport, with no fixed sending rate

• Active queue management – to separate different traffic – not widely deployed
Last-mile Link Behaviour

- Highly variable infrastructure
 - ADSL, Cable, Fibre-to-the-home, Fibre-to-the-Cabinet, etc.
 - Ethernet and/or Wi-Fi in the home
 - Home gateway equipment
 - Variable end-system hardware and operating systems

- Behaviour not well understood
 - Packet loss characteristics – noisy, poor quality lines; how to model loss?
 - Buffer bloat – excess delay impacts control loop stability, but many ADSL modems are observed that can buffer multiple seconds of traffic
Why Deploy Internet TV?

- Convergence: one network for TV, voice, and data
 - Economics of scale from combining formerly separate businesses
 - Shared infrastructure → cost savings, easier to manage
Approaches to Delivering Internet TV

• On-demand and catch-up TV
 • For watching a single programme using a web browser, or a dedicated application/appliance
 • Choose a programme from a menu, sit back, and watch to completion

• Linear and live TV
 • Traditional TV service – choose from multiple channels
 • Content may be live or pre-recorded, but it is streamed continually, according to some schedule
 • Channel surfing commonplace

• Different constraints imply different implementation choices
On-demand and Catch-up TV

- Start-up latency is not critical, but it is essential that playout is smooth and continuous once started
 - Sit down to watch a...buffering...movie
- Build on web infrastructure – media downloaded using HTTP on TCP/IP

- TCP causes in-network queues
 - Routers queue for outgoing data for a link
 - TCP will always probe for more capacity by increasing sending rate
 - Sending faster than link rate causes queues to build up – TCP dynamics ensures this always occurs to some extent
 - Queues smooth output rate from bottleneck link
Dynamic Adaptive Streaming over HTTP

- DASH download model:
 - Split each TV programme into a sequence of short, independently decodable, chunks
 - Encode each chunk at multiple bit rates (i.e., multiple quality levels)
 - Client measures download rate of each chunk, selects bit rate of the next chunk to match
 - All chunks fetched over HTTP, typically driven by Javascript code in a web browser, or a dedicated player app

- Initially fetch low-rate chunks to build up buffer, switch to higher-rate/quality once client buffer stabilised (~tens of seconds)

- Use in-network queues to hide transmission variability, give smooth playout
 - Excess buffering ("buffer bloat") can give multi-second queues
Dynamic Adaptive Streaming over HTTP

• Numerous open questions:
 • What is an appropriate chunk duration?
 • What chunk data rates should be chosen? How should they be spaced?
 • Use a single connection, or a new connection for each chunk?
 • Where is the intelligence to pick next chunk rate? Client or server?
 • What is the effect of TCP parameters (e.g., Google’s IW=10 proposal)?
 • What is the impact on user experience of variable rate encoding?

• Lots of scope for experimentation – no need for more standardisation

• Optimality not critical
 • Enough buffering in the network that good enough is sufficient
IPTV: Linear and Live TV

• DASH model doesn’t work for systems that mimic traditional TV model
 • Relying on buffering to smooth over transport variation – latency – gives very slow channel change (re-buffering… ~tens of seconds!)
 • Also fails for live TV – amount of buffering depends on the way capacity varied; not all receivers playout at once – see the winning goal after you heard your neighbours cheering…

• Alternative architecture: avoid TCP/IP
IPTV System Architecture

- MPEG-2 TS over RTP over UDP/IP
 - Choice driven by compatibility with satellite and cable TV distribution networks
- Source-specific multicast transport
 - One multicast group per TV channel
 - Efficient use of core network bandwidth
- Middleboxes for local repair and reception quality monitoring
 - Local NACK-based packet retransmission
 - Aggregation of RTCP reception reports
- ISP provisions sufficient bandwidth in the core – edges unmanaged
- No rate adaptation using UDP/IP
 - Avoids in-network queues, if sending rate below link capacity, since no probing
- Non-web-based infrastructure increases cost and complexity
- New and not well studied – where are the performance problems?
Factors Affecting Quality of Experience

- How do the different components of the path impact performance?
 - Content providers will ensure adequate provisioning at peering points: they’re in the business of providing good quality
 - Consumer ISPs care about quality to the extent it prevents customer complaints – just enough network capacity
 - Responsibility for last mile link unclear – quality unknown and largely unmanaged

- Hypothesis: content provider and consumer ISP networks perform well enough – IPTV performance problems occur in the last mile
- Aim to conduct experiments to determine if this is true, build a model of the network behaviour
Experimental Setup

• Well-connected server at University of Glasgow

• Soekris net5501 single-board computers located in volunteers’ homes as measurement clients
 • Low-power, silent, easily transported, zero-configuration
 • Run FreeBSD 7 with custom measurement software

• Primarily end-to-end performance monitoring
 • RTP over UDP/IP streaming; packet sizes and rates chosen to match common IPTV systems
 • July 2009 – September 2010; 3900 traces to 16 destinations in UK and Finland; 230,000,000 packets sent
 • \(\geq 8 \) measurements per host per day to capture diurnal variation
 • Capture send and receive timestamps, sequence numbers

• Additional metrics:
 • Occasional packet-pair bandwidth estimates
 • Occasional TTL-limited hop-by-hop probing to determine where loss was occurring on the path

Measurement schedule carefully chosen to avoid triggering ISP bandwidth caps

All datasets available online: http://csperkins.org/research/adaptive-iptv/ (~2.6 gigabytes compressed)
Results: Models for Packet Loss

- Clear time-of-day variation in packet loss rate and delay
- Congestion in ISP networks clearly visible
- Loss distributions can be separated into bursty and non-bursty behaviour
 - Links exhibit both types of behaviour, with no clear time-of-day explanation

- Key finding: simple Markov models not sufficient to model loss
 - Simple and extended Gilbert models, 2- and 3-state Hidden Markov models
 - Differs from backbone networks, where they have been successful

- Need to account for different types of loss pattern
 - Believe we are seeing different loss processes in addition to time-of-day variation
Two-level Model

- Derived a two-level Markov model
 - Top-level states denote location of loss: access link, edge network, core network
 - Lower-level states model loss process at that location
- Classifier segments packet traces according to loss location – based on loss and delay thresholds
- Lower-layer is a mixture of simple Gilbert model and 2-state Hidden Markov models
 - Use of 2HMM for core and edge models better captures bursty loss behaviour

![Diagram of Two-level Model]

Figure 2. Parametric bootstrap results (loss models)

Figure 3. Two-Level Model, SGM/2HMM/2HMM configuration

Figure 4 shows results from the two-level model on the traces identified earlier. The two-level model has consistently generated by the new model are closer to the original data than traces identified earlier. The two-level model has consistently derived a two-level Markov model. Use of 2HMM for core and edge models is suitable for uncongested loss due to access link noise.

Figure 5. Comparison of models: Raw Data, Receive Runs, Loss Runs

Id: SGM/SGM/SGM
Id: SGM/2HMM/2HMM

<table>
<thead>
<tr>
<th>Packet Number</th>
<th>Raw Data</th>
<th>Receive Runs</th>
<th>Loss Runs</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
IPTV Performance Summary

- Loss models show complex behaviour, dependant on location of loss
 - Two-level model can be trained to give an accurate model of packet loss behaviour
 - Have applied to tuning application-level FEC parameters
- Packet delay results surprisingly well behaved
 - Traces do not use TCP, and traffic was chosen to fit within the edge link bandwidth to avoid edge queueing – no evidence of buffer bloat in core
Discussion

• Our results can allow optimisation of IPTV service
• On-demand TV services also under intense study

• The two solutions work well, but conflict:
 • IPTV services require low latency → UDP-based, disrupted by TCP traffic
 • Other applications, including on-demand TV, require TCP

• Coming battleground: active queue management vs. TCP modifications – network neutrality?