Real-time Scheduling of Periodic Tasks

Advanced Operating Systems
Tutorial 1
Tutorial Outline

• Review of lectured material
• Worked examples
Review of Lectured Material

• Introduction and system model
 • Tasks, jobs, processors, resources
 • Timing constraints and scheduling algorithms
 • Periodic, aperiodic, and sporadic tasks
 • Hard and soft real-time systems

• Scheduling periodic tasks
 • Types of scheduler: clock-driven vs. priority-driven
 • Scheduling algorithms; approaches to proving correctness
 • Rate monotonic: non-optimality, time-demand analysis & critical instants, simply periodic systems, maximum utilisation tests
 • Earliest deadline first: optimality, maximum utilisation test, density test
 • Choice of rate monotonic vs. earliest deadline first
 • Other algorithms: deadline monotonic and least slack time
Worked Examples

• Identifying tasks
• Clock-driven periodic scheduling
• Rate monotonic scheduling
• Earliest deadline scheduling
Identifying Tasks

• A hypothetical helicopter flight control system, with 1/180th second cycle:
 • Validate sensor data and select data source; on failure reconfigure system
 • Do 30Hz avionics tasks, each once every 6 cycles:
 • Flight control input; data normalisation & coordinate transformation; tracking reference update
 • Do 30Hz calculations, each once every 6 cycles:
 • Control laws of outer pitch-control loop; control laws of outer roll-control loop; control laws of outer yaw- and collective-control loop
 • Every 2 cycles, do 90Hz calculations, using outputs of 30Hz calculation
 • Control laws of inner pitch-control loop; control laws of inner roll- and collective-control loop
 • Calculate inner yaw-control loop, using outputs of the 90Hz calculations
 • Output commands to control surfaces
 • Carry out built-in-test

• What are the jobs and tasks in this example?
Clock-driven Periodic Scheduling

• Example – building a cyclic schedule:
 • Consider a system of independent preemptable periodic tasks, with no precedence or resource constraints, running on a single processor: $T_1 = (6, 2)$, $T_2 = (12, 3)$, and $T_3 = (4, 1)$
 • All jobs have phase equal to zero, and relative deadline equal to their period
 • Construct a cyclic schedule for the tasks, and show that the system meets all its deadlines
Rate Monotonic Scheduling (1)

• Can the system of five independent, preemptable, tasks $T_1=(1.0, 0.25)$, $T_2=(1.25, 0.1)$, $T_3=(1.5, 0.3)$, $T_4=(1.75, 0.07)$ and $T_5=(2.0, 0.1)$ be scheduled using the rate monotonic algorithm?
Rate Monotonic Scheduling (2)

- Can the system of three independent preemptable periodic tasks $T_1=(8, 3)$, $T_2=(9, 3)$ and $T_3=(15, 3)$ be scheduled using the rate monotonic algorithm?
Earliest Deadline Scheduling

- Can the system of three independent preemptable periodic tasks $T_1=(8, 4)$, $T_2=(12, 4)$ and $T_3=(20, 4)$ be scheduled using earliest deadline first?
Discussion

• Maximum utilisation tests are powerful
 • Don’t perform exhaustive simulation or time-demand analysis unless you have to

• Exercise 1 now available – due in tutorial 2