
Security

Networked Systems 3
Lecture 18

Lecture Outline

• Security considerations
• Traffic monitoring, confidentiality and authentication

• Validating input data

• Buffer overflow attacks

2

Traffic Monitoring

• Possible to snoop on traffic on any network link
• Wireless links – simply listen

• Wired links – switches can be configured to forward a copy of all traffic to
a particular link, for monitoring

• Ability to monitor traffic a legal requirement in many
countries, for legal reasons
• e.g., to enable authorised wiretaps by the police

• Can also be exploited for malicious purposes

3

Confidentiality

• Must encrypt data to achieve confidentiality

• Two basic approaches
• Symmetric cryptography

• Advanced Encryption Standard (AES a.k.a. Rijndael), Triple-DES

• Data Encryption Standard (DES) – broken; subject to brute-force
attacks

• Public key cryptography

• The Diffie-Hellman algorithm

• The Rivest-Shamir-Adleman (RSA) algorithm

• Complex mathematics – will not attempt to describe

4

Symmetric Cryptography

• Function converts plain text
into cipher-text
• Fast – suitable for bulk encryption

• Cipher-text is binary data, and may
need base64 encoding

• Conversation is protected by
a secret key
• The same key is used to encrypt as is

used to decrypt

• Key must be kept secret, else security
lost – a problem: how to distribute the
key?

5

“It was a bright cold day in April,
and the clocks were striking
thirteen.”

rX27qrhlM/Pd5UnkpqTuXnJBZecFl
bP5Xd8ouyAWgCLxZJUD951SaxusX5
bj0O2P9XkVGGHmmOqByZxu2pU+cCl
sERzuHKxc

DES Key

/DES Key

“It was a bright cold day in April,
and the clocks were striking
thirteen.”

Public Key Cryptography

• Key split into two parts:
• Public key – is widely distributed

• Private key – must be kept secret

• Encrypt using public key
→ private key is needed
to decrypt
• Public keys are published in a well

known directory → solves the key
distribution problem

• Problem: very slow to encrypt and
decrypt

<big blob of encrypted stuff>

“It was a bright cold day in April,
and the clocks were striking
thirteen.”

RSA Public key

/RSA Private key

“It was a bright cold day in April,
and the clocks were striking
thirteen.”

6

Hybrid Cryptography

• Use combination of public-key and symmetric
cryptography for security and performance
• Generate a random, ephemeral, session key that can be used with

symmetric cryptography

• Use a public-key system to securely distribute this session key – relatively
fast, since session key is small

• Encrypt the data using symmetric cryptography, keyed by the session key

• Examples: PGP for email, SSL for web pages

7

Authentication

• Encryption can ensure confidentiality – but how to
tell if a message has been tampered with?
• Use combination of a cryptographic hash and public key cryptography to

produce a digital signature

• Gives some confidence that there is no man-in-the-middle attack in
progress

• Can also be used to prove origin of data

8

Cryptographic Hash Functions

• Generate a fixed length (e.g., 160 bit) hash code of
an arbitrary length input value
• Should not be feasible to derive input value from hash

• Should not be feasible to generate a message with the same hash as
another

• Examples: MD5 and SHA-1

• Note: weaknesses found in both – care required!

9

MD5(“It was a bright cold day in April, and the clocks were
striking thirteen”) = 2c794fa2698f4b1bc5aa4e290abdf3a5

Digital Signature Algorithms

• Generating a digital signature:
• Generate a cryptographic hash of the data

• Encrypt the hash with your private key to give a digital signature

• Verifying a digital signature:
• Re-calculate the cryptographic hash of the data

• Decrypt the signature using the public key, compare with the calculated
hash value → should match

10

Existing Secure Protocols

• Wide range of existing security protocols give
confidentiality and authentication:
• IPsec

• Transport Layer Security (TLS)

• An enhancement to the Secure Sockets Layer (SSL)

• Datagram TLS

• Secure shell (ssh)

• Use them – don’t try to invent your own!

11

Validating Input Data

• Networked applications fundamentally dealing with
data supplied by un-trusted third parties
• Data read from the network may not conform to the protocol specification

• Due to ignorance and/or bugs

• Due to malice, and a desire to disrupt services

• Must carefully validate all data before use

12

Malicious User Input

• Beware escape characters in user-supplied data!

• Must sanitise all user-supplied data before use
• Stop malicious users including control characters that might disrupt

operation of any scripting language inside your application

ht
tp
://
xk
cd
.c
om
/3
27
/

13

Buffer Overflow Attacks

• The C programming language doesn’t check array
bounds
• Responsibility of the programmer to ensure bounds are not violated

• Easy to get wrong – typically results in a “core dump”

• What actually happens here?

14

Function Calls and the Stack

// overflow.c
#include <string.h>
#include <stdio.h>

static void
foo(char *src)
{
 char dst[12];

 strcpy(dst, src);
}

int
main(int argc, char *argv[])
{
 char hello[] = "Hello, world\n";

 foo(argv[1]);
 printf("%s", hello);
 return 0;
}

What happens when argv[1]
is longer than 12 bytes?

15

$ gcc overflow.c -o overflow
$./overflow 123456789012
Hello, world
$./overflow 1234567890123
Abort trap (core dumped)
$

Function Calls and the Stack

// overflow.c
#include <string.h>
#include <stdio.h>

static void
foo(char *src)
{
 char dst[12];

 strcpy(dst, src);
}

int
main(int argc, char *argv[])
{
 char hello[] = "Hello, world\n";

 foo(argv[1]);
 printf("%s", hello);
 return 0;
}

16

Parameters

Local variables
for foo(...)

...unused...

0xbfe710fc

0xbfe71108

0xbfe71110

char dst[12]

char *src

Return Address

Local variables
for main(...)

Example of call stack within
the call to the function foo()

Function Calls and the Stack

• The strcpy() call doesn’t check
array bounds

• Overwrites the function return
address on stack, along with the
following memory locations

• If malicious, we can write
executable code into this space,
set return address to jump into our
code…

Parameters

Local variables
for foo(...)

...unused...

0xbfe710fc

0xbfe71108

0xbfe71110

char dst[12]

char *src

Example of call stack within
the call to the function foo()17

Return Address

Local variables
for main(...)

Arbitrary Code Execution

• Buffer overflows in network code are the primary
source of security problems
• If you write network code in C, but very careful to check all array bounds

• If your code can be crashed by network traffic, it probably has an
exploitable buffer overflow

• http://insecure.org/stf/smashstack.html

18

Questions?

19

