University

of Glasgow

i A
L*:L'
2
VIA VERITAS VITA

Connection Management

Networked Systems 3
Lecture 13

Lecture Outline

® Modelling protocol behaviour

¢ Managing transport connections

e (Connection establishment
e Reliable data transfer

® (Connection tear down

Modelling Protocol Behaviour

e Can model protocols using
a finite state machine

Disconnected

= Send “connection requested”
Q
e A set of states with transitions between 3 \
them 5 “declined’
g (Request sent)
¢ The current state indicates what the S
system is doing at any time 5 Get “accepted”
e Transitions show occurrence of events @
and the response of the system CEonnected
e Can be used to define the Example: partial state machine for

behaviour of a protocol opening and closing a connection

Managing Connections

® One role of transport layer: provide reliability

® How to reliably manage transport connections?

e Setup a reliable connection over an unreliable connectionless network
® Transport data without loss over an unreliable network

e Agree to tear down a connection

Connection Establishment

® How do two hosts agree to communicate?

Host A Host B

Connectionl

requested
(Disconnected) q \ ConneCtion
A \ accepted

(Request sent)

CConnected)
(Connected

Time
<€
Time

Connection Establishment

e \What if the initial request is lost?

(Disco,:ected\)A

(Request sent)

(Connected ;

Host A Host B

Connectionl
requested

Timeout &
retransmit

/ /

lime
T
<€

Connection
accepted

CConnected)

Connection Establishment

e \What if the "connection accepted” reply is lost?

Host A Host B

Connectionl

requested
(Disconnected) q \ ConneCtion
A \ . accepted

(Request sent) Timeout &

retransmit \ CConnected)
Error: already connected!
(Connected

Time
<€
Time

Connection Establishment

e \What if the "connection accepted” reply is lost?

® Sequence number in messages; random initial value

(Disco,:ected\)A

(Request sent)

(Connected ;

Host A

ConnectionISeq -

Host B

=X
requested —

Timeout & [Seq =

X

accepted

) X
retransmit _ CConnected)
Duplicate request

Time
<€

Time

Retransmit “connection accepted”

Connection Establishment

e \Vhat if data from an old connection is still in the

network?
Host A Host B
ConnectiorulSeq:X Delayed donnection
. requested | ——_— accepted message —
(Dlsconnected) Connection
1 \ accepted
Error: already
(Request sent) connected!
CConnected)
(Connected
() ()
£ £
= 4 = 4

Connection Establishment

® Solution for robust connection establishment: use a
three-way handshake

Host A Host B

Connection Seq =

=X
requested
Di .
('SCO“”eCteCD \cf\)'Connection
s

A
ack = X, accepted
Accepting
R t sent
(b) aCk =y (connection)
(Connected ; CConnected)
() ()
£ £
= 4 = 4

Three Way Handshake

® T[hree way handshake ensures robustness

e Delayed control messages generate an acknowledgement with incorrect
sequence number

® This is detected, and stops the connection establishment

e Hosts cannot reuse initial sequence number until the maximum packet
lifetime passed

® Requires hosts to keep state regarding previous connections, to avoid
reuse

e Randomly chosen initial sequence number makes collisions unlikely if
a host crash causes state to be lost

Example: TCP Connections

e TCP connections use a
three way handshake

e Use the SYN and ACK flags in the
TCP header to signal connection
progress

e Packets contain sequence
number and acknowledgement
number

Example: TCP Connections

0i1i2i314i5i6}7i89i10{11i12{13{14i15{16:17:18{19{20i21i2223/24{25!26/2728:29:30:31;

IP

Source Port Destination Port

—> €

TCP

Data Offset Reserved Urg Psh | Rst Fin Window

Checksum Urgent Pointer

¢ [options - variable length]

Data

TCP State Machine

Action/Effect Connect/SYN

Listen/- : Close/-

SYN/SYN+ACK m

Close/-

Send/SYN

SYN+ACK/ACK

® Shows client and server on same state diagram

e Additional transitions allow simultaneous open

Reliable Data Transfer

® [wo approaches to reliable data transfer at the
transport layer

e End-to-end ARQ
e Positive or negative acknowledgements
e End-to-end FEC

e Within each network layer packet
® Across several network layer packets

e (Conceptually identical to operation at data link layer

Example: TCP

o TCP packets include sequence

number and an (optional)
acknowledgement number

® Sequence number = bytes transmitted

e (this example is unrealistic, since it shows one byte
being sent per packet)

e Send cumulative positive acks

e Acknowledgement specifies the next byte expected

e Only acknowledge contiguous data packets (sliding
window protocol, so several data packets in flight)

e Duplicated acknowledgements imply loss

® Retransmit lost packets

Host A
seq=5
seq =6 \
seq = 7 \
seq = 8 \
Seq:g\\ \'
seq = 10 \\\
g
seq =8 >
seq=9
))
E £
= 7 =

Host B

ack =6
ack =7

ack =8

ack =8
ack =8
ack =8

Example: TCP

Host A Host B ® Packet reordering also
causes duplicate ACKs

seq=5
seq =6

\) e Gives appearance of loss, when
564 =7 % ack =0 the data was merely delayed
seq =38 ack =7

seq=9f<_ = ack=7 e TCP uses triple duplicate
seq = 10f e ack= ACK to indicate |
\ \ _
<] :th 112 e Fouridentical ACKs in a row
iquy .uéy e Slightly delays response to loss,

but makes TCP more robust to
reordering

Example: TCP

¢ Problem with cumulative ACKs: don’t signal any
packets received after the highest contiguously
received packet

e E.g.ifpackets 1, 2, 3, 5, 6, and 7 are received, the ACK will show 4 as the
next packet outstanding, but won’'t mention packets 5, 6, and 7

e | eads to unnecessary retransmissions
e Solution: Selective ACK (“SACK”) option to TCP

e But only supported by 68% of web servers, ten years after
standardisation...

Connection Tear Down

® Three way handshake to

tear down a connection Host A Host B
e \What happens if the last FIN, seq «
ACK is lost?
_ seQ ~
e A has closed the connection, so cannot F\NJ\C\(.

resend the ACK; B is still waiting ACK <,

e Unavoidable problem — B must \
eventually give up, without knowing if
the last packet arrived

e Data sent on last packet is potentially cv
lost

TCP State Machine

e [CP uses a three way handshake to close connection
e Signalled by the FIN bit in the packet header

Established
(active close)Close/FIN RS EIN/IACK.(passive.clase),

v v

FIN/ACK

FIN wait | Closing
ACK/-l FIN+ACK/ACK ACKI- : Close/FIN
FIN/ACK Y
FIN wait 2 2| Time Wait A

Timeout/-
ACK/-

20

TCP State Machine

Complete TCP finite state Connect/SYN
machine: connection Close/
establishment and tear down Listen/- Close/-

RST/- Send/SYN

ACK/- : SYN+ACK/ACK
....................................... Establlshed
Close/FIN (active close)Close/FIN R FIN/ACK.(passive.clasg),
v v
FIN/ACK
ACK/-l FIN+ACKIACK ACK/- f Close/FIN
f FIN/ACK — Y

Timeout/-

Note: RFC 793 has a mistake in this diagram 21

TCP Connection Progress

Open connection:

192.168.0.4.49159 > 130.209.240.1.80:
130.209.240.1.80 > 192.168.0.4.49159:
192.168.0.4.49159 > 130.209.240.1.80:

Send “GET /index.html HTTP/1.1":

192.168.0.4.49159 > 130.209.240.1.80:
130.209.240.1.80 > 192.168.0.4.49159:

Send “Host: www.dcs.gla.ac.uk”:

192.168.0.4.49159 > 130.209.240.1.80:
130.209.240.1.80 > 192.168.0.4.49159:

Send blank line:

192.168.0.4.49159 > 130.209.240.1.80:
130.209.240.1.80 > 192.168.0.4.49159:

Receive web page:

130.209.240.1.80 > 192.168.0.4.49159:
130.209.240.1.80 > 192.168.0.4.49159:
192.168.0.4.49159 > 130.209.240.1.80:

Server closes connection:
130
192.
130
192.
130

.209.240.1.80 > 192.168.0.4.49159:
168.0.4.49159 > 130.209.240.1.80:
.209.240.1.80 > 192.168.0.4.49159:
168.0.4.49159 > 130.209.240.1.80:
.209.240.1.80 > 192.168.0.4.49159:

n

1033471698:1033471698(0) win 65535
3518203430:3518203430(0) ack 1033471699 win 5792
ack 3518203431 win 65535
1033471699:1033471725(26) ack 3518203431 win 65535
ack 1033471725 win 5792
1033471725:1033471746(21) ack 3518203431 win 65535
ack 1033471746 win 5792
1033471746:1033471748(2) ack 3518203431 win 65535
ack 1033471748 win 5792

3518203431:3518204879(1448) ack 1033471748 win 5792
3518204879:3518206327(1448) ack 1033471748 win 5792
ack 3518206327 win 65160

FP 3518206327:3518207344(1017) ack 1033471748 win 5792

F

ack 3518207345 win 64143
ack 1033471748 win 5792
1033471748:1033471748(0)
ack 1033471749 win 5792

ack 3518207345 win 65535

22

Questions?

23

