
Using the Transport Layer

Networked Systems 3
Lecture 12

Lecture Outline

• Using TCP connections

• Using UDP datagrams

• NAT traversal concepts

2

Using TCP Connections

• A TCP connection provides a reliable byte stream
abstraction, identifying applications by a 16 bit port
number
• Role of the port number

• Implications of the reliable byte stream abstraction

• Record boundaries

• Head of line blocking

• Implications of NAT on TCP connections

3

Using TCP Connections

4

bind(fd, ..., ...)

Network

Client

int fd = socket(...)

Server

listen(fd, ...)

connfd = accept(fd, ...)

read(connfd, buffer, buflen)

write(connfd, data, datalen)

close(connfd)

connect(fd, ..., ...)

write(fd, data, datalen)

read(fd, buffer, buflen)

close(fd)

int fd = socket(...)

Socket

fd

Socket

fd connfd

?

source and destination ports specified

Role of the TCP Port Number

5

Port RangePort Range Name Intended use

0 1023 Well-known (system) ports Trusted operating system services

1024 49151 Registered (user) ports User applications and services

49152 65535 Dynamic (ephemeral) ports Private use, peer-to-peer applications,
source ports for TCP client connections

RFC 6335

• Servers must listen on a known
port; IANA maintains a registry

• Distinction between system and
user ports ill-advised – security
problems resulted

• Insufficient port space available
(>75% of ports are registered)

• TCP clients traditionally connect
from a randomly chosen port in
the ephemeral range
• The port must be chosen randomly, to

prevent spoofing attacks

• Many systems use the entire port range
for source ports, to increase the amount
of randomness available

http://www.iana.org/assignments/port-numbers

TCP Congestion Control

• A TCP connection reliably delivers a byte stream
• The transmission speed depends on network conditions (→ lecture 14)

• The write() call will block if there is insufficient network or buffer
capacity

• Can use the select() function to determine if a call will block, but
cannot determine how long a particular write() will take

6

int fd;
fd_set wfds;
...
FD_ZERO(&wfds);
FD_SET(fd, & wfds);
if (select(fd+1, NULL, &wfds, NULL, NULL) > 0) {
 // Space is available to write()
}

Record Boundaries in TCP Connections

• If the data in a write() is bigger than the data link
layer MTU, TCP will send the data as fragments

• Similarly, multiple small write() requests may be
aggregated into a single TCP packet

• Implication: the data returned by a read() doesn’t
necessarily match that sent in a single write()
• There often appears to be a correspondence, but this is not guaranteed

(it may work in the lab, but not when you use it over a different link)

7

Head of Line Blocking in TCP

• What if data is lost due to network congestion?
• TCP will retransmit the missing data, transparently to the application

(→ lecture 13)

• A read() for the missing data will block until it arrives; TCP delivers all
data in-order

8

seq = 9

Sender Receiver

x

seq = 5
seq = 6
seq = 7
seq = 8
seq = 9
seq = 10
seq = 11

ack = 6
ack = 7

ack = 8

ack = 8
ack = 8

ack = 8seq = 8

1500 bytes
1500 bytes
1500 bytes
1500 bytes
1500 bytes
1500 bytes
1500 bytes

1500 bytes
1500 bytes

ack = 12

read() ! 1500 bytes
read() ! 1500 bytes
read() ! 1500 bytes

read() ! 6000 bytes

read() blocks

Application Level Framing

9

HTTP/1.1 200 OK
Date: Mon, 19 Jan 2009 22:25:40 GMT
Server: Apache/2.0.46 (Scientific Linux)
Last-Modified: Mon, 17 Nov 2003 08:06:50 GMT
ETag: "57c0cd-e3e-17901a80"
Accept-Ranges: bytes
Content-Length: 3646
Connection: close
Content-Type: text/html; charset=UTF-8

<HTML>
<HEAD>
<TITLE>Computing Science, University of Glasgow </TITLE>
...
</BODY>
</HTML>

Data may arrive in arbitrary sized chunks; must parse and understand
the data, no matter where it is split by the network – it’s a byte stream
(colours indicate one possible split of the data into chunks)

Example: HTTP response

Known marker (blank line)
signals end of headers

Size of payload indicated
in the headers

Implications of NAT for TCP Connections

• Outgoing connection creates state in NAT
• Need to send data periodically, else NAT state times out

• Recommended time out interval is 2 hours, many NATs use shorter

• Server behind NAT requires configured mapping

• Peer-to-peer connections difficult
• Simultaneous open with external mapping service

10

Private Network

192.168.0.0/16

NAT
Router192.0.2.47 192.168.0.1

Host

Host

192.168.0.2

192.168.0.3

Public
Internet

Host

130.209.247.112

RFC5382

Using UDP Datagrams

• UDP provides an unreliable datagram service,
identifying applications via a 16 bit port number
• UDP ports are separate from TCP ports

• Often used peer-to-peer (e.g. for VoIP), so both peers must bind() to a
known port

• Create via socket() as usual, but specify SOCK_DGRAM as the socket
type:

• No need to connect() or accept(), since no connections in UDP

11

int fd;
...
fd = socket(AF_INET, SOCK_DGRAM, 0);

Using UDP Datagrams

12

bind(fd, ..., ...)

Network

Client Server

sendto(fd, data, datalen, addr, addrlen)

recvfrom(fd, buffer, buflen, flags, addr, addrlen)

close(fd)

int fd = socket(...)

Socket

fd

Socket

fd

Sending UDP Datagrams

13

int fd;
char buffer[...];
int buflen = sizeof(buffer);
struct sockaddr_in addr;
...
if (sendto(fd, buffer, buflen, (struct sockaddr *) addr, sizeof(addr)) < 0) {
 // Error...
}

The sendto() call sends a single datagram. Each call to sendto() can send
to a different address, even though they use the same socket.

Alternatively, connect() to an address, then use write() to send the data.
There is no connection made at the UDP layer, the connect() call only sets
the destination address for future packets.

Receiving UDP Datagrams

14

The read() call may be used to read a single datagram, but doesn’t provide
the source address of the datagram. Most code uses recvfrom() instead –
this fills in the source address of the received datagram:

int fd;
char buffer[...];
int buflen = sizeof(buffer);
struct sockaddr addr;
socklen_t addr_len = sizeof(addr);
int rlen;
...
rlen = recvfrom(fd, buffer, buflen, 0, &addr, &addrlen);
if (rlen < 0) {
 // Error...
}

UDP Framing and Reliability

• Unlike TCP, each UDP datagram is sent as exactly
one IP packet (which may be fragmented in IPv4)
• Each read() corresponds to a single write()

• But, transmission is unreliable: packets may be
lost, delayed, reordered, or duplicated in transit
• The application is responsible for correcting the order, detecting

duplicates, and repairing loss – if necessary

• Generally requires the sender to include some form of sequence number
in each packet sent

15

UDP Guidelines

• Need to implement congestion
control in applications
• To avoid congestion collapse of the network

• Should be approximately fair to TCP

• RFC 3448 provides one algorithm for doing this

• Need to provide sequencing, reliability, and timing
in applications
• Sequence numbers and acknowledgements

• Retransmission and/or forward error correction

• Timing recovery

• UDP programming guidelines: RFC 5405

16

Packets Sent

P
ac

ke
ts

 D
el

iv
er

ed

Congestion collapse

No useful work done

Implications of NAT for UDP Flows

17

Private Network

192.168.0.0/16

NAT
Router192.0.2.47 192.168.0.1

Host

Host

192.168.0.2

192.168.0.3

Public
Internet

Host

130.209.247.112• NATs tend to have short time outs for UDP
• Not connection-oriented, so they can’t detect the end of flows

• Recommended time out interval is not less than two minutes, but many
NATs use shorter intervals – the VoIP NAT traversal standards suggest
sending a keep alive message every 15 seconds

• Peer-to-peer connections easier than TCP
• UDP NATs are often more permissive about allowing incoming packets

than TCP NATs; many allow replies from anywhere to an open port

RFC4787

NAT Traversal Concepts

18

Private Network
NAT

Host A

Public
Internet

Private
Network

NAT

Host B

Server

Control traffic

Data traffic

• Referral server on the public network used to discover
external (mapped) address/port on the NAT

• STUN – RFC 5389

• Referral server used to exchange possible connection
addresses with peer

• Systematically try to make a connection using all
possible combinations of addresses

• Every possible network interface and protocol, mapped and local

• ICE – RFC 5245

Happy Eyeballs for Dual-Stack Hosts

19

• Hosts may have both IPv4 and IPv6 addresses –
which to use?
• Prefer IPv6 if available – but deployments are new, and can be unreliable

• Need to fallback to IPv4 in case of problems

• Basic approach: try all possible addresses in turn
• Problematic, since connections may take 10s of seconds to fail

• Happy eyeballs approach: try addresses in parallel
1. Call getaddinfo(): returns a list of IP addresses sorted by

the host's address preference policy
2. Try to connection to first address in that list (e.g., IPv6)
3. If that connection does not complete within a short period of

time (e.g., 200-300ms), try parallel connection to the first
address belonging to the other address family (e.g., IPv4)

4. First connection established is used; the other is discarded
5. If neither succeeds, repeat with next pair of addresses until

all possibilities tried

Questions?

20

