

# Introduction to Networks (2)

Networked Systems 3 Lecture 2

### Lecture Outline

- Network Protocols
- Protocol Layering
  - OSI Reference Model
- Protocol Standards

### **Network Protocols**

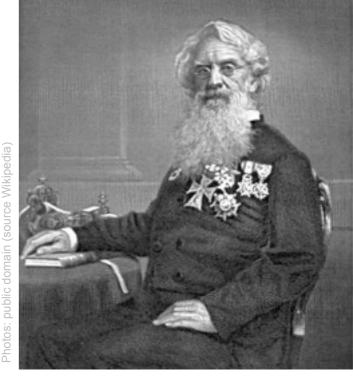
- Communication occurs when hosts exchange messages across a channel
- For meaningful communication, those messages must be in a common language, and obey some common rules – these form a network protocol

### Network Protocols: Language

- How is the grammar specified? What is the syntax?
  - Are messages textual?
    - What character set? language? How is binary data embedded?
  - Or binary?
    - Big or little endian? 32 or 64 bit? Fixed or variable length? What are the alignment requirements? Etc.
- What do protocol messages mean?

### Network Protocol: Rules

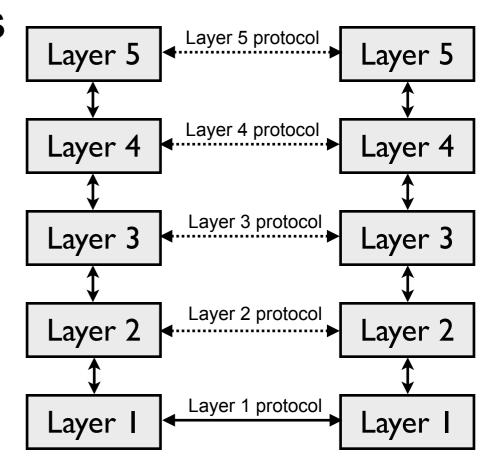
- What are the entities that communicate?
  - Peer-to-peer? Client-server? Broadcast?
  - How are entities named?
- How is access to the channel controlled?
  - How can send messages? When?
- How are errors handled?
  - How do you know if a message was received?


### Example: Morse Code

- An simple network protocol: telegraph using Morse code
  - Signal on electrical cable forms channel
  - Patterns of dots and dashes is a protocol:

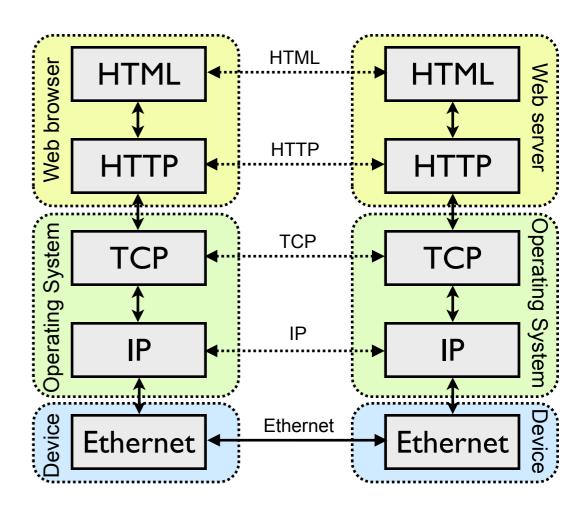
| Α | • -     | J | •       | S | • • •   |
|---|---------|---|---------|---|---------|
| В | - • • • | K | - • -   | Т | -       |
| С | - • - • | L | • - • • | U | • • -   |
| D | - • •   | M |         | V | • • • - |
| Е | •       | Ν | - •     | W | •       |
| F | • • - • | 0 |         | X | - • • - |
| G | •       | Р | • •     | Υ | - •     |
| Н | • • • • | Q | •-      | Z | ••      |
| I | • •     | R | • - •   |   |         |

Gap lengths vary between letters, words

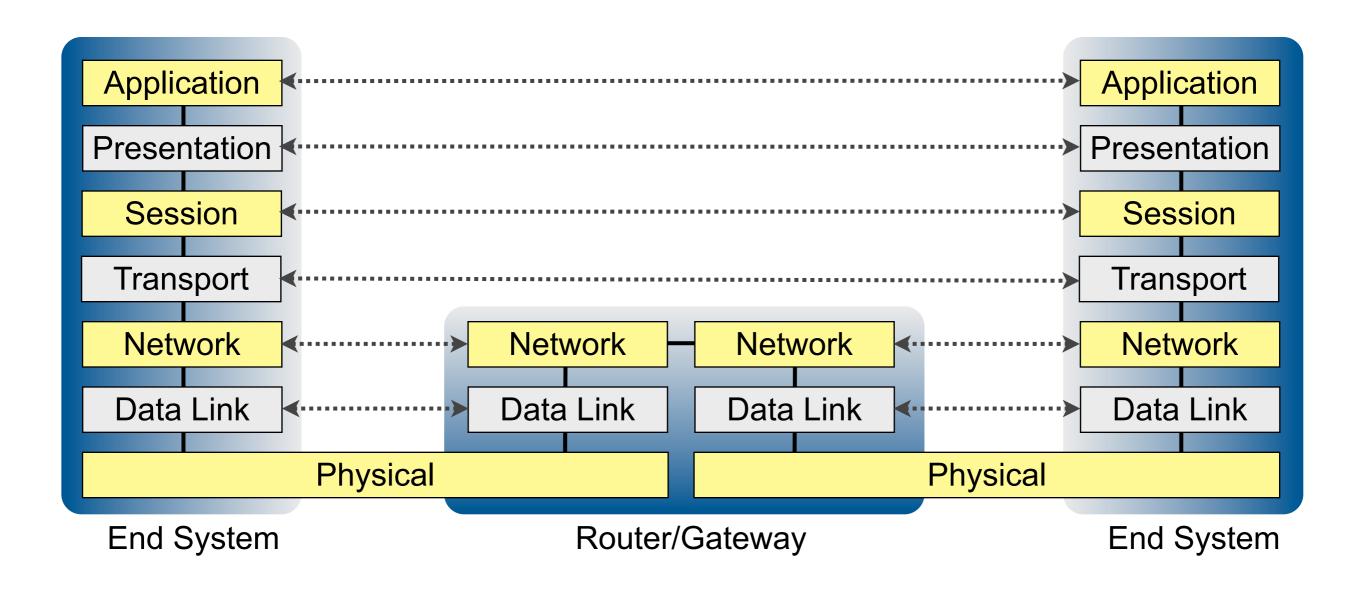





Samuel Morse


## **Protocol Layering**

- Communications systems are typically organised as a series of protocol layers
  - Structured design to reduce complexity
  - Each layer offers services to the next higher layer, which it implements using the services of the lower layer – well defined interfaces
    - Highest layer is the communicating application
    - Lowest layer is the physical communications channel
  - Peers at some layer, i, communicate via a layer i protocol, using lower layer services




### Protocol Layering: Example

- Web browser talking to a web server
- Simplified view with five protocol layers:
  - HTML
  - HTTP
  - TCP
  - IP
  - Ethernet



### **OSI Reference Model**



## Physical Layer

- Defines characteristics of the cable or optical fibre used:
  - Size and shape of the plugs
  - Maximum cable/fibre length
  - Type of cable: electrical voltage, current, modulation
  - Type of fibre: single- or multi-mode, optical clarity, colour, power output, and modulation of the laser
- For wireless links:
  - Radio frequency, transmission power, modulation scheme, type of antenna, etc.

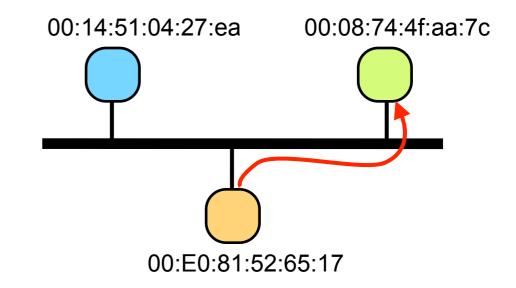






## Data Link Layer (1)

Structure and frame bit stream provided by the physical layer


| ••• | Start Code | Address  | Control  | Protocol         | Data                |
|-----|------------|----------|----------|------------------|---------------------|
|     |            |          |          |                  |                     |
| 10  | 01111110   | 10100111 | 00011011 | 0101000111010110 | 1011000100111011010 |

- Detect and correct errors on the link
  - Parity and error correcting codes
  - (Negative) acknowledgements + retransmission

# Data Link Layer (2)

#### Media access control

- Some physical links (e.g. Wi-Fi) shared between multiple hosts
- Requires link layer addresses
  - Hosts have addresses on the link
  - Messages include source and destination addresses
- Arbitrate requests for access to the media; resolve collisions
- Ensure fair access to the link and provide flow control



Example: Ethernet with CSMA-CD

## **Network Layer**

- Interconnects multiple links to form a wide area network from source host to destination host
  - Data delivery
  - Naming and addressing
  - Routing
  - Admission/Flow control
- Example: IP

### **Transport Layer**

- End-to-end transfer of data from the source to the destination(s)
  - Transfers data between a session level service at the source, and corresponding service at the destination
  - May provide reliability, ordering, framing, congestion control, etc.
    - Depends on guarantees provided by the network layer
- Example: TCP

## Session Layer

- Manages (multiple) transport layer connections
- Example session layer functions:
  - Open several TCP/IP connections to download a web page using HTTP
  - Use SMTP to transfer several email messages over a single TCP/IP connection
  - Coordinate control, audio and video flows making up a video conference

### **Presentation Layer**

- Manages the presentation, representation, and conversion of data:
  - Character set, language, etc.
  - Data markup languages (e.g. XML, HTML)
  - Data format conversion (e.g. big or little endian)
  - Content negotiation (e.g. MIME, SDP)
- Common services used by many applications

## **Application Layer**

- User application protocols
  - Not the application programs themselves

### Examples:

- Flickr API, Facebook API, Google Maps API, etc.
- Web services
- Grid computing

### **OSI Reference Model**

- Definition of OSI model was extremely political
  - None of the layers or layer boundaries should be considered sacrosanct
  - Doesn't reflect any deployed system architecture
  - But... very useful to guide thinking about systems architectures and implementations

### **Protocol Standards**

- A (mostly) formal description of a protocol
- To ensure interoperability amongst diverse implementations
- Variety of standards setting procedures:
  - Open or closed standards development process
  - Free or restricted standards availability
  - Individual vs. corporate vs. national membership
  - Lead technical development or document existing practice

You are here! -

Political

**Financial** 

Application

Presentation

Session

Transport

Network

Data Link

Physical

## Key Standards Organisations

- Internet Engineering Task Force
  - http://www.ietf.org/ and http://www.rfc-editor.org/
- International Telecommunications Union
  - http://www.itu.int/ (part of the United Nations)
- 3rd Generation Partnership Project
  - http://www.3gpp.org/
- World Wide Web Consortium
  - http://www.org/









## Questions?