

Introduction to Networks (1)

Networked Systems 3 Lecture 1

Lecture Outline

- Course Administration
 - Aims, Objectives, Intended Learning Outcomes
 - Course Outline
 - Labs and Assessment
 - Reading List
- Introduction to Networks

Course Administration

Contact Details and Website

Lecturer:

- Dr Colin Perkins, Room 405, Sir Alwyn Williams Building
- Email: colin.perkins@glasgow.ac.uk
- Make appointments by email to discuss the course outside scheduled lecture or lab times

Lecture notes and other material on online:

- http://csperkins.org/teaching/ns3/ (or on the School's Moodle site)
- Paper handouts will not be provided the act of taking notes helps learning

Aims and Objectives

- To introduce the fundamental concepts and theory of communications
- To provide a solid understanding of the technology that supports modern networked computer systems
- To introduce low-level network programming
- To give students the ability to evaluate and advise industry on the use and deployment of networked systems

Intended Learning Outcomes

- By the end of the course, students should be able to:
 - Describe & compare capabilities of various communication technologies and techniques
 - Know the differences between networks of different scale, and how these affect their design
 - Describe the issues in connecting heterogeneous networks
 - Describe importance of layering, and the OSI reference model
 - Understand demands of different applications on quality of service requirements for the underlying communication network
 - Understand a description of a LAN-based computer system, and explain the purpose and function of its various components
 - Write simple communication software

Course Outline

Week	Tue 12:00-13:00	Wed 14:00-16:00	Thu 12:00-13:00
1	Introduction to Networks	Network Programming	Introduction to Networks
2	Case Studies	Laboratory work	Communications Theory
3	Physical Layer		Data Link Layer
4	Data Link Layer		Network Layer
5	Network Layer		Network Layer
6	Transport Layer		Transport Layer
7	Transport Layer		Transport Layer
8	Applications		Applications
9	Applications		Security
10	Wrap-up		

Note: In week 1, the Wednesday slot will be a lecture from 14:00-15:00, followed by a lab from 15:00-1600; it is a two-hour lab session in other weeks.

Assessment

- Assessed exercises: 20%
 - Assessed network programming labs: programming using C, pthreads, and Berkeley Sockets using Linux
 - Exercises and lab work complement theory from lectures
 - Students required to attend all labs
- Examination: 80%
 - Exam format: answer all three questions

Required Reading

- Any good text on computer networks, for example:
 - Peterson and Davie, Computer Networks: A Systems Approach, 3rd Edition, Morgan Kaufman, 2003, ISBN 1558608338
 - Kurose and Ross, Computer Networking: A Top-Down Approach, 5th Edition, Addison-Wesley, 2010, ISBN 0136079679
 - Tanenbaum, Computer Networks, 4th Edition, Prentice Hall, 2002, ISBN 0130384887

Introduction to Networked Systems

What is a Networked System?

 Interconnected collection of communicating autonomous computing devices

- Interconnected direct or indirect, using optical fibre, copper wire, radio, etc.
- Computing device PC, phone, TV set-top box, etc.
- Distinct from a distributed system
 - Communication network is explicitly visible

Communications Networks

- Data transferred from source to destination(s) in potentially size limited messages
 - Communication can be simplex, half- or full-duplex
 - Path through communications medium is a channel

Information

- Messages convey information
 - The amount of information in a message can be characterised mathematically – Information Theory
- Capacity of channels to convey information can also be modelled
 - How much? How fast? How much power used?
 - Physical limits exist on the capacity of a channel

Signals

- Physical form of a message is a signal
 - May be a material object (carrier pigeon, CD, ...)
 - Usually a wave (sound, electrical signal, light, radio, ...)
- Signal may be analogue or digital
 - Analogue: a smooth continuum of values
 - Digital: a sequence of discrete *symbols*
 - Mapping information to symbols is known as coding

Analogue Signals

- Simplest analogue signal: amplitude directly codes value of interest
 - AM Radio, analogue telephones
- Can be arbitrarily accurate
- Susceptible to noise and interference on channel
- Difficult to process with digital electronics

Analogue Signals

Analogue data can be digitally coded by sampling at a suitable rate, quantising to the nearest allowable discrete value, and then converting to digital representation (PCM)

Digital Signals

- Digital signals comprise a sequence of discrete symbols – fixed alphabet, not arbitrary values
- But underlying channel is almost always analogue
 - Coding maps analogue signal ranges to digital symbols

Baud Rate

- Number of symbols transmitted per second is the baud rate
 - Binary codes common, using two distinct symbols
 - This is not a requirement radio communications and ADSL modems often use non-binary codes
 - E.g. Quadrature Amplitude Modulation with 16 symbols → 4 bits per baud

Channels and Network Links

- A signal is conveyed via a channel
 - May be directly conveyed electrical signals in a cable
 - May be modulated onto an underlying carrier radio

 The combination of signal and channel forms a network link

From Links to Networks

 A network link can directly connect one or more hosts

- Alternatively, hosts might be connected via intermediate switches or routers
 - Circuit switched vs. packet switched

Circuit Switched Networks

- A dedicated circuit can be set up for A and B to communicate
 - A and B exchange arbitrary length messages
 - Guaranteed capacity once circuit is created
 - But the dedicated circuit can block other communications (e.g. the C to D path); the capacity of the network gives the blocking probability
 - Example: traditional telephone network

Packet Switched Networks

- Alternatively, messages can be split into small packets before transmission
 - Allows A-B and C-D to communicate at the same time, sharing the bottleneck link
 - Connectivity guaranteed, but the available capacity varies depending how many other people are using the network
 - Messages have size limits
 - Example: the Internet

Networked Systems

- All networked systems built using these basic components:
 - Hosts the source and destination(s)
 - Links physical realisation of the channel, conveying messages
 - Switches and routers connect multiple links
- Layered on top are network protocols which give meaning to the messages that are exchanged

Questions?