
Assessed	
  Coursework	
  

Course	
  Name	
   NS3	
  
Coursework	
  Number	
   Summative	
  Exercise	
  2	
  

Deadline	
   Time:	
   9:00am	
   Date:	
   9	
  March	
  2012	
  
%	
  Contribution	
  to	
  final	
  

course	
  mark	
  
4%	
  

Solo	
  or	
  Group	
  	
   	
  	
  	
  Solo	
    	
   Group	
   	
  
Anticipated	
  Hours	
   4	
  

	
  
Submission	
  Instructions	
  

	
  
Submit	
  via	
  Moodle,	
  in	
  a	
  .tar.gz	
  archive	
  formatted	
  as	
  
instructed	
  in	
  the	
  NS3	
  Lab	
  4	
  handout.	
  
	
  

Please	
  Note:	
  This	
  Coursework	
  cannot	
  be	
  Re-­‐Done	
  
	
  

Code	
  of	
  Assessment	
  Rules	
  for	
  Coursework	
  Submission	
  

Deadlines	
  for	
  the	
  submission	
  of	
  coursework	
  which	
  is	
  to	
  be	
  formally	
  assessed	
  will	
  be	
  published	
  in	
  course	
  

documentation,	
  and	
  work	
  which	
  is	
  submitted	
  later	
  than	
  the	
  deadline	
  will	
  be	
  subject	
  to	
  penalty	
  as	
  set	
  out	
  below.	
  	
  

The	
  primary	
  grade	
  and	
  secondary	
  band	
  awarded	
  for	
  coursework	
  which	
  is	
  submitted	
  after	
  the	
  published	
  deadline	
  will	
  
be	
  calculated	
  as	
  follows:	
  

(i) in	
  respect	
  of	
  work	
  submitted	
  not	
  more	
  than	
  five	
  working	
  days	
  after	
  the	
  deadline	
  
a. the	
  work	
  will	
  be	
  assessed	
  in	
  the	
  usual	
  way;	
  

b. the	
  primary	
  grade	
  and	
  secondary	
  band	
  so	
  determined	
  will	
  then	
  be	
  reduced	
  by	
  two	
  secondary	
  bands	
  
for	
  each	
  working	
  day	
  (or	
  part	
  of	
  a	
  working	
  day)	
  the	
  work	
  was	
  submitted	
  late.	
  

(ii) work	
  submitted	
  more	
  than	
  five	
  working	
  days	
  after	
  the	
  deadline	
  will	
  be	
  awarded	
  Grade	
  H.	
  

Penalties	
  for	
  late	
  submission	
  of	
  coursework	
  will	
  not	
  be	
  imposed	
  if	
  good	
  cause	
  is	
  established	
  for	
  the	
  late	
  submission.	
  

You	
  should	
  submit	
  documents	
  supporting	
  good	
  cause	
  via	
  MyCampus.	
  	
  

Penalty	
  for	
  non-­‐adherence	
  to	
  Submission	
  Instructions	
  is	
  2	
  bands	
  

	
  

You	
  must	
  complete	
  an	
  “Own	
  Work”	
  form	
  via	
  
https://webapps.dcs.gla.ac.uk/ETHICS	
  for	
  all	
  coursework	
  

UNLESS	
  submitted	
  via	
  Moodle	
  



NS3 Lab 4 – UDP Programming

Dr Colin Perkins
School of Computing Science

University of Glasgow
http://csperkins.org/teaching/ns3/

29 February 2012

Introduction

The laboratory sessions for Networked Systems 3 (NS3) will introduce you to net-
work programming in C on Unix/Linux systems. There are weekly labs for this
course, during which you will complete several exercises. These exercises will
build on your knowledge of C programming and pthreads from the Advanced Pro-
gramming 3 course last semester, and on the material in the NS3 lectures. There
are a mixture of formative and summative exercises. The formative exercises are
intended to give you practice in programming networked systems in C; they are not
assessed. The two summative exercises are assessed, and are worth a total of 20%
of the marks for this course.

This is NS3 lab 4, on UDP programming. It comprises one formative exercise
and one summative exercise. The formative exercise should be completed during
the timetabled laboratory session in week 8 of the semester. The summative exer-
cise that should be completed during the timetabled laboratory sessions in weeks 8
and 9 of the semester, and during other hours as necessary. This work is assessed,
and is worth 4% of the marks for this course.

Background: UDP

The user datagram protocol (UDP) provides an unreliable and connectionless data-
gram service to applications. It is primarily used by local-area request-response
protocols such as the DNS, or for applications such as voice-over-IP that prefer
timeliness to reliability. UDP behaviour stands in sharp contrast to TCP, which
provides a reliable, connection oriented, stream abstraction.

A UDP socket can be created using the socket() system call in the usual
manner, but specifying SOCK DGRAM as the socket type:

int fd = socket(AF_INET, SOCK_DGRAM, 0);

1



Once a UDP socket has been created, it should be bound to a known port if it is
expected to act as a server that sends and receives datagrams. This is done using the
bind() system call, in exactly the same was as for a TCP socket. The arguments
to bind() indicate the local address and port to which the socket should be bound.
Since UDP is connectionless, there is no need to call the listen(), accept(),
or connect() functions.

UDP datagrams can be transmitted using the sendto() function. This takes
as arguments a file descriptor representing the socket, a buffer of data to the trans-
mitted, the length of that buffer, and the addresses and port to which that buffer
should be sent. The destination address is specified as a struct sockaddr *,
and a corresponding size. If sending to a unicast address, this should be looked
up in the DNS using getaddrinfo() in much the same way that you look up
the address used in a TCP connect() (but taking just the first address returned),
and using this as the destination of the datagram. Since the destination address is
specified in the sendto() call, it is possible to send each datagram to a different
destination.

int fd;
char buffer[...];
int buflen = sizeof(buffer);
struct sockaddr_in addr = ...;
...
if (sendto(fd, buffer, buflen, 0,

(struct sockaddr *) addr,
sizeof(addr)) < 0) {

// Error...
}

The recvfrom() function can be used to receive UDP datagrams. This
works in much the same way as read(), except that it also takes an empty ad-
dress structure (struct sockaddr *) that is filled in with source address and
port from the received datagram. This address can be used in a sendto() call to
send a reply. Each received datagram can come from a different source address.

int fd;
char buffer[...];
int buflen = sizeof(buffer);
struct sockaddr addr;
socklen_t alen = sizeof(addr);
int rlen;
...
rlen = recvfrom(fd, buffer, buflen, 0, &addr, &alen);
if (rlen < 0) {
// Error...

}

A UDP socket must be closed in the usual way, once you have finished using
it, using the close() system call.

2



Formative Exercise 5: UDP Client/Server Example

The formative exercise for this lab demonstrates how to build the most simple
UDP-based client-server application. You should write two programs:

udp hello server The server should listen for datagrams on UDP port 5008.
It should read the first datagram received, print the contents of that datagram
to the screen, close the socket, then exit.

udp hello client Your client should send the text “Hello, world!” in a UDP
datagram to port 5008 of a host named on the command line, then it should
close the socket. The client should take the name of the machine on which
the server is running as its single command line argument (i.e., if the server
is running on machine bo720-1-01 you should run your client using the
command hello client bo720-1-01.

Run your client and server, and demonstrate that you can send the text “Hello,
world!” from one to the other. Try this with client and server running on the same
machine, and with them running on two different machines.

Background: Multicast

In addition to standard point-to-point (unicast) transmission, UDP can also be used
with the IP multicast service. Multicast groups are identified by IP addresses in the
range 224.0.0.0 to 239.255.255.255. IP addresses in this range differ from other
IP addresses in that they identify a group of receivers, rather than a single host. A
UDP datagram sent to a multicast address is delivered to all hosts that have joined
that group. A host may join a multicast group by calling the setsockopt()
function with the address of the group to join (this is done after binding to a port):

struct ip_mreq imr;

inet_pton(AF_INET, "224.0.0.22", &(imr.imr_multiaddr.s_addr));
imr.imr_interface.s_addr = INADDR_ANY;

if (setsockopt(fd, IPPROTO_IP, IP_ADD_MEMBERSHIP,
&imr, sizeof(imr)) < 0) {

// Error...
}

Once a host has joined a multicast group, it will receiv datagrams sent to that
group address. A host does not need to join a group in order to send to that group.

Note that multicast addresses generally do not have DNS entries, so you must
specify them as raw IP addresses (using inet pton()) rather than looking them
up in the DNS using getaddrinfo(). Multicast addresses cannot be used with
TCP connections, since TCP is a point-to-point protocol, and only supports one
sender and one receiver.

3



A host can leave a multicast group by calling the setsockopt() function
with the IP DROP MEMBERSHIP option:

if (setsockopt(fd, IPPROTO_IP, IP_DROP_MEMBERSHIP,
&imr, sizeof(imr)) < 0) {

perror("Unable to join group");
return 1;

}

Receivers should leave any multicast groups that they have joined before they
close() the underlying sockets.

Summative Exercise 2: Multicast Chat

The second summative exercise demonstrates how to build a simple UDP multicast
chat application. You should write two programs:

chirp The chirp client sends a chat message to the group. It is invoked with a
single command line argument containing the messages to be sent, for exam-
ple: chirp "hello world". The message to be sent must be enclosed
in quotes, else the shell will interpret it as several arguments to pass to the
chirp command. The maximum length message that should be supported is
1000 characters.

The chirp client will send a single datagram to multicast group 224.0.0.22
port 5010 (you do not need to join a multicast group to send to it). The
contents of that datagram should be the text “FROM” (without the quotes),
followed by a single space, your username, then a single newline \n charac-
ter. Following the newline is the text passed as the command line argument,
then another \n to signal end of message. You can retrieve your username
using the getlogin() function.

Once your chirp client has sent the datagram, it should close the socket and
exit.

chirp listener The server should listen for datagrams sent to multicast group
224.0.0.22 on UDP port 5010. It should read each datagram received, and
extract the username and message text. For each message, it should print the
date and time, a dash, the username, another dash, then the message (e.g.,
if the received datagram contains “FROM csp\nhello world\n”, print
something like “21-02-2012 22:49:05 - csp - hello world”).

Check that the contents of the message, and the username, contain printable
characters before displaying them, in case a chirp client is sending badly
formed datagrams (display a ? in place of any non-printable characters).
Ensure your listener program is robust to receiving other malformed packets,
and does not crash.

4



Test your chirp and chirp_listener programs, ensuring that you can
chat with other members of the class.

Submission

You should prepare an electronic copy of your source code and Makefile (do not
submit compiled binaries) archived as a .tar.gz file that expands into a directory
named after your 7-digit matriculation number followed by “-submission2”. For
example, if your matriculation number is 0301234, your archive should expand to
create a directory “0301234-submission2” with your files inside. You can create
the archive using a command such as:

tar cvzf 0301234-submission2.tar.gz 0301234-submission2/

Ask one of the lab demonstrators if you are unsure how to create the archive.
If your archive is formatted correctly, you should see something like the following
when running the tar ztf command:

$ tar ztf 0301234-submission2.tar.gz
0301234-submission2/
0301234-submission2/Makefile
0301234-submission2/chirp.c
0301234-submission2/chirp_listener.c
$

(the 0301234-submission2/ prefix shows that the archive expands into a sub-
directory with the appropriate name for this matriculation number).

This work is assessed, and is worth 4% of the marks for this course. Sub-
missions should be made via Moodle. The deadline for submissions is 9:00am
on Friday 9 March 2012. As per the Code of Assessment policy regarding late
submissions, submissions will be accepted for up to 5 working days beyond this
due date. Any late submissions will be marked as if submitted on time, yielding
a band value between 0 and 22; for each working day the submission is late, the
band value will be reduced by 2. Submissions received more than 5 working days
after the due date will receive an H (band value of 0). Submissions that are not
made via Moodle, or that are in archives which do not meet the above guidelines
will be penalised two bands. This penalty will be applied in addition to any late
submission penalty.

5


