
Assessed	
  Coursework	
  

Course	
  Name	
   NS3	
  
Coursework	
  Number	
   Summative	
  Exercise	
  1	
  

Deadline	
   Time:	
   9:00am	
   Date:	
   27	
  February	
  2012	
  
%	
  Contribution	
  to	
  final	
  

course	
  mark	
  
16%	
  

Solo	
  or	
  Group	
  	
   	
  	
  	
  Solo	
    	
   Group	
   	
  
Anticipated	
  Hours	
   12	
  

	
  
Submission	
  Instructions	
  

	
  
Submit	
  via	
  Moodle,	
  in	
  a	
  .tar.gz	
  archive	
  formatted	
  as	
  
instructed	
  in	
  the	
  NS3	
  Lab	
  3	
  handout.	
  
	
  

Please	
  Note:	
  This	
  Coursework	
  cannot	
  be	
  Re-­‐Done	
  
	
  

Code	
  of	
  Assessment	
  Rules	
  for	
  Coursework	
  Submission	
  

Deadlines	
  for	
  the	
  submission	
  of	
  coursework	
  which	
  is	
  to	
  be	
  formally	
  assessed	
  will	
  be	
  published	
  in	
  course	
  
documentation,	
  and	
  work	
  which	
  is	
  submitted	
  later	
  than	
  the	
  deadline	
  will	
  be	
  subject	
  to	
  penalty	
  as	
  set	
  out	
  below.	
  	
  

The	
  primary	
  grade	
  and	
  secondary	
  band	
  awarded	
  for	
  coursework	
  which	
  is	
  submitted	
  after	
  the	
  published	
  deadline	
  will	
  
be	
  calculated	
  as	
  follows:	
  

(i) in	
  respect	
  of	
  work	
  submitted	
  not	
  more	
  than	
  five	
  working	
  days	
  after	
  the	
  deadline	
  
a. the	
  work	
  will	
  be	
  assessed	
  in	
  the	
  usual	
  way;	
  
b. the	
  primary	
  grade	
  and	
  secondary	
  band	
  so	
  determined	
  will	
  then	
  be	
  reduced	
  by	
  two	
  secondary	
  bands	
  

for	
  each	
  working	
  day	
  (or	
  part	
  of	
  a	
  working	
  day)	
  the	
  work	
  was	
  submitted	
  late.	
  
(ii) work	
  submitted	
  more	
  than	
  five	
  working	
  days	
  after	
  the	
  deadline	
  will	
  be	
  awarded	
  Grade	
  H.	
  

Penalties	
  for	
  late	
  submission	
  of	
  coursework	
  will	
  not	
  be	
  imposed	
  if	
  good	
  cause	
  is	
  established	
  for	
  the	
  late	
  submission.	
  
You	
  should	
  submit	
  documents	
  supporting	
  good	
  cause	
  via	
  MyCampus.	
  	
  

Penalty	
  for	
  non-­‐adherence	
  to	
  Submission	
  Instructions	
  is	
  2	
  bands	
  

	
  

You	
  must	
  complete	
  an	
  “Own	
  Work”	
  form	
  via	
  
https://webapps.dcs.gla.ac.uk/ETHICS	
  for	
  all	
  coursework	
  

UNLESS	
  submitted	
  via	
  Moodle	
  



NS3 Lab 3 – Filtering Web Proxy

Dr Colin Perkins
School of Computing Science

University of Glasgow
http://csperkins.org/teaching/ns3/

25 January 2012

Introduction

The laboratory sessions for Networked Systems 3 (NS3) will introduce you to net-
work programming in C on Unix/Linux systems. There are weekly labs for this
course, during which you will complete several exercises. These exercises will
build on your knowledge of C programming and pthreads from the Advanced Pro-
gramming 3 course last semester, and on the material in the NS3 lectures. There
are a mixture of formative and summative exercises. The formative exercises are
intended to give you practice in programming networked systems in C; they are not
assessed. The two summative exercises are assessed, and are worth a total of 20%
of the marks for this course.

This is NS3 lab 3, an exercise to build a filtering web proxy in C. It comprises
one summative exercise that should be completed during the timetabled laboratory
sessions in weeks 3–7 of the semester, and during other hours as necessary. This
work is assessed, and is worth 16% of the marks for this course.

Background

The HyperText Transport Protocol

A web browser uses the HyperText Transport Protocol (HTTP) to retrieve pages
from a web server. The browser makes a TCP/IP connection to port 80 of the web
server, sends an HTTP request for the requested web page over that connection,
reads the response back, and then displays the page. Both HTTP requests and
responses are text-based, making the network protocol relatively straight-forward
to understand.

An HTTP request comprises a single line command (the “method”), followed
by one or more header lines containing additional information. To retrieve a page,
a web browser uses the GET method, specifying the page to retrieve and the ver-
sion of the HTTP protocol used (the current version is HTTP/1.1). For example, a

1



browser would send the method GET /index.html HTTP/1.1 to retrieve the
page /index.html from a server. The GET request must be followed by a header
to specify the name of the web site, for example Host: www.gla.ac.uk (in
case there are several sites hosted on the same server). The headers are followed
with a blank line, to indicate the end of the request. For example, to fetch the main
University web page (http://www.gla.ac.uk/index.html), a browser
could make a TCP/IP connection to www.gla.ac.uk port 80, and send the fol-
lowing request:

GET /index.html HTTP/1.1
Host: www.gla.ac.uk

Note that each line ends with a carriage return (‘\r’) followed by a new line
(‘\n’), and the whole request is terminated by a blank line (i.e., a line containing
nothing but the \r\n end of line marker). The example above is a minimal HTTP
request, and the browser will usually include other header lines, in addition to
the Host: header, to control the connection, indicate support for particular file
formats and languages, convey cookies, and so on.

On receiving an HTTP request for a web page that exists, a web server will re-
ply with a HTTP/1.1 200 OK response, followed by several more header lines
providing information about the response, a blank line, and then the body of the
page. The headers lines should include a Content-Length: header, which
specifies the size of the body of the page in bytes. As with the request, each header
line ends with a carriage return followed by a new line, and the headers are sepa-
rated from the body with a blank line. An example of the type of response that is
sent follows (“...” indicates that some text has been elided):

HTTP/1.1 200 OK
Date: Tue, 12 Jan 2010 11:18:30 GMT
Server: Apache/1.3.34 (Unix) PHP/4.4.2
Last-Modified: Tue, 12 Jan 2010 09:59:31 GMT
ETag: "1a-3d4e-4b4c4803"
Accept-Ranges: bytes
Content-Length: 15694
Content-Type: text/html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
...
</body>
</html>

In this example, the “Content-Length:” is 15694 bytes, meaning that there are
exactly 15694 bytes in the body (starting with the “<” of the “<!DOCTYPE” line,
and finishing with the “>” of the “</html>” line.

2



If a request is made for a non-existing file, the server will respond with a 404
“file not found” error. This will have a “Content-Type:” header of “text/html”, and
the body of the response contains the error page to be displayed to the user.

HTTP/1.1 404 Not Found
Date: Tue, 20 Jan 2009 10:31:56 GMT
Server: Apache/2.0.46 (Scientific Linux)
Content-Length: 300
Connection: close
Content-Type: text/html; charset=iso-8859-1

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html>
<head>
<title>404 Not Found</title>
...
</body>
</html>

Other types of response are possible, distinguished by the numeric code in the
first line of the response.

Web Proxy Servers

A web proxy server is a middlebox that is interposed into HTTP connections, and
can inspect, process, and manipulate the HTTP requests and responses. A web
proxy can act as a cache, saving local copies of certain responses so it can reply
directly to future requests without having to contact the server, saving time and
upstream network bandwidth (this is the reason the University runs a web proxy
cache). Alternatively, a web proxy can act as a filter, deciding which requests to
forward on to the server, and which to respond to with a 404 error, as if the page
cannot be found. This latter behaviour can be used to remove advertising, or to
censor pages that the operator of the proxy thinks are undesirable.

To a web browser, a proxy appears as a web server: it accepts connections,
reads requests, and sends responses in much the same way as any other web server
would. To a web server, a proxy appears like a browser: it makes requests and
reads responses. Internally, a proxy is implemented as a hybrid, and works much
like a server and browser connected back-to-back. For each request it receives, it
either replies directly to the browser like a server would, or it makes an onward
connection to the actual web server, forwards the client’s request to the server,
reads the server’s response, and sends it on to the client.

Summative Exercise 1: Filtering Web Proxy

The goal of this summative exercise is to build a web proxy server that can filter out
advertising, or other unwanted content. It will introduce you to the operation of the

3



HTTP protocol, and give you practice building a moderately complex networked
application in the C programming language.

You should write a program, fwp, which acts as a filtering web proxy. This
should run on a machine in the Boyd Orr 720 lab, and accept TCP connections
on port 8080. For each incoming connection that it accepts, it should make a cor-
responding outgoing connection to the University’s web proxy (using hostname
wwwcache.dcs.gla.ac.uk, TCP port 8080). Once both connections are established,
your program should enter a loop, repeatedly reading HTTP requests from the
incoming connection ready for processing. For each HTTP request, your proxy
should inspect the method (the first line of the request). If the method is any-
thing other than “GET”, then the request should be forwarded unchanged on the
outgoing connection. If the method in the request is “GET”, then the requested
URL should be extracted from the method line and parsed. If the requested URL
matches a banned-site list contained in your proxy, then your proxy should respond
to the browser with a locally generated 404 error page, and should not forward the
request. Otherwise, if the URL in the GET method doesn’t match the banned-site
list, your proxy should forward the request to the University’s web proxy using the
outgoing connection.

Your proxy should read, parse, and buffer the response to each request that it
sent on to the University web proxy. To read the full response, you’ll need to read
in the headers, stopping when you reach a blank line, then check the “Content-
Length:” header to determine the length of the response content, then read that
many bytes of data following the headers. Note that, due to the way TCP conges-
tion control behaves, data may be delivered in arbitrary sized chunks, and it may
take more than one read() call to get all the data.

After reading the response, you should check the “Content-Type:” header. If
the content type is different to “text/html”, the response from the server should
be sent unchanged to the browser that made the request. If the content type is
“text/html”, the response from the server should be sent to the browser after first
replacing all words on a banned-word list you maintain with an equivalent number
of “*” characters (or with other words, if you prefer).

When your proxy notices that an incoming connection has been closed by the
browser, it should close that connection itself, and also close the corresponding
outgoing connection to the University’s web proxy. Similarly, if the University’s
web proxy closes the outgoing connection you made to it, then your proxy should
close both that connection and the corresponding incoming connection.

Your proxy should be implemented in a multithreaded manner, so it can handle
multiple connections simultaneously. It should print a log of the actions it performs
to standard output, for debugging purposes. This log should record threads created
and destroyed, connections opened and closed, details of requests forwarded and
denied, and details of any banned word filtering performed.

Your proxy should send a HTTP/1.1 500 Internal Server Error
to the client, and close the incoming and outgoing connections, if it encounters a
problem.

4



Your proxy must be written in C, and must run on the Linux machines in the
level 3 laboratory. You are required to write a simple Makefile to compile your
code, rather than running the compiler by hand. You are also strongly advised to
enable all compiler warnings (at minimum, use gcc -W -Wall), and to fix your
code so it compiles without warnings. Compiler warnings highlight code which is
legal, but almost certainly doesn’t do what you think it does. Use them to help you
find problems.

Test your proxy by changing the proxy settings in your browser to connect to
your proxy (localhost, port 8080), then browse the web as normal. Check that
browsing works as expected. Then, add some sites to your banned-sites lists to
check that your proxy successfully prevents access to those sites (you might try to
filter out advertising from a site you use). Finally, check that you can censor certain
words within other websites.

Submission

You should prepare an electronic copy of your source code and Makefile (do not
submit compiled binaries) archived as a .tar.gz file that expands into a directory
named after your 7-digit matriculation number followed by “-submission1”. For
example, if your matriculation number is 0301234, your archive should expand to
create a directory “0301234-submission1” with your files inside. You can create
the archive using a command such as:

tar cvzf 0301234-submission1.tar.gz 0301234-submission1/

Ask one of the lab demonstrators if you are unsure how to create the archive.
If your archive is formatted correctly, you should see something like the following
when running the tar ztf command:

$ tar ztf 0301234-submission1.tar.gz
0301234-submission1/Makefile
0301234-submission1/fwp.c
$

(the 0301234-submission1/ prefix shows that the archive expands into a sub-
directory with the appropriate name for this matriculation number).

This work is assessed, and is worth 16% of the marks for this course. Sub-
missions should be made via Moodle. The deadline for submissions is 9:00am on
Monday 27 February 2012. As per the Code of Assessment policy regarding late
submissions, submissions will be accepted for up to 5 working days beyond this
due date. Any late submissions will be marked as if submitted on time, yielding
a band value between 0 and 22; for each working day the submission is late, the
band value will be reduced by 2. Submissions received more than 5 working days
after the due date will receive an H (band value of 0). Submissions that are not
made via Moodle, or that are in archives which do not meet the above guidelines
will be penalised two bands. This penalty will be applied in addition to any late
submission penalty.

5


