P Unaversity | School of
of Glasgow | Computing Science

Concurrency (2)

Advanced Operating Systems (M)
Tutorial 8

Tutorial Outline

® Review of lectures
e Key learning outcomes

® Discussion

Review of Lectures

e Software Transactional Memory (STM)

® | ock-based programs do not compose

e STM programming model — atomic

e STM in Haskell — advantages of purely functional languages with monadic
/O support; retry; orElse

e STMin traditional languages

® |Message Passing Systems

e Message passing concepts

® |Interaction models; typing of communication; naming of endpoints and
channels

e Reliablility in concurrent message passing systems: let it crash

e Erlang, Scala, etc.

Key Learning Outcomes

e Understanding of the concepts of STM;
implementation in functional languages

e Understanding of the concepts of message passing

e Understanding of models for fault tolerance in
message passing systems — the “let it crash”
philosophy, with remote error handling

Discussion

e Two very different approaches to concurrency
offered by STM-Haskell and Erlang

e (Conceptual purity vs. engineering pragmatics?

Message passing is intuitive, easy to integrate into
existing systems, but doesn’t solve the problem of
composition

STM is theoretically elegant, but cannot be integrated into
real-world systems

D01:10.1145/1378704.1378725

Composable Memory Transactions

By Tim Harris, Simon Marlow, Simon Peyton Jones, and Maurice Herlihy

Abstract
Writing concurrent programs is notoriously difficult and
is of increasing practical importance. A particular source

even
abstractions cannot be composed together to form larger

tees than are conventionally possible. In particular, we
guarantee “strong atomicity™” in which transactions
always appear to execute atomically, no matter what
the rest of the program is doing. Furthermore transac
tions are compositional: small transactions can be

based on transactional memory, that offers far richer com-
position. All the usual benefits of transactional memory are
esent (e, butin addi-

toform la
+ We present a modular form of blocking (Section 3.2)
The idea is simple: a transaction calls a ret.ry opera-
tion to signal that it is not yet ready to run (e.g., itis try

hoice that
were inaccessible in earlier work.

1INTRODUCTION
The free lunch is over.* We have been used to the idea that
our programs will go faster when we buy a next-generation
processor, but that time has passed. While that next-
generation chip will have more CPUs, each individual CPU
will be no faster than the previous year's model. If we want
our programs to run faster, we must learn to write parallel
programs,

Writing parallel programs is notoriously tricky. Main-
stream lock-based abstractions are difficult to use and they
make it hard to design computer systems hat are reliable
and scalable. Furthermore, systems built using locks are dif-

To address some of these difficulties, several research-
ers (including ourselves) have proposed building program:
‘ming language features over software transactional memory
(STM), which can perform groups of memory operations
atomically** Using transactional memory instead of locks

i deadlock and

does nothave to identify the condition which will
enable it; this s detected automatically by the STM.
The retry function allows possibly blocking transac-
tions to be composed in sequence. Beyond this, we also
provide oxE1se, which allows them to be composed as
alternatives, so that the second is run if the first retries
(see Section 3.4). This ability allows threads to wait for
many things at once, like the Unix select system
call—except that orELse composes, whereas select
does not.

Everything we describe is fully implemented in the Glas-

‘gow Haskell Compiler (GHC), a fully fledged optimizing
P C Haskell; the STV

were incorporated in the GHC 6.4 release in 2005. Further

examples and a_ programmer-oriented tutorial are also

available."

Our main war cry is compositionality: a programmer can
control atomicity and blocking behavior in a modular way
that respects abstraction barriers. In contrast, lock-based
approaches lead to a direct conflict between abstraction and

‘Taken together, these ideas offer

brings well-k es: freedom
priority tim:

3 qualitie mprovernent i angusge support (o modulac

ity and concurrency.
Early ok on sotware ransaconal memory sufered
I

he improvement in moving from as-
sembly code to a "w vl language. Just as with assembly
code, a programmer with sufficient time and skills may ob

itdidnoty
code from bypassing the o It and accessing data

ain better p a ly with low-level

h
but forall but the most ﬂcmnndm; plistions,ouigher-
level STM

tions executing atomically. Furthermore, early STM systems
did not provide a convineing story for building operations
that may block—for example, a shared work-queue support-
ing operations that wait if the queue becomes empry.

‘Our work on STM-Haskell set out to address these pr
lems. In particular, our original paper makes the ’o”uwmg
contributions:

" Wereexpres the deasof tansactonsl memorynthe
Setting of the purely functional language Haskell
(Section 31 Aswe show, ST can be cxpressed partica

touse Haskel' type system to give far stronger guaran-

ugh.
“This paper s an abbreviated and polished version of an
earlier paper with the same title.” Since then there has been

actional memory, but almost all of it deals with the question
of atomic memory update, while much less attention is paid
0 our central concerns of blocking and synchronization be-
tween threads, exemplified b Else. In our
view this is serious omission: locks without condition vari-
ables would be of limited use.

‘Transactional memory has tricky semantics, and the
original paper gives a precise, formal semantics for transac-
tions, as well as a description of our implementation. Both
are omitted here due to space limitations.

—

contributed articles

001:10.1145/1810891.1810910

overhead; programmers can create

The same component isolation that made large numbers of E ﬂﬂué’“:fﬂblm
it eflechve Ior large distri uled telecom jf",‘:;: s g“‘“‘::m“;z“
their solutions.

mal
cPl.Is and netwnrked applncahons.

A Erlang processcs are solated
from one another and in principle

['8v JoE ARMsTRONG

are “thread safe.” When Erlang ap-
plications are deployed on multicore

Erlang

computers, the individual Erlang pro-
cesses are spread over the cores, and
programmers do not have to worry
about the details. The solated pro-

:
morphism, Erlang could be viewed
as extremely objectoriented though
without the usual mechanisms associ-
ated with traditional 00 languages.
Erlang has no mutexes, and pro-
cesses cannot share memory.* Even

ERLANG IS A concurrent programming language The sequenl rang suse
designed for programming fault-tolerant distributed | ecuteswithin an individual process s a

systems at Ericsson and has been (since 2000) freely

ming langu immutable
available subject to an open-source license. More Moreover, instead of classes, methods,

recently, we've seen renewed interest in Erlang, as

dymamiclly yped functonal program:

the Erlang way of programming maps naturally to eronder unctions. also inludes po-
multicore computers. In it the notion of a process is | cesses, sophisticated error handling,

fundamental, with processes created and managed

code-replacement mechanisms, and 1
large set of ibraries.

by the Erlang runtime system, not by the underlying Hore, 1 ouline the key design erte-
operating system. The individual processes, which are | ria behind the language, showing how

programmed in a simple dynamically typed functional

as well as in programming language

programming language, do not share memory and technology used since 1985,

exchange data through message passing, simplifying
the programming of multicore computers

is used for programming fault-tolerant, when 1 was a new employee at the Er-
distributed, real-time applications. What differentiates
it from most other languages is that it’s a concurrent

programming language; concurrency belongs to

the langu

programs are collections of parallel processes
cooperating to solve a particular problem that can

not o the operating system. Its

Shared Nothing
The Erlang story began in mid-1985

iesson Computer Science Lab in Stock

be created quickly and have only limited memory aged and rarely necessary

——

