
Concurrency

Advanced Operating Systems (M)
Tutorial 7

Tutorial Outline

• Review of lectures

• Key learning outcomes

• Discussion

2

Review of Lectures

• Hardware trends towards multicore
• Moore’s law, power consumption, cores, and interconnects

• NUMA optimisations: locality-aware memory allocation; replication of
kernel data structures; locality-aware scheduling

• Difficulty of maintaining cache coherence; benefits of message passing

• Multi-kernel model
• Distributed system model; explicit communication; replicated state

• Example: Barrelfish

• Heterogenous instruction set systems
• Programming models: slave core, multi-kernel model, VM with transparent

offload, hybrid VM with device-specific features

• Examples: Helios, OpenCL, Hera-JVM, Accelerator

3

Key Learning Outcomes

• Understanding of the hardware trends towards
multicore systems, heterogeneity

• Benefits and limitations of the multi-kernel model
for structuring operating systems

• Understanding the trade-off between the different
approaches to handling heterogeneity

• Familiarity with concepts underlying the example
systems: Helios, OpenCL, Hera-JVM, Accelerator

4

Discussion: Hera-JVM

• Compilation to the SPE core – relatively standard

• Software caching of heap objects
• DMA access to main memory only, used to cache entire objects

• Java memory model maintained through cache invalidation (§5.3) –
expensive

• Software-managed cache

• Software caching of methods
• DMA used to copy methods to SPE when they’re invoked

• Each object may be JIT compiled twice, once for PPE, once for SPE

• Problems with returning from a method, if caller has been evicted (§5.2)

• How to trigger migration to SPE core?
• Explicit core annotations on a method

• Annotating methods with the sort of operations performed, with the runtime
deciding which core is appropriate – transparent but difficult

• Performance

• Programming model – is this a good approach?

5

Hera-JVM: A Runtime System for
Heterogeneous Multi-Core Architectures

Ross McIlroy ∗

Microsoft Research Cambridge
rmcilroy@microsoft.com

Joe Sventek
University of Glasgow
joe@dcs.gla.ac.uk

Abstract
Heterogeneous multi-core processors, such as the IBM Cell
processor, can deliver high performance. However, these
processors are notoriously difficult to program: different
cores support different instruction set architectures, and the
processor as a whole does not provide coherence between
the different cores’ local memories.

We present Hera-JVM, an implementation of the Java
Virtual Machine which operates over the Cell processor,
thereby making this platforms more readily accessible to
mainstream developers. Hera-JVM supports the full Java
language; threads from an unmodified Java application can
be simultaneously executed on both the main PowerPC-
based core and on the additional SPE accelerator cores. Mi-
gration of threads between these cores is transparent from
the point of view of the application, requiring no modifica-
tion to Java source code or bytecode. Hera-JVM supports
the existing Java Memory Model, even though the underly-
ing hardware does not provide cache coherence between the
different core types.

We examine Hera-JVM’s performance under a series
of real-world Java benchmarks from the SpecJVM, Java
Grande and Dacapo benchmark suites. These benchmarks
show a wide variation in relative performance on the dif-
ferent core types of the Cell processor, depending upon the
nature of their workload. Execution of these benchmarks on
Hera-JVM can achieve speedups of up to 2.25x by using
one of the Cell processor’s SPE accelerator cores, compared
to execution on the main PowerPC-based core. When all
six SPE cores are exploited, parallel workloads can achieve
speedups of up to 13x compared to execution on the single
PowerPC core.

Categories and Subject Descriptors C.1.3 [Processor Ar-
chitectures]: Other Architecture Styles—Heterogeneous (hy-
brid) systems; D.3.4 [Programming Languages]: Proc-
essors—Run-time environments.

General Terms Design, Languages, Performances.

∗ Work performed while at the University of Glasgow.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA/SPLASH’10, October 17–21, 2010, Reno/Tahoe, Nevada, USA.
Copyright c© 2010 ACM 978-1-4503-0203-6/10/10. . . $10.00

1. Introduction
Commodity microprocessors are providing increasing num-
bers of cores to improve their performance, as issues such as
memory access latency, energy dissipation and instruction
level parallelism limit the performance improvements that
can be gained by a single core. Current commodity multi-
core processors are symmetric, with each processing core
being identical. This kind of architecture provides a simple
platform on which to build applications, however, a Hetero-
geneous Multi-core Architecture (HMA), consisting of dif-
ferent types of processing cores, has the potential to provide
greater performance and efficiency [1, 6].

There are two primary ways in which an HMA can im-
prove performance. First, heterogeneous cores allow special-
isation of some cores to improve the performance of particu-
lar application types, while other cores can remain more gen-
eral purpose, such that the performance of other applications
does not suffer. Second, an HMA can also enable programs
to scale better in the presence of serial sections of a paral-
lel workload. Amdahl’s law [4] shows that even a relatively
small fraction of sequential code can severely limit the over-
all scalability of an algorithm. A HMA can devote silicon
area towards a complex core, on which sequential code can
be executed quickly, and use the rest of its silicon area for
a large number of simple cores, across which parallel work-
loads can be scaled. This enables an HMA to provide better
potential speedups compared with an equivalent symmetric
architecture when Amdahl’s law is taken into account [8].

However, this potential for higher performance comes at
the cost of program complexity. In order to exploit an HMA,
programmers must take into account: the different strengths
and weaknesses of each of the available processing cores;
the lack of functionality on certain cores (e.g., floating point
hardware or operating system support); potentially different
instruction sets and programming environments on each of
the core types; and (often) a non-coherent shared memory
system between cores of different types.

If mainstream application developers are to exploit HMAs,
they must be made simpler to program. High level virtual
machine based languages, such as Java, present an opportu-
nity to hide the details of a heterogeneous architecture from
the developer, behind a homogeneous virtual machine inter-
face.

Discussion: Accelerator

• GPGPU offload using data parallel arrays in C#

• Architecture of GPGPU device

• Programming model
• Data parallel arrays

• Lazy evaluation, JIT compilation and execution when result assigned to a
standard array

• Comparison with OpenCL
• Programming model is simpler but more restrictive

• Is it sufficient?

• Trade-offs compared to Hera-JVM?

6

Accelerator: Using Data Parallelism to Program GPUs for
General-Purpose Uses

David Tarditi Sidd Puri Jose Oglesby
Microsoft Research

{dtarditi,siddpuri,joseogl}@microsoft.com

Abstract
GPUs are difficult to program for general-purpose uses. Program-
mers can either learn graphics APIs and convert their applications
to use graphics pipeline operations or they can use stream program-
ming abstractions of GPUs. We describe Accelerator, a system that
uses data parallelism to program GPUs for general-purpose uses
instead. Programmers use a conventional imperative programming
language and a library that provides only high-level data-parallel
operations. No aspects of GPUs are exposed to programmers. The
library implementation compiles the data-parallel operations on the
fly to optimized GPU pixel shader code and API calls. We describe
the compilation techniques used to do this. We evaluate the effec-
tiveness of using data parallelism to program GPUs by providing
results for a set of compute-intensive benchmarks. We compare
the performance of Accelerator versions of the benchmarks against
hand-written pixel shaders. The speeds of the Accelerator versions
are typically within 50% of the speeds of hand-written pixel shader
code. Some benchmarks significantly outperform C versions on a
CPU: they are up to 18 times faster than C code running on a CPU.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming—Parallel Programming; D.3.4
[Programming Languages]: Processors—Compilers

General Terms Measurement, Performance, Experimentation,
Languages

Keywords Graphics processing units, data parallelism, just-in-
time compilation

1. Introduction
Highly programmable graphics processing units (GPUs) became
available in 2001 [10] and have evolved rapidly since then [15].
GPUs are now highly parallel processors that deliver much higher
floating-point performance for some workloads than comparable
CPUs. For example, the ATI Radeon x1900 processor has 48 pixel
shader processors, each of which is capable of 4 floating-point op-
erations per cycle, at a clock speed of 650 MHz. It has a peak
floating-point performance of over 250 GFLOPS using single-
precision floating-point numbers, counting multiply-adds as two
FLOPs. GPUs have an explicitly parallel programming model and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ASPLOS’06 October 21–25, 2006, San Jose, California, USA.
Copyright c© 2006 ACM 1-59593-451-0/06/0010. . . $5.00.

their performance continues to increase as transistor counts in-
crease.

The performance available on GPUs has led to interest in using
GPUs for general-purpose programming [16, 8]. It is difficult,
however, for most programmers to program GPUs for general-
purpose uses.

In this paper, we show how to use data parallelism to program
GPUs for general-purpose uses. We start with a conventional im-
perative language, C# (which is similar to Java). We provide a li-
brary that implements an abstract data type providing data-parallel
arrays; no aspects of GPUs are exposed to programmers. The li-
brary evaluates the data-parallel operations using a GPU; all other
operations are evaluated on the CPU. For efficiency, the library
does not immediately perform data-parallel operations. Instead, it
builds a graph of desired operations and compiles the operations on
demand to GPU pixel shader code and API calls.

Data-parallel arrays only provide aggregate operations over en-
tire input arrays. The operations are a subset of those found in lan-
guages like APL and include element-wise arithmetic and compar-
ison operators, reduction operations (such as sum), and transfor-
mations on arrays. Data-parallel arrays are functional: each oper-
ation produces a new data-parallel array. Programmers must ex-
plicitly convert back and forth between conventional arrays and
data-parallel arrays. The lazy compilation is typically done when
a program converts a data-parallel array to a normal array.

Compiling data-parallel operations lazily to a GPU allows us to
implement the operations efficiently: the system can avoid creat-
ing large numbers of temporary data-parallel arrays and optimize
the creation of pixel shaders. It also allows us to avoid exposing
GPU details to programmers: the system manages the use of GPU
resources automatically and amortizes the cost of accessing graph-
ics APIs. Compilation at run time also allows the system to handle
properties and features that vary across GPU manufacturers and
models.

We have implemented these ideas in a system called Acceler-
ator. We evaluate the effectiveness of the approach using a set of
benchmarks for compute-intensive tasks such as image processing
and computer vision, run on several generations of GPUs from both
ATI and NVidia. We implemented the benchmarks in hand-written
pixel shader assembly for GPUs, C# using Accelerator, and C++ for
the CPU. The C# programs, including compilation overhead, are
typically within 2×of the speed of the hand-written pixel shader
programs, and sometimes exceed their speeds. The C# programs,
like the hand-written pixel shader programs, often outperform the
C++ programs (by up to 18×).

Prior work on programming GPUs for general-purpose uses ei-
ther targets the specialized GPU programming model directly or
provides a stream programming abstraction of GPUs. It is diffi-
cult to target the GPU directly. First, programmers need to learn
the graphics programming model, which is specialized to the set of

325

