P Unaversity | School of
of Glasgow | Computing Science

Concurrency

Advanced Operating Systems (M)
Tutorial 7

Tutorial Outline

® Review of lectures
e Key learning outcomes

® Discussion

Review of Lectures

® Hardware trends towards multicore

e Moore’s law, power consumption, cores, and interconnects

e NUMA optimisations: locality-aware memory allocation; replication of
kernel data structures; locality-aware scheduling

e Difficulty of maintaining cache coherence; benefits of message passing

® Multi-kernel model

e Distributed system model; explicit communication; replicated state

e Example: Barrelfish

® Heterogenous instruction set systems

e Programming models: slave core, multi-kernel model, VM with transparent
offload, hybrid VM with device-specific features

e Examples: Helios, OpenCL, Hera-JVM, Accelerator

Key Learning Outcomes

e Understanding of the hardware trends towards
multicore systems, heterogeneity

® Benefits and limitations of the multi-kernel model
for structuring operating systems

¢ Understanding the trade-off between the different
approaches to handling heterogeneity

e Familiarity with concepts underlying the example
systems: Helios, OpenCL, Hera-JVM, Accelerator

Discussion: Hera-dVM

e Compilation to the SPE core — relatively standard
e Software caching of heap objects

e DMA access to main memory only, used to cache entire objects

e Java memory model maintained through cache invalidation (§5.3) —
expensive

e Software-managed cache

e Software caching of methods

e DMA used to copy methods to SPE when they’re invoked
e Each object may be JIT compiled twice, once for PPE, once for SPE
e Problems with returning from a method, if caller has been evicted (§5.2)

e How to trigger migration to SPE core?

e Explicit core annotations on a method

e Annotating methods with the sort of operations performed, with the runtime
deciding which core is appropriate — transparent but difficult

e Performance

® Programming model — is this a good approach?

Discussion: Accelerator

Accelerator: Using Data Parallelism to Program GPUs for
General-Purpose Uses

e GPGPU offload using data parallel arrays in C#
e Architecture of GPGPU device

® Programming model

e Data parallel arrays
Lazy evaluation, JIT compilation and execution when result assigned to a

standard array

e Comparison with OpenCL

e Programming model is simpler but more restrictive

° Is it sufficient?

® Trade-offs compared to Hera-JVM?

