
Dependable Kernels and Device Drivers

Advanced Operating Systems (M)
Tutorial 5

Tutorial Outline

• Review of Problem Set 2

• Review of lectures

• Key learning outcomes

• Discussion

2

Review of Problem Set 2

• Question 1: Consider a system comprising three independent periodic tasks
T1 = (4, 1), T2 = (5, 1) and T3 = (10, 2). Demonstrate that this system can be
scheduled in a preemptive manner on a single processor using a) the rate
monotonic algorithm; and b) the earliest deadline first (EDF) algorithm.

3

Review of Problem Set 2

• Question 2: The system from question 1 must also support the execution of
three aperiodic jobs: A1 which is released at time 1, A2 which is released at
time 8, and A3 which is released at time 12. Each aperiodic job executes for 1
unit of time. The system is scheduled using a preemptive rate monotonic
scheduler, on a single processor, with a server task, Ts = (3, 0.5) to schedule
the aperiodic jobs.

• Draw a diagram to illustrate the scheduler if Ts is implemented as a polling
server. What are the response times of the aperiodic jobs?

5

Review of Problem Set 2

• Question 3: Is the system from question 2 schedulable if Ts is implemented
as a deferrable server? What are the response times of the aperiodic jobs?

7

Review of Problem Set 2

• Question 4: Is the system from question 2 schedulable if Ts is implemented
as a fixed-priority sporadic server? Explain your answer.

9

Review of Problem Set 2

• Question 5: The fixed-priority sporadic server has a complex set of budget
consumption and replenishment rules. Discuss whether you believe the
benefits of this server outweigh its complexity.

11

Review of Lectures (1)

• Dependable device drivers
• Sources of bugs in device drivers

• Based on a survey of Linux device driver bugs: 23% general, 38% hardware device handling,
39% concurrency and interactions with other kernel subsystems

• Improving device drivers: engineering approaches
• Applying object oriented languages and techniques

• Example: Apple MacOS X I/O Kit

• Advancing the driver model
• Making device driver state machines explicit in the source code

• Automatic verification of device driver code to ensure correct implementation of protocols for
interaction with other kernel subsystems, and to ensure correct locking

• Example: device drivers in Microsoft’s Singularity operating system

13

Review of Lectures (2)

• Dependable Kernel Architectures
• Moving on from the monolithic, C-based, kernel architecture

• Memory models
• Example: Java memory model

• Safe languages
• Well-typed languages don’t have undefined behaviour

• Banishing the null pointer

• Pattern matching and messages

• Immutable data

• Linear types

• Microkernels and strongly isolated systems
• Traditional microkernel model with hardware memory protection

• Microkernel with software isolated processes: use the type system to enforce isolation
between software processes, with no need for hardware protection

• Example: Singularity from Microsoft Research

14

Key Learning Outcomes

• Understand how managed code and advanced
type systems might be used in the design and
implementation of future operating systems
• To help the implementation of subsystems, such as device drivers

• To help structure the system architecture, in the form of software isolation
and robust message passing and concurrency primitives

15

Discussion

• Does the model of a microkernel with software
isolated processes look plausible to you?
• Advantages and disadvantages?

• Benefits and limitations?

16

Discussion

• The architectures we have considered rely on a
core unsafe microkernel, around which the safe
systems architecture is constructed
• To what extent can the microkernel be written in a safe language?

• Can some operations only be implemented in an unsafe manner?

17

Discussion

• Safe languages require more extensive runtime
support and error checking → more overhead
• E.g., checking array bounds, support for exception handling, garbage

collection overheads

• To what extent do reducing context switch times and faster message
passing compensate for this overhead in the software isolated process
model?

18

Discussion

• Questions, comments, and
discussion on the papers?

19

Sealing OS Processes to Improve Dependability and Safety

 Galen Hunt, Mark Aiken, Manuel Fähndrich, Chris Hawblitzel, Orion Hodson,
James Larus, Steven Levi, Bjarne Steensgaard, David Tarditi, and Ted Wobber

Microsoft Research
One Microsoft Way

Redmond, WA 98052 USA

singqa@microsoft.com

ABSTRACT
In most modern operating systems, a process is a
hardware-protected abstraction for isolating code and data.
This protection, however, is selective. Many common
mechanisms<dynamic code loading, run-time code
generation, shared memory, and intrusive system APIs<
make the barrier between processes very permeable. This
paper argues that this traditional open process architecture
exacerbates the dependability and security weaknesses of
modern systems.

As a remedy, this paper proposes a sealed process
architecture, which prohibits dynamic code loading, self-
modifying code, shared memory, and limits the scope of
the process API. This paper describes the implementation
of the sealed process architecture in the Singularity
operating system, discusses its merits and drawbacks, and
evaluates its effectiveness. Some benefits of this sealed
process architecture are: improved program analysis by
tools, stronger security and safety guarantees, elimination
of redundant overlaps between the OS and language
runtimes, and improved software engineering.

Conventional wisdom says open processes are required for
performance; our experience suggests otherwise. We
present the first macrobenchmarks for a sealed-process
operating system and applications. The benchmarks show
that an experimental sealed-process system can achieve
performance competitive with highly-tuned, commercial,
open-process systems.

Categories and Subject Descriptors
D.2.3 [Software Engineering] Coding Tools and Techniques;
D.2.4 [Software Engineering] Software/Program Verification;
D.4.1 [Operating Systems]: Process Management; D.4.5
[Operating Systems]: Reliability; D.4.6 [Operating Systems]:
Organization and Design; D.4.7 [Operating Systems]: Security
and Protection.

General Terms
Design, Reliability, Experimentation.

Keywords
Open process architecture, sealed process architecture, sealed
kernel, software isolated process (SIP).

1. INTRODUCTION
Processes debuted, circa 1965, as a recognized operating
system abstraction in Multics [48]. Multics pioneered
many attributes of modern processes: OS-supported
dynamic code loading, run-time code generation, cross-
process shared memory, and an intrusive kernel API that
permitted one process to modify directly the state of
another process.

Today, this architecture<which we call the open process
architecture<is nearly universal. Although aspects of this
architecture, such as dynamic code loading and shared
memory, were not in Multics\ immediate successors (early
versions of UNIX [35] or early PC operating systems),
today\s systems, such as FreeBSD, Linux, Solaris, and
Windows, embrace all four attributes of the open process
architecture.

The open process architecture is commonly used to extend
an OS or application by dynamically loading new features
and functionality directly into a kernel or running process.
For example, Microsoft Windows supports over 100,000
third-party, in-kernel modules ranging in functionality
from device drivers to anti-virus scanners. Dynamically
loaded extensions are also widely used as web server
extensions (e.g., ISAPI extensions for Microsoft\s IIS or
modules for Apache), stored procedures in databases,
email virus scanners, web browser plug-ins, application
plug-ins, shell extensions, etc. While the role of open
processes in Windows is widely recognized, like any
versatile technology they are widely use in other systems
as well [10, 42].

1.1. Problems with Open Processes
Systems that support open processes almost always
implement process isolation through hardware mechanisms
such as memory management protection and differentiated

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers, or to redistribute to lists,
requires prior specific permission and/or a fee.
EuroSys\07, March 21d23, 2007, Lisbon, Portugal.
Copyright 2007 ACM 978-1-59593-636-3/07/0003

Dingo: Taming Device Drivers

Leonid Ryzhyk12 Peter Chubb12 Ihor Kuz12 Gernot Heiser123

1NICTA∗ 2The University of New South Wales 3Open Kernel Labs
Sydney, Australia

leonid.ryzhyk@nicta.com.au

Abstract
Device drivers are notorious for being a major source of
failure in operating systems. In analysing a sample of real
defects in Linux drivers, we found that a large propor-
tion (39%) of bugs are due to two key shortcomings in
the device-driver architecture enforced by current operating
systems: poorly-defined communication protocols between
drivers and the OS, which confuse developers and lead to
protocol violations, and a multithreaded model of computa-
tion that leads to numerous race conditions and deadlocks.

We claim that a better device driver architecture can help
reduce the occurrence of these faults, and present our Dingo
framework as constructive proof. Dingo provides a formal,
state-machine based, language for describing driver proto-
cols, which avoids confusion and ambiguity, and helps driver
writers implement correct behaviour. It also enforces an
event-driven model of computation, which eliminates most
concurrency-related faults. Our implementation of the Dingo
architecture in Linux offers these improvements, while in-
troducing negligible performance overhead. It allows Dingo
and native Linux drivers to coexist, providing a gradual mi-
gration path to more reliable device drivers.

Categories and Subject Descriptors D.4.4 [Operating
systems]: Input/Output; D.3.2 [Language Classifications]:
Specialized application languages

General Terms Languages, Reliability, Verification

Keywords Concurrent Programming, Device Drivers,
Domain-Specific Languages, Fault Avoidance, Reliability.

∗ NICTA is funded by the Australian Government’s Department of Communications,
Information Technology, and the Arts and the Australian Research Council through
Backing Australia’s Ability and the ICT Research Centre of Excellence programs

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
EuroSys’09, April 1–3, 2009, Nuremberg, Germany.
Copyright c© 2009 ACM 978-1-60558-482-9/09/04. . . $5.00

1. Introduction
While accounting for about 70% of OS code, drivers typ-
ically contain several times more errors per line of code
than other system components [Chou 2001] and, according
to recent studies, are responsible for up to 70% of system
failures [Ganapathi 2006, Murphy 2004]. With the introduc-
tion of advanced hardware capabilities such as hot-plugging,
power management, and vectored I/O, device drivers have
increased in complexity and hence become even more error-
prone.

This paper explores the factors that contribute to driver
complexity and lead to buggy drivers. In analysing bugs
found in real Linux drivers, we discover and demonstrate
quantitatively that a large proportion of these factors result
from the way drivers interface with the OS, and can be
eliminated or mitigated by a better design of the driver-OS
interface.

Specifically, we identify two shortcomings of the driver
architecture common in modern operating systems: poorly-
defined communication protocols between drivers and the
OS, which confuse developers and lead to protocol viola-
tions, and a multithreaded model of computation that leads
to numerous race conditions and deadlocks. To address these
issues, we developed Dingo1—a device-driver architecture
aimed at simplifying development and reducing the number
of software defects in drivers.

In order to reduce protocol errors, driver protocols in
Dingo are specified using a state-machine-based formal lan-
guage called Tingu.2 Tingu allows a clear and unambigu-
ous description of requirements for driver behaviour, provid-
ing intuitive guidelines to driver programmers. The primary
purpose of Tingu specifications is to serve as documenta-
tion helping driver developers avoid errors; however they can
also be used as properties against which driver implementa-
tion can be formally validated either statically or at runtime.
Presently we only support runtime validation by compiling
driver protocol specifications into a runtime observer that de-
tects protocol violations committed by the driver.

1 A Dingo is an Australian wild dog.
2 Tingu is an Australian aboriginal name for a Dingo cub.

275

Singularity: Rethinking the Software Stack
Galen C. Hunt and James R. Larus

Microsoft Research Redmond
galenh@microsoft.com

ABSTRACT
Every operating system embodies a collection of design decisions.
Many of the decisions behind
systems have remained unchanged, even as hardware and
software have evolved. Operating systems form the foundation of
almost every software stack, so inadequacies in present systems
have a pervasive impact. This paper describes the efforts of the
Singularity project to re-examine these design choices in light of
advances in programming languages and verification tools.
Singularity systems incorporate three key architectural features:
software-isolated processes for protection of programs and system
services, contract-based channels for communication, and
manifest-based programs for verification of system properties. We
describe this foundation in detail and sketch the ongoing research
in experimental systems that build upon it.

Keywords
Operating systems, safe programming languages, program
verification, program specification, sealed process architecture,
sealed kernel, software-isolated processes (SIPs), hardware
protection domains, manifest-based programs (MBPs), unsafe
code tax.

1. INTRODUCTION
Every operating system embodies a collection of design
decisions some explicit, some implicit. These decisions include
the choice of implementation language, the program protection
model, the security model, the system abstractions, and many
others.
Contemporary operating systems Windows, Linux, Mac OS X,
and BSD share a large number of design decisions. This
commonality is not entirely accidental, as these systems are all
rooted in OS architectures and development tools of the late

early . Given the common operating
environments, the same programming language, and similar user
expectations, it is not surprising that designers of these systems
made similar decisions. While some design decisions have
withstood the test of time, others have aged less gracefully.
The Singularity project started in 2003 to re-examine the design
decisions and increasingly obvious shortcomings of existing
systems and software stacks. These shortcomings include: wide-
spread security vulnerabilities; unexpected interactions among
applications; failures caused by errant extensions, plug-ins, and
drivers, and a perceived lack of robustness.
We believe that many of these problems are attributable to
systems that have not evolved far beyond the computer
architectures

different from today. Computers were extremely limited in speed
and memory capacity. They were used only by a small group of
benign technical literati and were rarely networked or connected
to physical devices. None of these requirements still hold, but

modern operating systems have not evolved to accommodate the
enormous shift in how computers are used.

1.1 A Journey, not a Destination
In the Singularity project, we have built a new operating system, a
new programming language, and new software verification tools.
The Singularity operating system incorporates a new software
architecture based on software isolation of processes. Our
programming language, Sing# [8], is an extension of C# that
provides verifiable, first-class support for OS communication
primitives as well as strong support for systems programming and
code factoring. The sound verification tools detect programmer
errors early in the development cycle.
From the beginning, Singularity has been driven by the following
question: what would a software platform look like if it was
designed from scratch, with the primary goal of improved
dependability and trustworthiness? To this end, we have
championed three strategies. First, the pervasive use of safe
programming languages eliminates many preventable defects,
such as buffer overruns. Second, the use of sound program
verification tools further guarantees that entire classes of
programmer errors are removed from the system early in the
development cycle. Third, an improved system architecture stops
the propagation of runtime errors at well-defined boundaries,
making it easier to achieve robust and correct system behavior.
Although dependability is difficult to measure in a research
prototype, our experience has convinced us of the practicality of
new technologies and design decisions, which we believe will
lead to more robust and dependable systems in the future.
Singularity is a laboratory for experimentation in new design
ideas, not a design solution. While we like to think our current
code base represents a significant step forward from prior work,
we do not or an end in itself. A
research prototype such as Singularity is intentionally a work in
progress; it is a laboratory in which we continue to explore
implementations and trade-offs.
In the remainder of this paper, we describe the common
architectural foundation shared by all Singularity systems. Section
3 describes the implementation of the Singularity kernel which
provides the base implementation of that foundation. Section 4
surveys our work over the last three years within the Singularity
project to explore new opportunities in the OS and system design
space. Finally, in Section 5, we summarize our work to date and
discuss areas of future work.

2. ARCHITECTURAL FOUNDATION
The Singularity system consists of three key architectural features:
software-isolated processes, contract-based channels, and
manifest-based programs. Software-isolated processes provide an
environment for program execution protected from external
interference. Contract-based channels enable fast, verifiable
message-based communication between processes. Manifest-

37

Summary

• Widely deployed operating systems are based on
the heritage of monolithic, C-based, kernels
• Linux is the newest system to obtain wide deployment, but has little

innovation in terms of fundamental systems architecture

• Research prototypes are beginning to explore radically different system
architectures

20

