Umver51ty School of
of Glasgow | Computing Science

AAAAAAAAAAAAAA

Dependable Kernels and Device Drivers

Advanced Operating Systems (M)
Tutorial 5

Tutorial Outline

e Review of Problem Set 2

® Review of lectures

e Key learning outcomes

® Discussion

Review of Problem Set 2

® (Question 1: Consider a system comprising three independent periodic tasks
T1=(4,1), T2=(5,1)and T3 = (10, 2). Demonstrate that this system can be
scheduled in a preemptive manner on a single processor using a) the rate
monotonic algorithm; and b) the earliest deadline first (EDF) algorithm.

Review of Problem Set 2

e (Question 2: The system from question 1 must also support the execution of
three aperiodic jobs: A7 which is released at time 1, A2 which is released at
time 8, and Az which is released at time 12. Each aperiodic job executes for 1
unit of time. The system is scheduled using a preemptive rate monotonic
scheduler, on a single processor, with a server task, Ts = (3, 0.5) to schedule
the aperiodic jobs.

e Draw a diagram to illustrate the scheduler if Ts is implemented as a polling
server. What are the response times of the aperiodic jobs?

Review of Problem Set 2

® (Question 3: Is the system from question 2 schedulable if Ts is implemented
as a deferrable server? What are the response times of the aperiodic jobs?

Review of Problem Set 2

e Question 4: Is the system from question 2 schedulable if Ts is implemented
as a fixed-priority sporadic server? Explain your answer.

Review of Problem Set 2

e (Question 5: The fixed-priority sporadic server has a complex set of budget
consumption and replenishment rules. Discuss whether you believe the
benefits of this server outweigh its complexity.

Review of Lectures (1)

® Dependable device drivers

e Sources of bugs in device drivers

L Based on a survey of Linux device driver bugs: 23% general, 38% hardware device handling,
39% concurrency and interactions with other kernel subsystems

e |mproving device drivers: engineering approaches

L Applying object oriented languages and techniques
° Example: Apple MacOS X I/O Kit

e Advancing the driver model

° Making device driver state machines explicit in the source code

° Automatic verification of device driver code to ensure correct implementation of protocols for
interaction with other kernel subsystems, and to ensure correct locking

° Example: device drivers in Microsoft’s Singularity operating system

Review of Lectures (2)

e Dependable Kernel Architectures

e Moving on from the monolithic, C-based, kernel architecture
e Memory models

L Example: Java memory model

e Safe languages

° Well-typed languages don’t have undefined behaviour
° Banishing the null pointer

° Pattern matching and messages

° Immutable data

° Linear types

e Microkernels and strongly isolated systems

° Traditional microkernel model with hardware memory protection

° Microkernel with software isolated processes: use the type system to enforce isolation
between software processes, with no need for hardware protection

L Example: Singularity from Microsoft Research

Key Learning Outcomes

¢ Understand how managed code and advanced
type systems might be used in the design and
Implementation of future operating systems

e To help the implementation of subsystems, such as device drivers

® o help structure the system architecture, in the form of software isolation
and robust message passing and concurrency primitives

Discussion

® Does the model of a microkernel with software
Isolated processes look plausible to you?

e Advantages and disadvantages?

e Benefits and limitations?

Discussion

® The architectures we have considered rely on a
core unsafe microkernel, around which the safe
systems architecture is constructed

e To what extent can the microkernel be written in a safe language?

e (Can some operations only be implemented in an unsafe manner?

Discussion

e Safe languages require more extensive runtime
support and error checking — more overhead

e E.g., checking array bounds, support for exception handling, garbage
collection overheads

e To what extent do reducing context switch times and faster message
passing compensate for this overhead in the software isolated process
model?

CcusSIon

uestions, comments, and
iscussion on the papers?

Dingo: Taming Device Drivers

Leonid Ryzhyk'> Peter Chubb'>

Thor Kuz/® Genot Heiser'2*

INICTA" *The Universiy f New South Wales Open Kernel Labs
Sydney, Ausialia

IeonidryahykBnicta com au

Abstract 1. Introduction

Deviee diivers e motoious for being & major source of
il in opeating systems. In analysing a sumple of real
defets i Linux divers, we found that a large popor-
o 3% of b are de 0 w0 ey hrcomings i
e

While accouning for about 70% of OS code, drvers typ.
iclly contin several fmes more crors per fne of code
b it syt components [Chos 2001 0 woring
o e s, e esponsile o up 1o 70% o

s § Wi e e

sysems: poory.
e 3n0 o, 0%, whic cofve devcoors e 0

powe mamgemen, nd vecored 1O devke drnes v

compu
Tionthateads o umerous race condions and deadlocks.
W claim tht b deie e it can e
reducethe oceurence of these uls,and presen ur Dingo
ramesork ss constuctive proof. Dingo provides a forml.
Stste-machine basd. angusge for descibing diver proto-
o i oo sy s
i implement corect behaviou. It sho cnforce

e

puper cxplores th factors that contibue 1 drver
ol L 0 gty v o syt b
found n real Linux diver. we disover and demonsinte
il s e porion o e s el
from the way drivers ntrface wit the 05, and can be
Ciminated o migaed by b dsi o h deiver S

vt iiven model of compurton, whichcimiats mest it
Speicaty,we ienity e driver

e in i ol e improvectn, whle et conon ol g s - oy
allows D don rvers nd the

e st ot vl

Categories and Subject Descrptors D44 10perasing
e apasOtpe D33 ompuage Cssheaon

1o numerousrace conditonsand deadlocks. To m,mm

isses, we developed Dingal—a device-drer
o st deveioprmct d ehein e b

General Terms Lingusges, Relaily. Vricaion

Concurment_Programmin
Do et Lot oo v, Rellabity.

onder to reduce protocal eror, driver pro

Dino et i i e i e ol
ings el Togu: T dllows & o snd arbiz
s descrpton frequirement o deiverbehaviou,provid-
ing inttive guidlingsto driver pogrammer. The primry
puspose of Tingu specificatons i 1o serve 4 document

Honcanbe ol e e sl ot i
Preseatly we oly support rntime vlidtio by compiling
s proacl peeeutons o e et

g Al g e o i .

Singularity: Rethini

g the Software Stack

Galen C. Hunt and James R Larus.
Microsoft Ressarch Redmond
galenh@microsoft.com

ABSTRACT

11 A Journey, not a Destination

Sk o 1 i et e o

o opummin ngsg, 2 v Soars vt
ogenmig e, Sngs 8. a1 ccanon of G

i, conmi sl chands o commmicon. 3

el s tht o pon .
Keywords

i, g it i i s
wu»:, ‘ e

1. INTRODUCTION

By i men ot 1 clkin of o
w e -.wuf o e st .N?‘m

i Sty s s 1 20 b e e e
et s <ot by o, o o

o fom S N e ey o mmm«
i a5 it e Sesod. the e of und pogrn
Sonren 5 Tt mm« S e s
oo of i s . Wl e DU,
R s o ol e

b 1+ ety B i i e G
i o g . W e o

o pwm‘tn . suwu‘uu‘ ‘, Wm.u\ m: n

I the remsinder of i g, we_decibe the cammon
m\mmum i i Sopta e S

e e S e oo

ARCHITECTURAL FOUNDATION
The Singury sy omsis f e ey rfestatl s
Sttt o, oo bl el

e ety T oy o 0y

e buicd. communiaon bewes oo, Nk

Sealing OS Processes to Improve Dependability and Safety

Galen Hunt, Mark Aiken, Manuel Fahndrich, Chiis Hawbitzsl, Orion Hodson,

James Larus, Steven Levi, Bjarne Steer
icrosoft

One Microsoft

nsgaard, David Tardit, and Ted Wobber
Rasearch
Way

Redmond, WA 98052 USA

singga@mi

ABSTRACT
In most_moderoperting._ sysens, i
rdmoreproceed e for i ode nd dts
This prosecton, howeve, is selective. Many common
e e cod g, i e
naton, shard mevory.ad i s APl
Pk U, e Dwee, s vey permeable. T

icrosoft com

General Terms
Desgn Relbily, Experincnntion.

Kepword

oo e s 5

‘exacerbtesthe dependability and sccurity weakneses of
modem sysiems.

A remedy. his paper proposes 4 seuled process
arciecne. wich probits dymamie code o,
modifing code, shared memary, and limils o
o o AP Thi papr Skt implsrion
of e ot s s e Snrty

Proceses debued, cira 1965, 2 3 recognized operting.
sysem sbacion n Ml 5] Molis ponesed
hutes of modem proceses: OS-supported

m«m ol i, i e g,
s shrc and sn imusive kemel AP that
mmmm e Wm o modify diretly the sute of

aing o
mh s ,mmm Some ot of i sl
process archit malysis by
Kok, songe sty nd ey S‘Wllmc:s, Ciminaion
of redundant ovelaps between the 05 and. langusge
unings, and iproved sovare cgiceg.

Constionl wisdom says open proceses re reqired for

o)
cngmmmn i D D47 opeaig yiese) ey

ot proces
Today, this e all the open process
achiecure—is nary universal. Ahough apects of this
arhiecture, such a5 dynaic code loading and shared
memry. were ot in Multics” immedie suceesors (car
Vessions of UNT Iy PC aperaing sysiems).
tod BSD, Linus, Salrs, ind

Windovs, embrace all fou aibut of the open process
archiecur,

proces et s commonly used o xiend

cd, ke any
Lersale technoloy they are Wil e n athr syt
as el 10, 42]

Processes

Sysems. . support ovn pceses st aveys
mplementprocess folaton hrough harévars mechanisns
e meory g esclo nd e

P——

Summary

e \Videly deployed operating systems are based on
the heritage of monolithic, C-based, kernels

® Linux is the newest system to obtain wide deployment, but has little
innovation in terms of fundamental systems architecture

e Research prototypes are beginning to explore radically different system
architectures

20

