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Tutorial Outline

e Review of Problem Set 2

® Review of lectures

e Key learning outcomes

® Discussion



Review of Problem Set 2

® (Question 1: Consider a system comprising three independent periodic tasks
T1=(4,1), T2=(5,1)and T3 = (10, 2). Demonstrate that this system can be
scheduled in a preemptive manner on a single processor using a) the rate
monotonic algorithm; and b) the earliest deadline first (EDF) algorithm.



Review of Problem Set 2

e (Question 2: The system from question 1 must also support the execution of
three aperiodic jobs: A7 which is released at time 1, A2 which is released at
time 8, and Az which is released at time 12. Each aperiodic job executes for 1
unit of time. The system is scheduled using a preemptive rate monotonic
scheduler, on a single processor, with a server task, Ts = (3, 0.5) to schedule
the aperiodic jobs.

e Draw a diagram to illustrate the scheduler if Ts is implemented as a polling
server. What are the response times of the aperiodic jobs?



Review of Problem Set 2

® (Question 3: Is the system from question 2 schedulable if Ts is implemented
as a deferrable server? What are the response times of the aperiodic jobs?



Review of Problem Set 2

e Question 4: Is the system from question 2 schedulable if Ts is implemented
as a fixed-priority sporadic server? Explain your answer.



Review of Problem Set 2

e (Question 5: The fixed-priority sporadic server has a complex set of budget
consumption and replenishment rules. Discuss whether you believe the
benefits of this server outweigh its complexity.



Review of Lectures (1)

® Dependable device drivers

e Sources of bugs in device drivers

L Based on a survey of Linux device driver bugs: 23% general, 38% hardware device handling,
39% concurrency and interactions with other kernel subsystems

e |mproving device drivers: engineering approaches

L Applying object oriented languages and techniques
° Example: Apple MacOS X I/O Kit

e Advancing the driver model

° Making device driver state machines explicit in the source code

° Automatic verification of device driver code to ensure correct implementation of protocols for
interaction with other kernel subsystems, and to ensure correct locking

° Example: device drivers in Microsoft’s Singularity operating system



Review of Lectures (2)

e Dependable Kernel Architectures

e Moving on from the monolithic, C-based, kernel architecture
e Memory models

L Example: Java memory model

e Safe languages

° Well-typed languages don’t have undefined behaviour
° Banishing the null pointer

° Pattern matching and messages

° Immutable data

° Linear types

e Microkernels and strongly isolated systems

° Traditional microkernel model with hardware memory protection

° Microkernel with software isolated processes: use the type system to enforce isolation
between software processes, with no need for hardware protection

L Example: Singularity from Microsoft Research



Key Learning Outcomes

¢ Understand how managed code and advanced
type systems might be used in the design and
Implementation of future operating systems

e To help the implementation of subsystems, such as device drivers

® o help structure the system architecture, in the form of software isolation
and robust message passing and concurrency primitives



Discussion

® Does the model of a microkernel with software
Isolated processes look plausible to you?

e Advantages and disadvantages?

e Benefits and limitations?



Discussion

® The architectures we have considered rely on a
core unsafe microkernel, around which the safe
systems architecture is constructed

e To what extent can the microkernel be written in a safe language?

e (Can some operations only be implemented in an unsafe manner?



Discussion

e Safe languages require more extensive runtime
support and error checking — more overhead

e E.g., checking array bounds, support for exception handling, garbage
collection overheads

e To what extent do reducing context switch times and faster message
passing compensate for this overhead in the software isolated process
model?
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Summary

e \Videly deployed operating systems are based on
the heritage of monolithic, C-based, kernels

® Linux is the newest system to obtain wide deployment, but has little
innovation in terms of fundamental systems architecture

e Research prototypes are beginning to explore radically different system
architectures
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