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Tutorial Outline

• Review of Problem Set 2

• Review of lectures

• Key learning outcomes

• Discussion
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Review of Problem Set 2

• Question 1: Consider a system comprising three independent periodic tasks 
T1 = (4, 1), T2 = (5, 1) and T3 = (10, 2). Demonstrate that this system can be 
scheduled in a preemptive manner on a single processor using a) the rate 
monotonic algorithm; and b) the earliest deadline first (EDF) algorithm.
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Review of Problem Set 2

• Question 2: The system from question 1 must also support the execution of 
three aperiodic jobs: A1 which is released at time 1, A2 which is released at 
time 8, and A3 which is released at time 12. Each aperiodic job executes for 1 
unit of time. The system is scheduled using a preemptive rate monotonic 
scheduler, on a single processor, with a server task, Ts = (3, 0.5) to schedule 
the aperiodic jobs. 

• Draw a diagram to illustrate the scheduler if Ts is implemented as a polling 
server.  What are the response times of the aperiodic jobs?
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Review of Problem Set 2

• Question 3: Is the system from question 2 schedulable if Ts is implemented 
as a deferrable server? What are the response times of the aperiodic jobs?
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Review of Problem Set 2

• Question 4: Is the system from question 2 schedulable if Ts is implemented 
as a fixed-priority sporadic server? Explain your answer. 
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Review of Problem Set 2

• Question 5: The fixed-priority sporadic server has a complex set of budget 
consumption and replenishment rules. Discuss whether you believe the 
benefits of this server outweigh its complexity.
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Review of Lectures (1)

• Dependable device drivers
• Sources of bugs in device drivers

• Based on a survey of Linux device driver bugs: 23% general, 38% hardware device handling, 
39% concurrency and interactions with other kernel subsystems

• Improving device drivers: engineering approaches
• Applying object oriented languages and techniques

• Example: Apple MacOS X I/O Kit

• Advancing the driver model
• Making device driver state machines explicit in the source code

• Automatic verification of device driver code to ensure correct implementation of protocols for 
interaction with other kernel subsystems, and to ensure correct locking

• Example: device drivers in Microsoft’s Singularity operating system
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Review of Lectures (2)

• Dependable Kernel Architectures
• Moving on from the monolithic, C-based, kernel architecture

• Memory models
• Example: Java memory model

• Safe languages
• Well-typed languages don’t have undefined behaviour

• Banishing the null pointer

• Pattern matching and messages

• Immutable data

• Linear types

• Microkernels and strongly isolated systems
• Traditional microkernel model with hardware memory protection

• Microkernel with software isolated processes: use the type system to enforce isolation 
between software processes, with no need for hardware protection

• Example: Singularity from Microsoft Research
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Key Learning Outcomes

• Understand how managed code and advanced 
type systems might be used in the design and 
implementation of future operating systems
• To help the implementation of subsystems, such as device drivers

• To help structure the system architecture, in the form of software isolation 
and robust message passing and concurrency primitives
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Discussion

• Does the model of a microkernel with software 
isolated processes look plausible to you?
• Advantages and disadvantages?

• Benefits and limitations?
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Discussion

• The architectures we have considered rely on a 
core unsafe microkernel, around which the safe 
systems architecture is constructed
• To what extent can the microkernel be written in a safe language?

• Can some operations only be implemented in an unsafe manner?
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Discussion

• Safe languages require more extensive runtime 
support and error checking → more overhead
• E.g., checking array bounds, support for exception handling, garbage 

collection overheads

• To what extent do reducing context switch times and faster message 
passing compensate for this overhead in the software isolated process 
model?
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Discussion

• Questions, comments, and 
discussion on the papers?
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ABSTRACT 
In most modern operating systems, a process is a 
hardware-protected abstraction for isolating code and data. 
This protection, however, is selective. Many common 
mechanisms<dynamic code loading, run-time code 
generation, shared memory, and intrusive system APIs<
make the barrier between processes very permeable. This 
paper argues that this traditional open process architecture 
exacerbates the dependability and security weaknesses of 
modern systems. 

As a remedy, this paper proposes a sealed process 
architecture, which prohibits dynamic code loading, self-
modifying code, shared memory, and limits the scope of 
the process API. This paper describes the implementation 
of the sealed process architecture in the Singularity 
operating system, discusses its merits and drawbacks, and 
evaluates its effectiveness. Some benefits of this sealed 
process architecture are: improved program analysis by 
tools, stronger security and safety guarantees, elimination 
of redundant overlaps between the OS and language 
runtimes, and improved software engineering.  

Conventional wisdom says open processes are required for 
performance; our experience suggests otherwise. We 
present the first macrobenchmarks for a sealed-process 
operating system and applications. The benchmarks show 
that an experimental sealed-process system can achieve 
performance competitive with highly-tuned, commercial, 
open-process systems. 

Categories and Subject Descriptors 
D.2.3 [Software Engineering] Coding Tools and Techniques; 
D.2.4 [Software Engineering] Software/Program Verification; 
D.4.1 [Operating Systems]: Process Management; D.4.5 
[Operating Systems]: Reliability; D.4.6 [Operating Systems]: 
Organization and Design; D.4.7 [Operating Systems]: Security 
and Protection. 

General Terms 
Design, Reliability, Experimentation. 

Keywords 
Open process architecture, sealed process architecture, sealed 
kernel, software isolated process (SIP). 

1. INTRODUCTION 
Processes debuted, circa 1965, as a recognized operating 
system abstraction in Multics [48]. Multics pioneered 
many attributes of modern processes: OS-supported 
dynamic code loading, run-time code generation, cross-
process shared memory, and an intrusive kernel API that 
permitted one process to modify directly the state of 
another process. 

Today, this architecture<which we call the open process 
architecture<is nearly universal. Although aspects of this 
architecture, such as dynamic code loading and shared 
memory, were not in Multics\ immediate successors (early 
versions of UNIX [35] or early PC operating systems), 
today\s systems, such as FreeBSD, Linux, Solaris, and 
Windows, embrace all four attributes of the open process 
architecture. 

The open process architecture is commonly used to extend 
an OS or application by dynamically loading new features 
and functionality directly into a kernel or running process. 
For example, Microsoft Windows supports over 100,000 
third-party, in-kernel modules ranging in functionality 
from device drivers to anti-virus scanners. Dynamically 
loaded extensions are also widely used as web server 
extensions (e.g., ISAPI extensions for Microsoft\s IIS or 
modules for Apache), stored procedures in databases, 
email virus scanners, web browser plug-ins, application 
plug-ins, shell extensions, etc. While the role of open 
processes in Windows is widely recognized, like any 
versatile technology they are widely use in other systems 
as well [10, 42]. 

1.1. Problems with Open Processes 
Systems that support open processes almost always 
implement process isolation through hardware mechanisms 
such as memory management protection and differentiated 
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Abstract
Device drivers are notorious for being a major source of
failure in operating systems. In analysing a sample of real
defects in Linux drivers, we found that a large propor-
tion (39%) of bugs are due to two key shortcomings in
the device-driver architecture enforced by current operating
systems: poorly-defined communication protocols between
drivers and the OS, which confuse developers and lead to
protocol violations, and a multithreaded model of computa-
tion that leads to numerous race conditions and deadlocks.

We claim that a better device driver architecture can help
reduce the occurrence of these faults, and present our Dingo
framework as constructive proof. Dingo provides a formal,
state-machine based, language for describing driver proto-
cols, which avoids confusion and ambiguity, and helps driver
writers implement correct behaviour. It also enforces an
event-driven model of computation, which eliminates most
concurrency-related faults. Our implementation of the Dingo
architecture in Linux offers these improvements, while in-
troducing negligible performance overhead. It allows Dingo
and native Linux drivers to coexist, providing a gradual mi-
gration path to more reliable device drivers.

Categories and Subject Descriptors D.4.4 [Operating
systems]: Input/Output; D.3.2 [Language Classifications]:
Specialized application languages

General Terms Languages, Reliability, Verification

Keywords Concurrent Programming, Device Drivers,
Domain-Specific Languages, Fault Avoidance, Reliability.
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1. Introduction
While accounting for about 70% of OS code, drivers typ-
ically contain several times more errors per line of code
than other system components [Chou 2001] and, according
to recent studies, are responsible for up to 70% of system
failures [Ganapathi 2006, Murphy 2004]. With the introduc-
tion of advanced hardware capabilities such as hot-plugging,
power management, and vectored I/O, device drivers have
increased in complexity and hence become even more error-
prone.

This paper explores the factors that contribute to driver
complexity and lead to buggy drivers. In analysing bugs
found in real Linux drivers, we discover and demonstrate
quantitatively that a large proportion of these factors result
from the way drivers interface with the OS, and can be
eliminated or mitigated by a better design of the driver-OS
interface.

Specifically, we identify two shortcomings of the driver
architecture common in modern operating systems: poorly-
defined communication protocols between drivers and the
OS, which confuse developers and lead to protocol viola-
tions, and a multithreaded model of computation that leads
to numerous race conditions and deadlocks. To address these
issues, we developed Dingo1—a device-driver architecture
aimed at simplifying development and reducing the number
of software defects in drivers.

In order to reduce protocol errors, driver protocols in
Dingo are specified using a state-machine-based formal lan-
guage called Tingu.2 Tingu allows a clear and unambigu-
ous description of requirements for driver behaviour, provid-
ing intuitive guidelines to driver programmers. The primary
purpose of Tingu specifications is to serve as documenta-
tion helping driver developers avoid errors; however they can
also be used as properties against which driver implementa-
tion can be formally validated either statically or at runtime.
Presently we only support runtime validation by compiling
driver protocol specifications into a runtime observer that de-
tects protocol violations committed by the driver.

1 A Dingo is an Australian wild dog.
2 Tingu is an Australian aboriginal name for a Dingo cub.
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ABSTRACT
Every operating system embodies a collection of design decisions. 
Many of the decisions behind 
systems have remained unchanged, even as hardware and 
software have evolved. Operating systems form the foundation of 
almost every software stack, so inadequacies in present systems 
have a pervasive impact. This paper describes the efforts of the 
Singularity project to re-examine these design choices in light of 
advances in programming languages and verification tools. 
Singularity systems incorporate three key architectural features: 
software-isolated processes for protection of programs and system 
services, contract-based channels for communication, and 
manifest-based programs for verification of system properties. We 
describe this foundation in detail and sketch the ongoing research 
in experimental systems that build upon it.  

Keywords
Operating systems, safe programming languages, program 
verification, program specification, sealed process architecture, 
sealed kernel, software-isolated processes (SIPs), hardware 
protection domains, manifest-based programs (MBPs), unsafe 
code tax. 

1. INTRODUCTION
Every operating system embodies a collection of design 
decisions some explicit, some implicit. These decisions include 
the choice of implementation language, the program protection 
model, the security model, the system abstractions, and many 
others. 
Contemporary operating systems Windows, Linux, Mac OS X, 
and BSD share a large number of design decisions. This 
commonality is not entirely accidental, as these systems are all 
rooted in OS architectures and development tools of the late 

early . Given the common operating 
environments, the same programming language, and similar user 
expectations, it is not surprising that designers of these systems 
made similar decisions. While some design decisions have 
withstood the test of time, others have aged less gracefully.  
The Singularity project started in 2003 to re-examine the design 
decisions and increasingly obvious shortcomings of existing 
systems and software stacks. These shortcomings include: wide-
spread security vulnerabilities; unexpected interactions among 
applications; failures caused by errant extensions, plug-ins, and 
drivers, and a perceived lack of robustness.  
We believe that many of these problems are attributable to 
systems that have not evolved far beyond the computer 
architectures 

different from today. Computers were extremely limited in speed 
and memory capacity. They were used only by a small group of 
benign technical literati and were rarely networked or connected 
to physical devices. None of these requirements still hold, but 

modern operating systems have not evolved to accommodate the 
enormous shift in how computers are used. 

1.1 A Journey, not a Destination 
In the Singularity project, we have built a new operating system, a 
new programming language, and new software verification tools. 
The Singularity operating system incorporates a new software 
architecture based on software isolation of processes. Our 
programming language, Sing# [8], is an extension of C# that 
provides verifiable, first-class support for OS communication 
primitives as well as strong support for systems programming and 
code factoring. The sound verification tools detect programmer 
errors early in the development cycle. 
From the beginning, Singularity has been driven by the following 
question: what would a software platform look like if it was 
designed from scratch, with the primary goal of improved 
dependability and trustworthiness? To this end, we have 
championed three strategies. First, the pervasive use of safe 
programming languages eliminates many preventable defects, 
such as buffer overruns. Second, the use of sound program 
verification tools further guarantees that entire classes of 
programmer errors are removed from the system early in the 
development cycle. Third, an improved system architecture stops 
the propagation of runtime errors at well-defined boundaries, 
making it easier to achieve robust and correct system behavior. 
Although dependability is difficult to measure in a research 
prototype, our experience has convinced us of the practicality of 
new technologies and design decisions, which we believe will 
lead to more robust and dependable systems in the future.  
Singularity is a laboratory for experimentation in new design 
ideas, not a design solution. While we like to think our current 
code base represents a significant step forward from prior work, 
we do not  or an end in itself. A 
research prototype such as Singularity is intentionally a work in 
progress; it is a laboratory in which we continue to explore 
implementations and trade-offs. 
In the remainder of this paper, we describe the common 
architectural foundation shared by all Singularity systems. Section 
3 describes the implementation of the Singularity kernel which 
provides the base implementation of that foundation. Section 4 
surveys our work over the last three years within the Singularity 
project to explore new opportunities in the OS and system design 
space. Finally, in Section 5, we summarize our work to date and 
discuss areas of future work. 

2. ARCHITECTURAL FOUNDATION 
The Singularity system consists of three key architectural features: 
software-isolated processes, contract-based channels, and 
manifest-based programs. Software-isolated processes provide an 
environment for program execution protected from external 
interference. Contract-based channels enable fast, verifiable 
message-based communication between processes. Manifest-
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Summary

• Widely deployed operating systems are based on 
the heritage of monolithic, C-based, kernels
• Linux is the newest system to obtain wide deployment, but has little 

innovation in terms of fundamental systems architecture

• Research prototypes are beginning to explore radically different system 
architectures
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