
Systems Programming

Advanced Operating Systems (M)
Tutorial 4

Tutorial Outline

• Review of tutorial 3 sporadic server exercise

• Review of exercise 1

• Review of lectured material

• Discussion

2

Tutorial 3 Sporadic Server Exercise

• Formative exercise from Tutorial 3:
• Consider a system of three periodic tasks: T1 = (3, 1), T2= (4,

0.5), T3 = (10, 2). The system must support three aperiodic jobs:

• A1 which is released at time 0.5

• A2 which is released at time 12.25

• A3 which is released at time 17

• The aperiodic jobs execute for 0.75 units of time. The system is
scheduled using RM, with a simple sporadic server Ts = (5, 0.5)
supporting the aperiodic jobs.

• Simulate the system for sufficient time to show how the
aperiodic jobs are scheduled. What is the response time for
each of the aperiodic jobs?

3

Tutorial 3 Sporadic Server: Worked Answer

4

1) C1; R2 ⇒ te = MAX(tr, BEGIN) = 0; replenish at te+ps = 5
2) Replenished due to previous R2; executes according to C1

R2 ⇒ te = tf = 5 since END < tf; replenish at te+ps=10
3) Job A1 ends, but Ts continues according to C2
4) Replenished early due to R3(b)
5) C1; R2 ⇒ te = MAX(tr, BEGIN) = 12; replenish at te+ps=17
6) Budget exhausted (R3(a) does not apply, already replenished at step 4)
7) Replenished early due to R3(b)
8) C1; R2 ⇒ te = MAX(tr, BEGIN) = 15; replenish at te+ps=19
9) C2
10) Replenished early due to R3(b)
11) C1; R2 ⇒ te = MAX(tr, BEGIN) = 18; replenish at te+ps=23
12) Replenished early due to R3(b)
13) C1

T1

T2

TS

0.25
0.50

0 105 15 20 25 30
T3

4 71 2 3 5 86 9 10 11 12 13

Review of Exercise 1: Question 1

• Consider the following systems of independent
preemptable periodic tasks that are scheduled
on a single processor. Can these systems be
scheduled using the Rate Monotonic algorithm
or the Earliest Deadline First algorithm? Explain
your answers
• T1 = (5,1), T2 = (3,1), and T3 = (15,3)

• T1 = (5,2), T2 = (4,1), T3 = (10,1), and T4 = (20,3)

5

Review of Exercise 1: Question 2

• How does the schedulability test of Earliest
Deadline First scheduling change if the relative
deadline of a task differs from that task’s period?

8

Review of Exercise 1: Question 3

• We considered several priority-driven scheduling
algorithms. It was noted that these algorithms make
locally optimal decisions about which job to run, but
the resulting schedules are often not globally optimal.

• Explain the difference between locally and globally
optimal, and discuss why priority-driven scheduling
algorithms typically do not produce globally optimal
schedules.

10

Review of Exercise 1: Question 4

• The periodic tasks T1 = (3, 1), T2 = (4, 2), and T3 = (6, 1) are pre-
emptively scheduled according to the rate monotonic algorithm on a
single processor. Draw a graph of the time-demand function for each
of the three tasks. Are these tasks schedulable? Justify your answer.

12

Review of Lectures

• Programming real-time and embedded systems
• Interacting with hardware; interrupt and timer latency; memory issues;

power, size and performance constraints; system longevity; development
and debugging

• Possible evolution of systems programming
• Language and runtime support for low-level programming: interrupt

handling; device access; etc.

• Language and runtime support for automatic memory management,
including real-time garbage collection

• Language and runtime support for real-time systems: periodic threads;
timed statements/timing annotations

• Language and runtime support for concurrency: type systems to ensure
correctness; message passing; transactional memory

14

Key Learning Outcomes

• Understand how real-time and embedded systems
are constructed

• Discuss the limitations and advantages of C as a
systems programming language

• Understand how modern languages with advanced
type systems might be used in the design and
implementation of future operating systems

15

Discussion

• J. Shapiro, “Programming language challenges in systems
codes: why systems programmers still use C, and what to do
about it”, Proceedings of the 3rd workshop on Programming
Languages and Operating Systems, San Jose, CA, October
2006, DOI 10.1145/1215995.1216004

• Discussion points:
• What are “systems programs”? Systems programs operate in constrained

memory; are strongly driven by bulk I/O performance; performance matters;
data representation matters; and retain state

• Fallacies: factors of 2 don’t matter; boxed representation can be optimised
away; the optimiser can fix it; the legacy problem is insurmountable

• Challenges: application constraint checking; idiomatic manual storage;
representation; state

• Is this a reasonable characterisation of the issues?

16

Programming Language Challenges in Systems Codes

Why Systems Programmers Still Use C, and What to Do About It

Jonathan Shapiro, Ph.D.

Systems Research Laboratory
Department of Computer Science

Johns Hopkins University

shap@cs.jhu.edu

Abstract
There have been major advances in programming languages
over the last 20 years. Given this, it seems appropriate to
ask why systems programmers continue to largely ignore
these languages. What are the deficiencies in the eyes of
the systems programmers? How have the e�orts of the
programming language community been misdirected (from
their perspective)? What can/should the PL community do
address this?

As someone whose research straddles these areas, I was
asked to give a talk at this year’s PLOS workshop. What
follows are my thoughts on this subject, which may or not
represent those of other systems programmers.

1. Introduction

Modern programming languages such as ML [16] or
Haskell [17] provide newer, stronger, and more expressive
type systems than systems programming languages such as
C [15, 13] or Ada [12]. Why have they been of so little in-
terest to systems developers, and what can/should we do
about it?

As the primary author of the EROS system [18] and its
successor Coyotos [20], both of which are high-performance
microkernels, it seems fair to characterize myself primarily
as a hardcore systems programmer and security architect.
However, there are skeletons in my closet. In the mid-1980s,
my group at Bell Labs developed one of the first large
commercial C++ applications — perhaps the first. My early
involvement with C++ includes the first book on reusable
C++ programming [21], which is either not well known or
has been graciously disregarded by my colleagues.

In this audience I am tempted to plead for mercy on the
grounds of youth and ignorance, but having been an active

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

PLOS 2006, Oct. 22, 2006, San Jose, California, United States
Copyright c� 2006 ACM 1-59593-577-0/10/2006. . . $5.00

advocate of C++ for so long this entails a certain degree
of chutzpah.1 There is hope. Microkernel developers seem to
have abandoned C++ in favor of C. The book is out of print
in most countries, and no longer encourages deviant coding
practices among susceptible young programmers.

A Word About BitC Brewer et al.’s cry that Thirty
Years is Long Enough [6] resonates. It really is a bit dis-
turbing that we are still trying to use a high-level assembly
language created in the early 1970s for critical production
code 35 years later. But Brewer’s lament begs the question:
why has no viable replacement for C emerged from the pro-
gramming languages community? In trying to answer this,
my group at Johns Hopkins has started work on a new pro-
gramming language: BitC. In talking about this work, we
have encountered a curious blindness from the PL commu-
nity.

We are often asked “Why are you building BitC?” The tacit
assumption seems to be that if there is nothing fundamen-
tally new in the language it isn’t interesting. The BitC goal
isn’t to invent a new language or any new language con-
cepts. It is to integrate existing concepts with advances in
prover technology, and reify them in a language that allows
us to build stateful low-level systems codes that we can rea-
son about in varying measure using automated tools. The
feeling seems to be that everything we are doing is straight-
forward (read: uninteresting). Would that it were so.

Systems programming — and BitC — are fundamentally
about engineering rather than programming languages. In
the 1980s, when compiler writers still struggled with inad-
equate machine resources, engineering considerations were
respected criteria for language and compiler design, and a
sense of “transparency” was still regarded as important.2

By the time I left the PL community in 1990, respect for
engineering and pragmatics was fast fading, and today it
is all but gone. The concrete syntax of Standard ML [16]
and Haskell [17] are every bit as bad as C++. It is a curi-
ous measure of the programming language community that
nobody cares. In our pursuit of type theory and semantics,

1 Chutzpah is best defined by example. Chutzpah is when a
person murders both of their parents and then asks the court
for mercy on the grounds that they are an orphan.

2 By “transparent,” I mean implementations in which the pro-
grammer has a relatively direct understanding of machine-level
behavior.

Any Further Questions?

17

