
Priority-driven Scheduling of Periodic Tasks

Advanced Operating Systems (M)
Tutorial 2



Tutorial Outline

• Review of lectured material

• Worked examples

• Question and answer

2



• Priority-Driven Scheduling of Periodic Tasks
– Rate- and deadline-monotonic; earliest deadline first; least slack time
– Maximum schedulable utilisation

– Of fixed priority systems: non-optimal; behaviour when maximum schedulable utilisation exceeded
– Of dynamic priority systems: optimality

– More general schedulability tests
– Critical instants and time-demand analysis
– Conceptual understanding of the process; graphical visualisation of time demand

– Outline of practical factors
– Impact of blocking time, context switch overhead, etc., on schedulability

– Outline of POSIX scheduling API for real-time tasks

Review of Lectures

3



• Understanding of when and how to use priority-
scheduling
• Rate monotonic

• Deadline monotonic

• Earliest deadline first

• Least slack time

• Understanding how to prove that a system can be 
scheduled
• Maximum schedulable utilisation for a range of algorithms

• Time-demand analysis

4

Key Learning Outcomes



• Can the system of five independent, preemptable, 
tasks T1=(1.0, 0.25), T2=(1.25, 0.1), T3=(1.5, 0.3), 
T4=(1.75, 0.07) and T5=(2.0, 0.1) be scheduled using 
the rate monotonic algorithm?

5

Proving Schedulability: Example 1



• Can the system of three independent preemptable 
periodic tasks T1=(8, 3), T2=(9, 3) and T3=(15, 3) be 
scheduled using the rate monotonic algorithm?

7

Proving Schedulability: Example 2



• Can the system of three independent preemptable 
periodic tasks T1=(8, 4), T2=(12, 4) and T3=(20, 4) be 
scheduled using the rate monotonic algorithm or 
the EDF algorithm?

9

Proving Schedulability: Example 3



• Aim of the examples has been to demonstrate how 
to determine whether a system can be scheduled, 
show when it is necessary to simulate a system

11

Proving Schedulability: Examples



Question and Answer

12


