
Wrap-up and Review

Advanced Operating Systems (M)
Lecture 20

Lecture Outline

• Review of material

• Conclusions and Future Directions

• Examination

2

Review of Material

• Unix/Linux and Windows are the outcome of a long
strand of operating systems development
• The C programming language

• Monolithic kernels
• Unix – unbroken line of evolution since the early 1970s

• Linux – reimplementation of Unix ideas, for the 1990s

• Windows – builds on Digital Equipment Corporation VAX/VMS dating from 1975

• Operating systems and programming language
research have evolved since the 1970s – how
might this affect future operating systems?

3

Real-time Operating Systems

• Introduction to real-time systems

• Real-time scheduling
• Clock driven scheduling

• Priority driven scheduling:
• Periodic, aperiodic and sporadic tasks

• Rate and deadline monotonic scheduling, earliest deadline first, least slack time

• Proofs of correctness
• Maximum utilisation tests, time demand analysis

• Resource access control
• Priority inheritance protocol; priority ceiling protocol; impact of scheduling

• Implementation techniques
• Real-time APIs and code; implementing real-time schedulers

4

Systems Programming

• Programming real-time and embedded systems
• Interacting with hardware

• Interrupt and timer latency

• Memory issues

• Power, size and performance constraints

• System longevity

• Development and debugging

• Traditional approaches; possible future alternatives
• Moving beyond C for the embedded world

5

Dependable Device Drivers

• Sources of bugs in device drivers

• Engineering approaches to improving device driver
reliability
• Use of object-oriented code and languages for device drivers

• MacOS X I/O Kit as a example

• Future directions: explicit identification of driver
state machines
• Formal verification driver code

• Integration with model checking

• Dingo and Singularity as examples

6

Dependable Kernels

• Evolution of the operating system kernel
• Microkernels

• Use of managed code for systems programming – how much of the
kernel can be written in a high-level type-safe language?

• Pervasive concurrency

• Examples: Singularity and BarrelFish

7

Garbage Collection

• Memory management models
• Garbage collection – advantages and disadvantages

• Other approaches – e.g., RAII

• Role of garbage collection in future kernels

• Garbage collection algorithms and their properties
• Mark-sweep, mark-compact, copying collectors, generational collectors,

incremental collectors and tricolour marking, Cheney algorithm

• Real-time garbage collection
• Specially-tuned incremental collector, treated as a periodic tasks

• Places limits on the amount of garbage that can be created

8

Concurrency

• Pervasive concurrency, and its implications for next
generation operating systems

• Software Transactional Memory
• Transactional processing as the fundamental concurrency primitive

• Relation to purely functional languages

• Implementation in Haskell

• Actors and message passing
• Exchange of immutable messages between concurrent processes as the

fundamental concurrency primitive

• Implementation in Erlang and Singularity

• Robustness – “let it crash”

9

Discussion

• Wide spectrum of research ideas and concepts

• Which are seeing widespread use?
• Functional languages and message passing concurrency

• Garbage collection – potential for integration with kernels

• Increased use of static code analysis tools, to debug the limitations of C

• Opportunities for dependable kernels
• New implementation frameworks and safe programming languages

• Approaches similar to Singularity have large potential

10

Discussion

11

68 COMMUNICATIONS OF THE ACM | SEPTEMBER 2010 | VOL. 53 | NO. 9

contributed articles

ERLANG I S A concurrent programming language
designed for programming fault-tolerant distributed
systems at Ericsson and has been (since 2000) freely
available subject to an open-source license. More
recently, we’ve seen renewed interest in Erlang, as
the Erlang way of programming maps naturally to
multicore computers. In it the notion of a process is
fundamental, with processes created and managed
by the Erlang runtime system, not by the underlying
operating system. The individual processes, which are
programmed in a simple dynamically typed functional
programming language, do not share memory and
exchange data through message passing, simplifying
the programming of multicore computers.

Erlang2 is used for programming fault-tolerant,
distributed, real-time applications. What differentiates
it from most other languages is that it’s a concurrent
programming language; concurrency belongs to
the language, not to the operating system. Its
programs are collections of parallel processes
cooperating to solve a particular problem that can
be created quickly and have only limited memory

overhead; programmers can create
large numbers of Erlang processes yet
ignore any preconceived ideas they
might have about limiting the number
of processes in their solutions.

All Erlang processes are isolated
from one another and in principle
are “thread safe.” When Erlang ap-
plications are deployed on multicore
computers, the individual Erlang pro-
cesses are spread over the cores, and
programmers do not have to worry
about the details. The isolated pro-
cesses share no data, and polymor-
phic messages can be sent between
processes. In supporting strong iso-
lation between processes and poly-
morphism, Erlang could be viewed
as extremely object-oriented though
without the usual mechanisms associ-
ated with traditional OO languages.

Erlang has no mutexes, and pro-
cesses cannot share memory.a Even
within a process, data is immutable.
The sequential Erlang subset that ex-
ecutes within an individual process is a
dynamically typed functional program-
ming language with immutable state.b
Moreover, instead of classes, methods,
and inheritance, Erlang has modules
that contain functions, as well as high-
er-order functions. It also includes pro-
cesses, sophisticated error handling,
code-replacement mechanisms, and a
large set of libraries.

Here, I outline the key design crite-
ria behind the language, showing how
they are reflected in the language itself,
as well as in programming language
technology used since 1985.

Shared Nothing
The Erlang story began in mid-1985
when I was a new employee at the Er-
icsson Computer Science Lab in Stock-

a The shared memory is hidden from the pro-
grammer. Practically all application program-
mers never use primitives that manipulate
shared memory; the primitives are intended
for writing special system processes and not
normally exposed to the programmer.

b This is not strictly true; processes can mutate
local data, though such mutation is discour-
aged and rarely necessary.

Erlang

DOI:10.1145/1810891.1810910

The same component isolation that made
it effective for large distributed telecom
systems makes it effective for multicore
CPUs and networked applications.

BY JOE ARMSTRONG

AUGUST 2008 | VOL. 51 | NO. 8 | COMMUNICATIONS OF THE ACM 91

DOI:10.1145/1378704.1378725

Composable Memory Transactions
By Tim Harris, Simon Marlow, Simon Peyton Jones, and Maurice Herlihy

Abstract
Writing concurrent programs is notoriously difficult and
is of increasing practical importance. A particular source
of concern is that even correctly implemented concurrency
abstractions cannot be composed together to form larger
abstractions. In this paper we present a concurrency model,
based on transactional memory, that offers far richer com-
position. All the usual benefits of transactional memory are
present (e.g., freedom from low-level deadlock), but in addi-
tion we describe modular forms of blocking and choice that
were inaccessible in earlier work.

1. INTRODUCTION
The free lunch is over.25 We have been used to the idea that
our programs will go faster when we buy a next- generation
processor, but that time has passed. While that next-
 generation chip will have more CPUs, each individual CPU
will be no faster than the previous year’s model. If we want
our programs to run faster, we must learn to write parallel
programs.

Writing parallel programs is notoriously tricky. Main-
stream lock-based abstractions are difficult to use and they
make it hard to design computer systems that are reliable
and scalable. Furthermore, systems built using locks are dif-
ficult to compose without knowing about their internals.

To address some of these difficulties, several research-
ers (including ourselves) have proposed building program-
ming language features over software transactional memory
(STM), which can perform groups of memory operations
atomically.23 Using transactional memory instead of locks
brings well-known advantages: freedom from deadlock and
priority inversion, automatic roll-back on exceptions or tim-
eouts, and freedom from the tension between lock granular-
ity and concurrency.

Early work on software transactional memory suffered
several shortcomings. Firstly, it did not prevent transactional
code from bypassing the STM interface and accessing data
directly at the same time as it is being accessed within a trans-
action. Such conflicts can go undetected and prevent transac-
tions executing atomically. Furthermore, early STM systems
did not provide a convincing story for building operations
that may block—for example, a shared work-queue support-
ing operations that wait if the queue becomes empty.

Our work on STM-Haskell set out to address these prob-
lems. In particular, our original paper makes the following
contributions:

We re-express the ideas of transactional memory in the
setting of the purely functional language Haskell
(Section 3). As we show, STM can be expressed particu-
larly elegantly in a declarative language, and we are able
to use Haskell’s type system to give far stronger guaran-

tees than are conventionally possible. In particular, we
guarantee “strong atomicity”15 in which transactions
always appear to execute atomically, no matter what
the rest of the program is doing. Furthermore transac-
tions are compositional: small transactions can be
glued together to form larger transactions.
We present a modular form of blocking (Section 3.2).
The idea is simple: a transaction calls a retry opera-
tion to signal that it is not yet ready to run (e.g., it is try-
ing to take data from an empty queue). The programmer
does not have to identify the condition which will
enable it; this is detected automatically by the STM.
The retry function allows possibly blocking transac-
tions to be composed in sequence. Beyond this, we also
provide orElse, which allows them to be composed as
alternatives, so that the second is run if the first retries
(see Section 3.4). This ability allows threads to wait for
many things at once, like the Unix select system
call—except that orElse composes, whereas select
does not.

Everything we describe is fully implemented in the Glas-
gow Haskell Compiler (GHC), a fully fledged optimizing
compiler for Concurrent Haskell; the STM enhancements
were incorporated in the GHC 6.4 release in 2005. Further
examples and a programmer-oriented tutorial are also
available.19

Our main war cry is compositionality: a programmer can
control atomicity and blocking behavior in a modular way
that respects abstraction barriers. In contrast, lock-based
approaches lead to a direct conflict between abstraction and
concurrency (see Section 2). Taken together, these ideas offer
a qualitative improvement in language support for modular
concurrency, similar to the improvement in moving from as-
sembly code to a high-level language. Just as with assembly
code, a programmer with sufficient time and skills may ob-
tain better performance programming directly with low-level
concurrency control mechanisms rather than transactions—
but for all but the most demanding applications, our higher-
level STM abstractions perform quite well enough.

This paper is an abbreviated and polished version of an
earlier paper with the same title.9 Since then there has been
a tremendous amount of activity on various aspects of trans-
actional memory, but almost all of it deals with the question
of atomic memory update, while much less attention is paid
to our central concerns of blocking and synchronization be-
tween threads, exemplified by retry and orElse. In our
view this is a serious omission: locks without condition vari-
ables would be of limited use.

Transactional memory has tricky semantics, and the
original paper gives a precise, formal semantics for transac-
tions, as well as a description of our implementation. Both
are omitted here due to space limitations.

1_CACM_V51.8.indb 91 7/21/08 10:13:41 AM

Accelerator: Using Data Parallelism to Program GPUs for
General-Purpose Uses

David Tarditi Sidd Puri Jose Oglesby
Microsoft Research

{dtarditi,siddpuri,joseogl}@microsoft.com

Abstract
GPUs are difficult to program for general-purpose uses. Program-
mers can either learn graphics APIs and convert their applications
to use graphics pipeline operations or they can use stream program-
ming abstractions of GPUs. We describe Accelerator, a system that
uses data parallelism to program GPUs for general-purpose uses
instead. Programmers use a conventional imperative programming
language and a library that provides only high-level data-parallel
operations. No aspects of GPUs are exposed to programmers. The
library implementation compiles the data-parallel operations on the
fly to optimized GPU pixel shader code and API calls. We describe
the compilation techniques used to do this. We evaluate the effec-
tiveness of using data parallelism to program GPUs by providing
results for a set of compute-intensive benchmarks. We compare
the performance of Accelerator versions of the benchmarks against
hand-written pixel shaders. The speeds of the Accelerator versions
are typically within 50% of the speeds of hand-written pixel shader
code. Some benchmarks significantly outperform C versions on a
CPU: they are up to 18 times faster than C code running on a CPU.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming—Parallel Programming; D.3.4
[Programming Languages]: Processors—Compilers

General Terms Measurement, Performance, Experimentation,
Languages

Keywords Graphics processing units, data parallelism, just-in-
time compilation

1. Introduction
Highly programmable graphics processing units (GPUs) became
available in 2001 [10] and have evolved rapidly since then [15].
GPUs are now highly parallel processors that deliver much higher
floating-point performance for some workloads than comparable
CPUs. For example, the ATI Radeon x1900 processor has 48 pixel
shader processors, each of which is capable of 4 floating-point op-
erations per cycle, at a clock speed of 650 MHz. It has a peak
floating-point performance of over 250 GFLOPS using single-
precision floating-point numbers, counting multiply-adds as two
FLOPs. GPUs have an explicitly parallel programming model and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ASPLOS’06 October 21–25, 2006, San Jose, California, USA.
Copyright c© 2006 ACM 1-59593-451-0/06/0010. . . $5.00.

their performance continues to increase as transistor counts in-
crease.

The performance available on GPUs has led to interest in using
GPUs for general-purpose programming [16, 8]. It is difficult,
however, for most programmers to program GPUs for general-
purpose uses.

In this paper, we show how to use data parallelism to program
GPUs for general-purpose uses. We start with a conventional im-
perative language, C# (which is similar to Java). We provide a li-
brary that implements an abstract data type providing data-parallel
arrays; no aspects of GPUs are exposed to programmers. The li-
brary evaluates the data-parallel operations using a GPU; all other
operations are evaluated on the CPU. For efficiency, the library
does not immediately perform data-parallel operations. Instead, it
builds a graph of desired operations and compiles the operations on
demand to GPU pixel shader code and API calls.

Data-parallel arrays only provide aggregate operations over en-
tire input arrays. The operations are a subset of those found in lan-
guages like APL and include element-wise arithmetic and compar-
ison operators, reduction operations (such as sum), and transfor-
mations on arrays. Data-parallel arrays are functional: each oper-
ation produces a new data-parallel array. Programmers must ex-
plicitly convert back and forth between conventional arrays and
data-parallel arrays. The lazy compilation is typically done when
a program converts a data-parallel array to a normal array.

Compiling data-parallel operations lazily to a GPU allows us to
implement the operations efficiently: the system can avoid creat-
ing large numbers of temporary data-parallel arrays and optimize
the creation of pixel shaders. It also allows us to avoid exposing
GPU details to programmers: the system manages the use of GPU
resources automatically and amortizes the cost of accessing graph-
ics APIs. Compilation at run time also allows the system to handle
properties and features that vary across GPU manufacturers and
models.

We have implemented these ideas in a system called Acceler-
ator. We evaluate the effectiveness of the approach using a set of
benchmarks for compute-intensive tasks such as image processing
and computer vision, run on several generations of GPUs from both
ATI and NVidia. We implemented the benchmarks in hand-written
pixel shader assembly for GPUs, C# using Accelerator, and C++ for
the CPU. The C# programs, including compilation overhead, are
typically within 2×of the speed of the hand-written pixel shader
programs, and sometimes exceed their speeds. The C# programs,
like the hand-written pixel shader programs, often outperform the
C++ programs (by up to 18×).

Prior work on programming GPUs for general-purpose uses ei-
ther targets the specialized GPU programming model directly or
provides a stream programming abstraction of GPUs. It is diffi-
cult to target the GPU directly. First, programmers need to learn
the graphics programming model, which is specialized to the set of

325

Hera-JVM: A Runtime System for
Heterogeneous Multi-Core Architectures

Ross McIlroy ∗

Microsoft Research Cambridge
rmcilroy@microsoft.com

Joe Sventek
University of Glasgow
joe@dcs.gla.ac.uk

Abstract
Heterogeneous multi-core processors, such as the IBM Cell
processor, can deliver high performance. However, these
processors are notoriously difficult to program: different
cores support different instruction set architectures, and the
processor as a whole does not provide coherence between
the different cores’ local memories.

We present Hera-JVM, an implementation of the Java
Virtual Machine which operates over the Cell processor,
thereby making this platforms more readily accessible to
mainstream developers. Hera-JVM supports the full Java
language; threads from an unmodified Java application can
be simultaneously executed on both the main PowerPC-
based core and on the additional SPE accelerator cores. Mi-
gration of threads between these cores is transparent from
the point of view of the application, requiring no modifica-
tion to Java source code or bytecode. Hera-JVM supports
the existing Java Memory Model, even though the underly-
ing hardware does not provide cache coherence between the
different core types.

We examine Hera-JVM’s performance under a series
of real-world Java benchmarks from the SpecJVM, Java
Grande and Dacapo benchmark suites. These benchmarks
show a wide variation in relative performance on the dif-
ferent core types of the Cell processor, depending upon the
nature of their workload. Execution of these benchmarks on
Hera-JVM can achieve speedups of up to 2.25x by using
one of the Cell processor’s SPE accelerator cores, compared
to execution on the main PowerPC-based core. When all
six SPE cores are exploited, parallel workloads can achieve
speedups of up to 13x compared to execution on the single
PowerPC core.

Categories and Subject Descriptors C.1.3 [Processor Ar-
chitectures]: Other Architecture Styles—Heterogeneous (hy-
brid) systems; D.3.4 [Programming Languages]: Proc-
essors—Run-time environments.

General Terms Design, Languages, Performances.

∗ Work performed while at the University of Glasgow.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA/SPLASH’10, October 17–21, 2010, Reno/Tahoe, Nevada, USA.
Copyright c© 2010 ACM 978-1-4503-0203-6/10/10. . . $10.00

1. Introduction
Commodity microprocessors are providing increasing num-
bers of cores to improve their performance, as issues such as
memory access latency, energy dissipation and instruction
level parallelism limit the performance improvements that
can be gained by a single core. Current commodity multi-
core processors are symmetric, with each processing core
being identical. This kind of architecture provides a simple
platform on which to build applications, however, a Hetero-
geneous Multi-core Architecture (HMA), consisting of dif-
ferent types of processing cores, has the potential to provide
greater performance and efficiency [1, 6].

There are two primary ways in which an HMA can im-
prove performance. First, heterogeneous cores allow special-
isation of some cores to improve the performance of particu-
lar application types, while other cores can remain more gen-
eral purpose, such that the performance of other applications
does not suffer. Second, an HMA can also enable programs
to scale better in the presence of serial sections of a paral-
lel workload. Amdahl’s law [4] shows that even a relatively
small fraction of sequential code can severely limit the over-
all scalability of an algorithm. A HMA can devote silicon
area towards a complex core, on which sequential code can
be executed quickly, and use the rest of its silicon area for
a large number of simple cores, across which parallel work-
loads can be scaled. This enables an HMA to provide better
potential speedups compared with an equivalent symmetric
architecture when Amdahl’s law is taken into account [8].

However, this potential for higher performance comes at
the cost of program complexity. In order to exploit an HMA,
programmers must take into account: the different strengths
and weaknesses of each of the available processing cores;
the lack of functionality on certain cores (e.g., floating point
hardware or operating system support); potentially different
instruction sets and programming environments on each of
the core types; and (often) a non-coherent shared memory
system between cores of different types.

If mainstream application developers are to exploit HMAs,
they must be made simpler to program. High level virtual
machine based languages, such as Java, present an opportu-
nity to hide the details of a heterogeneous architecture from
the developer, behind a homogeneous virtual machine inter-
face.

The Multikernel: A new OS architecture for scalable multicore systems

Andrew Baumann�, Paul Barham†, Pierre-Evariste Dagand‡, Tim Harris†, Rebecca Isaacs†,
Simon Peter�, Timothy Roscoe�, Adrian Schüpbach�, and Akhilesh Singhania�

�Systems Group, ETH Zurich
†Microsoft Research, Cambridge ‡ENS Cachan Bretagne

Abstract
Commodity computer systems contain more and more
processor cores and exhibit increasingly diverse archi-
tectural tradeo�s, including memory hierarchies, inter-
connects, instruction sets and variants, and IO configu-
rations. Previous high-performance computing systems
have scaled in specific cases, but the dynamic nature of
modern client and server workloads, coupled with the
impossibility of statically optimizing an OS for all work-
loads and hardware variants pose serious challenges for
operating system structures.

We argue that the challenge of future multicore hard-
ware is best met by embracing the networked nature of
the machine, rethinking OS architecture using ideas from
distributed systems. We investigate a new OS structure,
the multikernel, that treats the machine as a network of
independent cores, assumes no inter-core sharing at the
lowest level, and moves traditional OS functionality to
a distributed system of processes that communicate via
message-passing.

We have implemented a multikernel OS to show that
the approach is promising, and we describe how tradi-
tional scalability problems for operating systems (such
as memory management) can be e�ectively recast using
messages and can exploit insights from distributed sys-
tems and networking. An evaluation of our prototype on
multicore systems shows that, even on present-day ma-
chines, the performance of a multikernel is comparable
with a conventional OS, and can scale better to support
future hardware.

1 Introduction

Computer hardware is changing and diversifying faster
than system software. A diverse mix of cores, caches, in-
terconnect links, IO devices and accelerators, combined
with increasing core counts, leads to substantial scalabil-
ity and correctness challenges for OS designers.

x86

Async messages

App

x64 ARM GPU

App App

OS node OS node OS node OS node

State
replica

State
replica

State
replica

State
replica

App

Agreement
algorithms

Interconnect

Heterogeneous
cores

Arch-specific
code

Figure 1: The multikernel model.

Such hardware, while in some regards similar to ear-
lier parallel systems, is new in the general-purpose com-
puting domain. We increasingly find multicore systems
in a variety of environments ranging from personal com-
puting platforms to data centers, with workloads that are
less predictable, and often more OS-intensive, than tradi-
tional high-performance computing applications. It is no
longer acceptable (or useful) to tune a general-purpose
OS design for a particular hardware model: the deployed
hardware varies wildly, and optimizations become obso-
lete after a few years when new hardware arrives.

Moreover, these optimizations involve tradeo�s spe-
cific to hardware parameters such as the cache hierarchy,
the memory consistency model, and relative costs of lo-
cal and remote cache access, and so are not portable be-
tween di�erent hardware types. Often, they are not even
applicable to future generations of the same architecture.
Typically, because of these di⇥culties, a scalability prob-
lem must a�ect a substantial group of users before it will
receive developer attention.

We attribute these engineering di⇥culties to the ba-
sic structure of a shared-memory kernel with data struc-
tures protected by locks, and in this paper we argue for
rethinking the structure of the OS as a distributed sys-
tem of functional units communicating via explicit mes-

1

A Real-time Garbage Collector
with Low Overhead and Consistent Utilization

David F. Bacon
dfb@watson.ibm.com

Perry Cheng
perryche@us.ibm.com

V.T. Rajan
vtrajan@us.ibm.com

IBM T.J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

ABSTRACT
Now that the use of garbage collection in languages like Java is be-
coming widely accepted due to the safety and software engineering
benefits it provides, there is significant interest in applying garbage
collection to hard real-time systems. Past approaches have gener-
ally suffered from one of two major flaws: either they were not
provably real-time, or they imposed large space overheads to meet
the real-time bounds. We present a mostly non-moving, dynami-
cally defragmenting collector that overcomes both of these limita-
tions: by avoiding copying in most cases, space requirements are
kept low; and by fully incrementalizing the collector we are able to
meet real-time bounds. We implemented our algorithm in the Jikes
RVM and show that at real-time resolution we are able to obtain
mutator utilization rates of 45% with only 1.6–2.5 times the ac-
tual space required by the application, a factor of 4 improvement in
utilization over the best previously published results. Defragmen-
tation causes no more than 4% of the traced data to be copied.

General Terms
Algorithms, Languages, Measurement, Performance

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]: Real-
time and embedded systems; D.3.2 [Programming Languages]:
Java; D.3.4 [Programming Languages]: Processors—Memory
management (garbage collection)

Keywords
Read barrier, defragmentation, real-time scheduling, utilization

1. INTRODUCTION
Garbage collected languages like Java are making significant in-

roads into domains with hard real-time concerns, such as automo-
tive command-and-control systems. However, the engineering and
product life-cycle advantages consequent from the simplicity of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

POPL’03, January 15–17, 2003, New Orleans, Louisiana, USA.
Copyright c 2003 ACM 1-58113-628-5/03/0001 $5.00.

programming with garbage collection remain unavailable for use in
the core functionality of such systems, where hard real-time con-
straints must be met. As a result, real-time programming requires
the use of multiple languages, or at least (in the case of the Real-
Time Specification for Java [9]) two programming models within
the same language. Therefore, there is a pressing practical need
for a system that can provide real-time guarantees for Java without
imposing major penalties in space or time.

We present a design for a real-time garbage collector for Java,
an analysis of its real-time properties, and implementation results
that show that we are able to run applications with high mutator
utilization and low variance in pause times.

The target is uniprocessor embedded systems. The collector is
therefore concurrent, but not parallel. This choice both complicates
and simplifies the design: the design is complicated by the fact that
the collector must be interleaved with the mutators, instead of being
able to run on a separate processor; the design is simplified since
the programming model is sequentially consistent.

Previous incremental collectors either attempt to avoid overhead
and complexity by using a non-copying approach (and are there-
fore subject to potentially unbounded fragmentation), or attempt
to prevent fragmentation by performing concurrent copying (and
therefore require a minimum of a factor of two overhead in space,
as well as requiring barriers on reads and/or writes, which are costly
and tend to make response time unpredictable).

Our collector is unique in that it occupies an under-explored por-
tion of the design space for real-time incremental collectors: it
is a mostly non-copying hybrid. As long as space is available, it
acts like a non-copying collector, with the consequent advantages.
When space becomes scarce, it performs defragmentation with lim-
ited copying of objects. We show experimentally that such a design
is able to achieve low space and time overhead, and high and con-
sistent mutator CPU utilization.

In order to achieve high performance with a copying collector,
we have developed optimization techniques for the Brooks-style
read barrier [10] using an “eager invariant” that keeps read barrier
overhead to 4%, an order of magnitude faster than previous soft-
ware read barriers.

Our collector can use either time- or work-based scheduling.
Most previous work on real-time garbage collection, starting with
Baker’s algorithm [5], has used work-based scheduling. We show
both analytically and experimentally that time-based scheduling is
superior, particularly at the short intervals that are typically of in-
terest in real-time systems. Work-based algorithms may achieve
short individual pause times, but are unable to achieve consistent
utilization.

The paper is organized as follows: Section 2 describes previ-

285

Uniprocessor Garbage Collection Techniques

Paul R. Wilson

University of Texas
Austin, Texas 78712-1188 USA

(wilson@cs.ut exas.edu)

Abstract. We survey basic garbage collection algorithms, and variations
such as incremental and generational collection. The basic algorithms in-
clude reference counting, mark-sweep, mark-compact, copying, and treadmill
collection. Incremental techniques can kccp garbage concction pause times
short, by interleaving small amounts of collection work with program execu-
tion. Generationalschemes improve efficiency and locality by garbage collect-
ing a smaller area more often, while exploiting typical lifetime characteristics
to avoid undue overhead from long-lived objects.

1 A u t o m a t i c S t o r a g e R e c l a m a t i o n

Garbage collection is the automatic reclamation of computer storage [Knu69, Coh81,
App91]. While in many systems programmers must explicitly reclaim heap memory
at some point in the program, by using a '~free" or "dispose" statement, garbage
collected systems free the programmer from this burden. The garbage collector's
function is to find data objects I that are no longer in use and make their space
available for reuse by the the running program. An object is considered garbage
(and subject to reclamation) if it is not reachable by the running program via any
path of pointer traversals. Live (potentially reachable) objects are preserved by the
collector, ensuring that the program can never traverse a "dangling pointer" into a
deallocated object.

This paper is intended to be an introductory survey of garbage collectors for
uniprocessors, especially those developed in the last decade. For a more thorough
treatment of older techniques, see [Knu69, Coh81].

1.1 M o t i v a t i o n

Garbage collection is necessary for fully modular programming, to avoid introducing
unnecessary inter-module dependencies. A routine operating on a data structure
should not have to know what other routines may be operating on the same structure,
unless there is some good reason to coordinate their activities. If objects must be
deallocated explicitly, some module must be responsible for knowing when olher
modules are not interested in a particular object.

1 We use the term object loosely, to include any kind of structured data record, such
as Pascal records or C structs, as well as full-fledged objects with encapsulation and
inheritance, in the sense of object-oriented programming.

Sealing OS Processes to Improve Dependability and Safety

 Galen Hunt, Mark Aiken, Manuel Fähndrich, Chris Hawblitzel, Orion Hodson,
James Larus, Steven Levi, Bjarne Steensgaard, David Tarditi, and Ted Wobber

Microsoft Research
One Microsoft Way

Redmond, WA 98052 USA

singqa@microsoft.com

ABSTRACT
In most modern operating systems, a process is a
hardware-protected abstraction for isolating code and data.
This protection, however, is selective. Many common
mechanisms<dynamic code loading, run-time code
generation, shared memory, and intrusive system APIs<
make the barrier between processes very permeable. This
paper argues that this traditional open process architecture
exacerbates the dependability and security weaknesses of
modern systems.

As a remedy, this paper proposes a sealed process
architecture, which prohibits dynamic code loading, self-
modifying code, shared memory, and limits the scope of
the process API. This paper describes the implementation
of the sealed process architecture in the Singularity
operating system, discusses its merits and drawbacks, and
evaluates its effectiveness. Some benefits of this sealed
process architecture are: improved program analysis by
tools, stronger security and safety guarantees, elimination
of redundant overlaps between the OS and language
runtimes, and improved software engineering.

Conventional wisdom says open processes are required for
performance; our experience suggests otherwise. We
present the first macrobenchmarks for a sealed-process
operating system and applications. The benchmarks show
that an experimental sealed-process system can achieve
performance competitive with highly-tuned, commercial,
open-process systems.

Categories and Subject Descriptors
D.2.3 [Software Engineering] Coding Tools and Techniques;
D.2.4 [Software Engineering] Software/Program Verification;
D.4.1 [Operating Systems]: Process Management; D.4.5
[Operating Systems]: Reliability; D.4.6 [Operating Systems]:
Organization and Design; D.4.7 [Operating Systems]: Security
and Protection.

General Terms
Design, Reliability, Experimentation.

Keywords
Open process architecture, sealed process architecture, sealed
kernel, software isolated process (SIP).

1. INTRODUCTION
Processes debuted, circa 1965, as a recognized operating
system abstraction in Multics [48]. Multics pioneered
many attributes of modern processes: OS-supported
dynamic code loading, run-time code generation, cross-
process shared memory, and an intrusive kernel API that
permitted one process to modify directly the state of
another process.

Today, this architecture<which we call the open process
architecture<is nearly universal. Although aspects of this
architecture, such as dynamic code loading and shared
memory, were not in Multics\ immediate successors (early
versions of UNIX [35] or early PC operating systems),
today\s systems, such as FreeBSD, Linux, Solaris, and
Windows, embrace all four attributes of the open process
architecture.

The open process architecture is commonly used to extend
an OS or application by dynamically loading new features
and functionality directly into a kernel or running process.
For example, Microsoft Windows supports over 100,000
third-party, in-kernel modules ranging in functionality
from device drivers to anti-virus scanners. Dynamically
loaded extensions are also widely used as web server
extensions (e.g., ISAPI extensions for Microsoft\s IIS or
modules for Apache), stored procedures in databases,
email virus scanners, web browser plug-ins, application
plug-ins, shell extensions, etc. While the role of open
processes in Windows is widely recognized, like any
versatile technology they are widely use in other systems
as well [10, 42].

1.1. Problems with Open Processes
Systems that support open processes almost always
implement process isolation through hardware mechanisms
such as memory management protection and differentiated

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers, or to redistribute to lists,
requires prior specific permission and/or a fee.
EuroSys\07, March 21d23, 2007, Lisbon, Portugal.
Copyright 2007 ACM 978-1-59593-636-3/07/0003

Dingo: Taming Device Drivers

Leonid Ryzhyk12 Peter Chubb12 Ihor Kuz12 Gernot Heiser123

1NICTA∗ 2The University of New South Wales 3Open Kernel Labs
Sydney, Australia

leonid.ryzhyk@nicta.com.au

Abstract
Device drivers are notorious for being a major source of
failure in operating systems. In analysing a sample of real
defects in Linux drivers, we found that a large propor-
tion (39%) of bugs are due to two key shortcomings in
the device-driver architecture enforced by current operating
systems: poorly-defined communication protocols between
drivers and the OS, which confuse developers and lead to
protocol violations, and a multithreaded model of computa-
tion that leads to numerous race conditions and deadlocks.

We claim that a better device driver architecture can help
reduce the occurrence of these faults, and present our Dingo
framework as constructive proof. Dingo provides a formal,
state-machine based, language for describing driver proto-
cols, which avoids confusion and ambiguity, and helps driver
writers implement correct behaviour. It also enforces an
event-driven model of computation, which eliminates most
concurrency-related faults. Our implementation of the Dingo
architecture in Linux offers these improvements, while in-
troducing negligible performance overhead. It allows Dingo
and native Linux drivers to coexist, providing a gradual mi-
gration path to more reliable device drivers.

Categories and Subject Descriptors D.4.4 [Operating
systems]: Input/Output; D.3.2 [Language Classifications]:
Specialized application languages

General Terms Languages, Reliability, Verification

Keywords Concurrent Programming, Device Drivers,
Domain-Specific Languages, Fault Avoidance, Reliability.

∗ NICTA is funded by the Australian Government’s Department of Communications,
Information Technology, and the Arts and the Australian Research Council through
Backing Australia’s Ability and the ICT Research Centre of Excellence programs

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
EuroSys’09, April 1–3, 2009, Nuremberg, Germany.
Copyright c© 2009 ACM 978-1-60558-482-9/09/04. . . $5.00

1. Introduction
While accounting for about 70% of OS code, drivers typ-
ically contain several times more errors per line of code
than other system components [Chou 2001] and, according
to recent studies, are responsible for up to 70% of system
failures [Ganapathi 2006, Murphy 2004]. With the introduc-
tion of advanced hardware capabilities such as hot-plugging,
power management, and vectored I/O, device drivers have
increased in complexity and hence become even more error-
prone.

This paper explores the factors that contribute to driver
complexity and lead to buggy drivers. In analysing bugs
found in real Linux drivers, we discover and demonstrate
quantitatively that a large proportion of these factors result
from the way drivers interface with the OS, and can be
eliminated or mitigated by a better design of the driver-OS
interface.

Specifically, we identify two shortcomings of the driver
architecture common in modern operating systems: poorly-
defined communication protocols between drivers and the
OS, which confuse developers and lead to protocol viola-
tions, and a multithreaded model of computation that leads
to numerous race conditions and deadlocks. To address these
issues, we developed Dingo1—a device-driver architecture
aimed at simplifying development and reducing the number
of software defects in drivers.

In order to reduce protocol errors, driver protocols in
Dingo are specified using a state-machine-based formal lan-
guage called Tingu.2 Tingu allows a clear and unambigu-
ous description of requirements for driver behaviour, provid-
ing intuitive guidelines to driver programmers. The primary
purpose of Tingu specifications is to serve as documenta-
tion helping driver developers avoid errors; however they can
also be used as properties against which driver implementa-
tion can be formally validated either statically or at runtime.
Presently we only support runtime validation by compiling
driver protocol specifications into a runtime observer that de-
tects protocol violations committed by the driver.

1 A Dingo is an Australian wild dog.
2 Tingu is an Australian aboriginal name for a Dingo cub.

275

Singularity: Rethinking the Software Stack
Galen C. Hunt and James R. Larus

Microsoft Research Redmond
galenh@microsoft.com

ABSTRACT
Every operating system embodies a collection of design decisions.
Many of the decisions behind
systems have remained unchanged, even as hardware and
software have evolved. Operating systems form the foundation of
almost every software stack, so inadequacies in present systems
have a pervasive impact. This paper describes the efforts of the
Singularity project to re-examine these design choices in light of
advances in programming languages and verification tools.
Singularity systems incorporate three key architectural features:
software-isolated processes for protection of programs and system
services, contract-based channels for communication, and
manifest-based programs for verification of system properties. We
describe this foundation in detail and sketch the ongoing research
in experimental systems that build upon it.

Keywords
Operating systems, safe programming languages, program
verification, program specification, sealed process architecture,
sealed kernel, software-isolated processes (SIPs), hardware
protection domains, manifest-based programs (MBPs), unsafe
code tax.

1. INTRODUCTION
Every operating system embodies a collection of design
decisions some explicit, some implicit. These decisions include
the choice of implementation language, the program protection
model, the security model, the system abstractions, and many
others.
Contemporary operating systems Windows, Linux, Mac OS X,
and BSD share a large number of design decisions. This
commonality is not entirely accidental, as these systems are all
rooted in OS architectures and development tools of the late

early . Given the common operating
environments, the same programming language, and similar user
expectations, it is not surprising that designers of these systems
made similar decisions. While some design decisions have
withstood the test of time, others have aged less gracefully.
The Singularity project started in 2003 to re-examine the design
decisions and increasingly obvious shortcomings of existing
systems and software stacks. These shortcomings include: wide-
spread security vulnerabilities; unexpected interactions among
applications; failures caused by errant extensions, plug-ins, and
drivers, and a perceived lack of robustness.
We believe that many of these problems are attributable to
systems that have not evolved far beyond the computer
architectures

different from today. Computers were extremely limited in speed
and memory capacity. They were used only by a small group of
benign technical literati and were rarely networked or connected
to physical devices. None of these requirements still hold, but

modern operating systems have not evolved to accommodate the
enormous shift in how computers are used.

1.1 A Journey, not a Destination
In the Singularity project, we have built a new operating system, a
new programming language, and new software verification tools.
The Singularity operating system incorporates a new software
architecture based on software isolation of processes. Our
programming language, Sing# [8], is an extension of C# that
provides verifiable, first-class support for OS communication
primitives as well as strong support for systems programming and
code factoring. The sound verification tools detect programmer
errors early in the development cycle.
From the beginning, Singularity has been driven by the following
question: what would a software platform look like if it was
designed from scratch, with the primary goal of improved
dependability and trustworthiness? To this end, we have
championed three strategies. First, the pervasive use of safe
programming languages eliminates many preventable defects,
such as buffer overruns. Second, the use of sound program
verification tools further guarantees that entire classes of
programmer errors are removed from the system early in the
development cycle. Third, an improved system architecture stops
the propagation of runtime errors at well-defined boundaries,
making it easier to achieve robust and correct system behavior.
Although dependability is difficult to measure in a research
prototype, our experience has convinced us of the practicality of
new technologies and design decisions, which we believe will
lead to more robust and dependable systems in the future.
Singularity is a laboratory for experimentation in new design
ideas, not a design solution. While we like to think our current
code base represents a significant step forward from prior work,
we do not or an end in itself. A
research prototype such as Singularity is intentionally a work in
progress; it is a laboratory in which we continue to explore
implementations and trade-offs.
In the remainder of this paper, we describe the common
architectural foundation shared by all Singularity systems. Section
3 describes the implementation of the Singularity kernel which
provides the base implementation of that foundation. Section 4
surveys our work over the last three years within the Singularity
project to explore new opportunities in the OS and system design
space. Finally, in Section 5, we summarize our work to date and
discuss areas of future work.

2. ARCHITECTURAL FOUNDATION
The Singularity system consists of three key architectural features:
software-isolated processes, contract-based channels, and
manifest-based programs. Software-isolated processes provide an
environment for program execution protected from external
interference. Contract-based channels enable fast, verifiable
message-based communication between processes. Manifest-

37

Programming Language Challenges in Systems Codes

Why Systems Programmers Still Use C, and What to Do About It

Jonathan Shapiro, Ph.D.

Systems Research Laboratory
Department of Computer Science

Johns Hopkins University

shap@cs.jhu.edu

Abstract
There have been major advances in programming languages
over the last 20 years. Given this, it seems appropriate to
ask why systems programmers continue to largely ignore
these languages. What are the deficiencies in the eyes of
the systems programmers? How have the e�orts of the
programming language community been misdirected (from
their perspective)? What can/should the PL community do
address this?

As someone whose research straddles these areas, I was
asked to give a talk at this year’s PLOS workshop. What
follows are my thoughts on this subject, which may or not
represent those of other systems programmers.

1. Introduction

Modern programming languages such as ML [16] or
Haskell [17] provide newer, stronger, and more expressive
type systems than systems programming languages such as
C [15, 13] or Ada [12]. Why have they been of so little in-
terest to systems developers, and what can/should we do
about it?

As the primary author of the EROS system [18] and its
successor Coyotos [20], both of which are high-performance
microkernels, it seems fair to characterize myself primarily
as a hardcore systems programmer and security architect.
However, there are skeletons in my closet. In the mid-1980s,
my group at Bell Labs developed one of the first large
commercial C++ applications — perhaps the first. My early
involvement with C++ includes the first book on reusable
C++ programming [21], which is either not well known or
has been graciously disregarded by my colleagues.

In this audience I am tempted to plead for mercy on the
grounds of youth and ignorance, but having been an active

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

PLOS 2006, Oct. 22, 2006, San Jose, California, United States
Copyright c� 2006 ACM 1-59593-577-0/10/2006. . . $5.00

advocate of C++ for so long this entails a certain degree
of chutzpah.1 There is hope. Microkernel developers seem to
have abandoned C++ in favor of C. The book is out of print
in most countries, and no longer encourages deviant coding
practices among susceptible young programmers.

A Word About BitC Brewer et al.’s cry that Thirty
Years is Long Enough [6] resonates. It really is a bit dis-
turbing that we are still trying to use a high-level assembly
language created in the early 1970s for critical production
code 35 years later. But Brewer’s lament begs the question:
why has no viable replacement for C emerged from the pro-
gramming languages community? In trying to answer this,
my group at Johns Hopkins has started work on a new pro-
gramming language: BitC. In talking about this work, we
have encountered a curious blindness from the PL commu-
nity.

We are often asked “Why are you building BitC?” The tacit
assumption seems to be that if there is nothing fundamen-
tally new in the language it isn’t interesting. The BitC goal
isn’t to invent a new language or any new language con-
cepts. It is to integrate existing concepts with advances in
prover technology, and reify them in a language that allows
us to build stateful low-level systems codes that we can rea-
son about in varying measure using automated tools. The
feeling seems to be that everything we are doing is straight-
forward (read: uninteresting). Would that it were so.

Systems programming — and BitC — are fundamentally
about engineering rather than programming languages. In
the 1980s, when compiler writers still struggled with inad-
equate machine resources, engineering considerations were
respected criteria for language and compiler design, and a
sense of “transparency” was still regarded as important.2

By the time I left the PL community in 1990, respect for
engineering and pragmatics was fast fading, and today it
is all but gone. The concrete syntax of Standard ML [16]
and Haskell [17] are every bit as bad as C++. It is a curi-
ous measure of the programming language community that
nobody cares. In our pursuit of type theory and semantics,

1 Chutzpah is best defined by example. Chutzpah is when a
person murders both of their parents and then asks the court
for mercy on the grounds that they are an orphan.

2 By “transparent,” I mean implementations in which the pro-
grammer has a relatively direct understanding of machine-level
behavior.

Thirty Years is Long Enough: Getting Beyond C

Eric Brewer Jeremy Condit Bill McCloskey Feng Zhou

Computer Science Division, University of California at Berkeley

{brewer,jcondit,billm,zf}@cs.berkeley.edu

Abstract

Thirty years after its creation, C remains one of the most
widely used systems programming languages. Unfortu-
nately, the power of C has become a liability for large
systems projects, which are now focusing on security and
reliability. Modern languages and static analyses provide
an opportunity to improve the quality of systems soft-
ware, and yet adoption of these tools has been slow.
To address this problem, we propose a new language
called Ivy that has an evolutionary path from C. The
mechanism for this evolutionary path is a system of ex-
tensions and refactorings: extensions augment the lan-
guage with new features, and refactorings assist the pro-
grammer in updating their code to use these new fea-
tures. Extensions and refactorings have a wide variety of
applications, from enforcing memory safety to detecting
user/kernel pointer errors. We also demonstrate Macro-
scope, a tool we have built to enable refactoring of exist-
ing C code.

1 Introduction

Since the time of their creation, the relationship between
Unix and C has been symbiotic: C matured because
of its link to Unix, and Unix flourished because C was
a quantum leap beyond its predecessor, assembly lan-
guage. Thirty years after its creation, C is now deeply
entrenched in the operating system community—but it is
showing its age. We believe that good languages lead to
good systems; thus, it is time for new language technol-
ogy to drive new systems research. Unfortunately, res-
cuing existing systems from the perils of C is no mean
feat.
One possible approach to improving language technol-
ogy for systems is to focus on an entirely new language.
Modern languages such as Java and ML provide stronger
static guarantees, such as type and memory safety, at a
slight cost in expressiveness. This trade-off may be desir-
able for some systems, which emphasize reliability, se-
curity, and availability over raw performance. However,
these languages lack a number of useful features of C,

such as manual memory management and bit-level data
layout. Also, it is impractical to rewrite existing systems
in an entirely new language—with millions of lines of C
code running critical infrastructure, we cannot afford to
simply start over.
A second possible approach to this problem is to use
static analysis to root out software problems. The benefit
of analysis is that it finds bugs without requiring code to
be rewritten in a new language or a newmodel. However,
static analysis tools are difficult to write and often diffi-
cult to use. Since C imposes no restrictions on where and
when programs can write to memory, tools must make
very conservative assumptions about program behavior,
or else pay a huge cost in the complexity of the analysis.
And because all analyses are conservative in some way,
they usually yield large numbers of false positives, which
make real bugs more difficult to detect. These false pos-
itives, combined with long analysis times, make it dif-
ficult to integrate static analysis directly into the build
process of a program, which in turn hinders the ability
of these tools to have a lasting impact on source code
quality.
We propose a third approach that offers an evolution-

ary path from C to a new language called Ivy. This ap-
proach incorporates the advantages of both of the previ-
ous ones. First, Ivy is a programming language as op-
posed to an analysis tool; it will provide sound guar-
antees to programmers using a checker that will be in-
tegrated into the compiler. Second, Ivy will provide a
transition path from existing code by means of exten-
sions and refactorings. Extensions will add new lan-
guage features such as sophisticated data layout, concur-
rency control, and memory management, each of which
can be enabled or disabled individually. Extensions may
add language features, but they may also disable them.
For example, the memory safety extension will forbid
some uses of casting and pointer arithmetic while adding
mechanisms such as regions and built-in reference count-
ing. Refactorings will assist programmers in the transi-
tion by analyzing existing code to find patterns that could
be better expressed with a specific language extension.
Working in tandem, extensions and refactorings will en-

What are the key ideas
that emerge from the
papers and discussion?

Examination

• Weighting: 80%

• Duration 2 hours

• Sample exam and past papers available on Moodle

• Material covered in the lectures, tutorials, and
papers is examinable
• Aim is to test your understanding of the material, not simply to test your

memory of all the details; explain why – don’t just recite what

12

End

13

