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Message Passing

• System is structured as a set of communicating 
processes, with no shared mutable state

• All communication via exchange of messages
• Messages are generally required to be immutable – data is 

conceptually copied between processes

• Some systems use linear types to ensure messages are not 
referenced after they are sent, allowing mutable data to be 
safely transferred 

• Implementation
• Implementation within a single system usually built with 

shared memory and locks, passing a reference to the 
message

• Trivial to distribute, by sending the message down a network 
channel – the runtime needs to know about the network, but 
the application can be unaware that the system is distributed
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Interaction Models

• Message passing can involve rendezvous between 
sender and receiver
• A synchronous message passing model – sender waits for receiver

• e.g., occam2

• Alternatively, communication may be asynchronous
• The sender continues immediately after sending a message

• Message is buffered, for later delivery to the receiver

• e.g., Erlang, Scala actors, Singularity channels

• Synchronous rendezvous can be simulated by waiting for a reply
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Communication and the Type System

• Statically-typed communication
• Explicitly define the types of message that can be transferred

• Compiler checks that receiver can handle all messages it can receive – 
robustness, since a receiver is guaranteed to understand all messages

• e.g., Singularity

• Dynamically-typed communication
• Communication medium conveys any time of message; receiver uses 

pattern matching on the received message types to determine if it can 
respond to the messages

• Potentially leads to run-time errors if a receiver gets a message that it 
doesn’t understand

• e.g., Erlang, Scala Actors
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Naming of Communications

• Are messages sent between named processes or 
indirectly via channels?
• Erlang and Scala directly send messages to processes, each of which 

has its own mailbox

• Singularity and occam2 require explicit channels to be created, with 
messages being sent indirectly via the channel

• Explicit channels require more plumbing, but the extra level of indirection 
between sender and receiver may be useful for evolving systems

• Explicit channels are a natural place to define a communications protocol 
for statically typed messages
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Erlang and Scala

• Two widely deployed message passing systems:
• Erlang (http://www.erlang.org/) 

• Scala (http://www.scala-lang.org/)
• Scala is an open-source multi-paradigm (functional/object-oriented) 

programming language that runs on the JVM, and seamlessly 
interoperates with Java code

• The bundled actors library gives Erlang-like concurrency primitives

• Both adopt a similar message passing model:
• Asynchronous – messages are buffered at receiver; sender does not wait

• Dynamically typed – any type of message may be sent to any receiver

• Messages sent to named processes, not via channels

• Both provide transparent distribution of processes 
in a networked system
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ERLANG IS  A  concurrent programming language 
designed for programming fault-tolerant distributed 
systems at Ericsson and has been (since 2000) freely 
available subject to an open-source license. More 
recently, we’ve seen renewed interest in Erlang, as 
the Erlang way of programming maps naturally to 
multicore computers. In it the notion of a process is 
fundamental, with processes created and managed 
by the Erlang runtime system, not by the underlying 
operating system. The individual processes, which are 
programmed in a simple dynamically typed functional 
programming language, do not share memory and 
exchange data through message passing, simplifying 
the programming of multicore computers. 

Erlang2 is used for programming fault-tolerant, 
distributed, real-time applications. What differentiates 
it from most other languages is that it’s a concurrent 
programming language; concurrency belongs to  
the language, not to the operating system. Its 
programs are collections of parallel processes 
cooperating to solve a particular problem that can  
be created quickly and have only limited memory 

overhead; programmers can create 
large numbers of Erlang processes yet 
ignore any preconceived ideas they 
might have about limiting the number 
of processes in their solutions. 

All Erlang processes are isolated 
from one another and in principle 
are “thread safe.” When Erlang ap-
plications are deployed on multicore 
computers, the individual Erlang pro-
cesses are spread over the cores, and 
programmers do not have to worry 
about the details. The isolated pro-
cesses share no data, and polymor-
phic messages can be sent between 
processes. In supporting strong iso-
lation between processes and poly-
morphism, Erlang could be viewed 
as extremely object-oriented though 
without the usual mechanisms associ-
ated with traditional OO languages. 

Erlang has no mutexes, and pro-
cesses cannot share memory.a Even 
within a process, data is immutable. 
The sequential Erlang subset that ex-
ecutes within an individual process is a 
dynamically typed functional program-
ming language with immutable state.b 
Moreover, instead of classes, methods, 
and inheritance, Erlang has modules 
that contain functions, as well as high-
er-order functions. It also includes pro-
cesses, sophisticated error handling, 
code-replacement mechanisms, and a 
large set of libraries. 

Here, I outline the key design crite-
ria behind the language, showing how 
they are reflected in the language itself, 
as well as in programming language 
technology used since 1985. 

Shared Nothing 
The Erlang story began in mid-1985 
when I was a new employee at the Er-
icsson Computer Science Lab in Stock-

a The shared memory is hidden from the pro-
grammer. Practically all application program-
mers never use primitives that manipulate 
shared memory; the primitives are intended 
for writing special system processes and not 
normally exposed to the programmer.

b This is not strictly true; processes can mutate 
local data, though such mutation is discour-
aged and rarely necessary.

Erlang

DOI:10.1145/1810891.1810910

The same component isolation that made 
it effective for large distributed telecom 
systems makes it effective for multicore  
CPUs and networked applications. 
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Message Passing: Scala Example
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class Ping(count: int, pong: Actor) extends Actor {
  def act() {
    var pingsLeft = count - 1
    pong ! Ping
    loop {
      react {
        case Pong =>
          if (pingsLeft % 1000 == 0)
            Console.println("Ping: pong")
          if (pingsLeft > 0) {
            pong ! Ping
            pingsLeft -= 1
          } else {
            Console.println("Ping: stop")
            pong ! Stop
            exit()
          }
      }
    }
  }
}

class Pong extends Actor {
  def act() {
    var pongCount = 0
    loop {
      react {
        case Ping =>
          if (pongCount % 1000 == 0)
            Console.println("Pong: ping "+pongCount)
          sender ! Pong
          pongCount = pongCount + 1
        case Stop =>
          Console.println("Pong: stop")
          exit()
      }
    }
  }
}

object pingpong extends Application {
  val pong = new Pong
  val ping = new Ping(100000, pong)
  ping.start
  pong.start
}$ scalac pingpong.scala

$ scala -cp . examples.actors.pingpong
Pong: ping 0
Ping: pong
Pong: ping 1000
Ping: pong
Pong: ping 2000
...
Ping: stop
Pong: stop



Advantages of Erlang/Scala Model

8

• Weak coupling of processes via asynchronous and 
dynamically typed messages:
• Expressive and flexible

• Robust framework for error handling

• Relative ease of upgrading running systems

• Potential disadvantage: checking happens at run 
time, so guarantees of robustness are probabilistic
• Statically typed message passing systems like Singularity provide for 

compile-time checking that a process can respond to messages

• Rendezvous-based synchronous systems provide better tests for liveness



Robust Message Passing Systems

• The system is massively concurrent – errors in one 
part can be handled elsewhere 

• Error handling philosophy in Erlang:
• Let some other process do the error recovery

• If you can’t do what you want to do, die

• Let it crash

• Do not program defensively

• Be concerned with the overall system reliability, not 
the reliability of any one component
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J. Armstrong, “Making reliable distributed systems in the presence 
of software errors”, PhD thesis, KTH, Stockholm, December 2003, 
http://www.sics.se/~joe/thesis/armstrong_thesis_2003.pdf

http://akka.io/ for an alternative Scala actors library, implementing 
these fault tolerance concepts



Let it Crash

• In a single-process system, that process must be 
responsible for handling errors
• If the single process fails, then the entire application has failed

• In a multi-process system, each individual process 
is less precious – it’s just one of many
• Changes the philosophy of error handling

• A process which encounters a problem should not try to handle that 
problem – instead, fail loudly, cleanly, and quickly “let it crash”

• Let another process cleanup and deal with the problem

• Processes become much simpler, since they’re not cluttered with error 
handling code
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Remote Error Handling

• How to handle errors in a concurrent distributed 
system?
• Isolate the problem, let an unaffected process be responsible 

for recovery

• Don’t trust the faulty component

• Analogy to hardware fault tolerance

• Processes are linked, and the runtime is set to 
trap errors and send a message to the linked 
process on failure
• e.g., process PID2 has requested notification of failure of 

PID1; runtime sends an “EXIT” message on failure, to tell 
PID2 that PID1 failed, and why

• Process PID2 then restarts PID1, and any other dependent 
processes
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PID1 PID2
{‘EXIT’, PID, Reason}



Remote Error Handling: Advantages

• Remote error handling has several advantages: 
• “The error-handling code and the code which has the error execute within 

different threads of control

• The code which solves the problem is not cluttered up with the code 
which handles the exception

• The method works in a distributed system and so porting code from a 
single-node system to a distributed system needs little change to the 
error-handling code

• Systems can be built and tested on a single node system, but deployed 
on a multi-node distributed system without massive changes to the code”
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Erlang Supervision Hierarchies

• Organise problems into tree-structured groups 
of processes, letting the higher nodes in the tree 
monitor and correct errors in the lower nodes
• Supervision trees are trees of supervisors – processes that 

monitor other processes in the system

• Supervisors monitor workers – which perform tasks – or 
other supervisors

• Workers are instances of behaviours – processes whose 
operation is characterised by callback functions (i.e., the 
Erlang equivalent of objects)

• E.g., server, event handler, finite state machine, supervisor, application

• Abstract common behaviours into objects

• Workers managed by supervisor processes that 
restart them in the case of failure, or otherwise 
handle errors
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OTP: Open Telecom Platform – 
a library of useful behaviours 
for writing telecoms software



Erlang: Case Study

• Ericsson AXD301 160Gbps ATM switch
• 1.1 million lines of Erlang

• 2248 Erlang modules (equivalent to classes in an object-oriented system)

• Dimensioned to handle ~50,000 simultaneous flows, with ~120 in setup or 
teardown phase at any one time

• 99.9999999% reliable in real-world deployment on 11 routers at a major 
Ericsson customer (~0.5 seconds downtime per year)

• Yet, process failures do occur, and are handled by the supervision 
hierarchy and distributed error recovery
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Systems Upgrade and Evolution

• Message passing allows for easy system upgrade
• Rather than passing messages directly to a server, pass them 

via a proxy

• Proxy can load a new version of the server and redirect 
messages, without disrupting existing clients

• Eventually, all clients are talking to the new server; old server 
is garbage collected

• Allows for gradual transparent system upgrade
• A running system can be upgraded without disrupting service

• Use of dynamic typing can make the upgrade 
easier
• New components of the system can generate additional 

messages, which are ignored by old components

• Supervisor hierarchy allows system to notice if components 
fail, and fallback to known good version

• Backwards compatible extensions are simple to add in this 
manner
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Discussion and Further Reading

• J. Armstrong, “Erlang”, CACM, 53(9), September 2010, 
DOI:10.1145/1810891.1810910

• Discussion:
• Is the Erlang approach to error handling appropriate, or is a statically 

typed system desirable?
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