
Message Passing Systems

Advanced Operating Systems (M)
Lecture 19

Message Passing

• System is structured as a set of communicating
processes, with no shared mutable state

• All communication via exchange of messages
• Messages are generally required to be immutable – data is

conceptually copied between processes

• Some systems use linear types to ensure messages are not
referenced after they are sent, allowing mutable data to be
safely transferred

• Implementation
• Implementation within a single system usually built with

shared memory and locks, passing a reference to the
message

• Trivial to distribute, by sending the message down a network
channel – the runtime needs to know about the network, but
the application can be unaware that the system is distributed

2

Interaction Models

• Message passing can involve rendezvous between
sender and receiver
• A synchronous message passing model – sender waits for receiver

• e.g., occam2

• Alternatively, communication may be asynchronous
• The sender continues immediately after sending a message

• Message is buffered, for later delivery to the receiver

• e.g., Erlang, Scala actors, Singularity channels

• Synchronous rendezvous can be simulated by waiting for a reply

3

Communication and the Type System

• Statically-typed communication
• Explicitly define the types of message that can be transferred

• Compiler checks that receiver can handle all messages it can receive –
robustness, since a receiver is guaranteed to understand all messages

• e.g., Singularity

• Dynamically-typed communication
• Communication medium conveys any time of message; receiver uses

pattern matching on the received message types to determine if it can
respond to the messages

• Potentially leads to run-time errors if a receiver gets a message that it
doesn’t understand

• e.g., Erlang, Scala Actors

4

Naming of Communications

• Are messages sent between named processes or
indirectly via channels?
• Erlang and Scala directly send messages to processes, each of which

has its own mailbox

• Singularity and occam2 require explicit channels to be created, with
messages being sent indirectly via the channel

• Explicit channels require more plumbing, but the extra level of indirection
between sender and receiver may be useful for evolving systems

• Explicit channels are a natural place to define a communications protocol
for statically typed messages

5

Erlang and Scala

• Two widely deployed message passing systems:
• Erlang (http://www.erlang.org/)

• Scala (http://www.scala-lang.org/)
• Scala is an open-source multi-paradigm (functional/object-oriented)

programming language that runs on the JVM, and seamlessly
interoperates with Java code

• The bundled actors library gives Erlang-like concurrency primitives

• Both adopt a similar message passing model:
• Asynchronous – messages are buffered at receiver; sender does not wait

• Dynamically typed – any type of message may be sent to any receiver

• Messages sent to named processes, not via channels

• Both provide transparent distribution of processes
in a networked system

6

68 COMMUNICATIONS OF THE ACM | SEPTEMBER 2010 | VOL. 53 | NO. 9

contributed articles

ERLANG IS A concurrent programming language
designed for programming fault-tolerant distributed
systems at Ericsson and has been (since 2000) freely
available subject to an open-source license. More
recently, we’ve seen renewed interest in Erlang, as
the Erlang way of programming maps naturally to
multicore computers. In it the notion of a process is
fundamental, with processes created and managed
by the Erlang runtime system, not by the underlying
operating system. The individual processes, which are
programmed in a simple dynamically typed functional
programming language, do not share memory and
exchange data through message passing, simplifying
the programming of multicore computers.

Erlang2 is used for programming fault-tolerant,
distributed, real-time applications. What differentiates
it from most other languages is that it’s a concurrent
programming language; concurrency belongs to
the language, not to the operating system. Its
programs are collections of parallel processes
cooperating to solve a particular problem that can
be created quickly and have only limited memory

overhead; programmers can create
large numbers of Erlang processes yet
ignore any preconceived ideas they
might have about limiting the number
of processes in their solutions.

All Erlang processes are isolated
from one another and in principle
are “thread safe.” When Erlang ap-
plications are deployed on multicore
computers, the individual Erlang pro-
cesses are spread over the cores, and
programmers do not have to worry
about the details. The isolated pro-
cesses share no data, and polymor-
phic messages can be sent between
processes. In supporting strong iso-
lation between processes and poly-
morphism, Erlang could be viewed
as extremely object-oriented though
without the usual mechanisms associ-
ated with traditional OO languages.

Erlang has no mutexes, and pro-
cesses cannot share memory.a Even
within a process, data is immutable.
The sequential Erlang subset that ex-
ecutes within an individual process is a
dynamically typed functional program-
ming language with immutable state.b
Moreover, instead of classes, methods,
and inheritance, Erlang has modules
that contain functions, as well as high-
er-order functions. It also includes pro-
cesses, sophisticated error handling,
code-replacement mechanisms, and a
large set of libraries.

Here, I outline the key design crite-
ria behind the language, showing how
they are reflected in the language itself,
as well as in programming language
technology used since 1985.

Shared Nothing
The Erlang story began in mid-1985
when I was a new employee at the Er-
icsson Computer Science Lab in Stock-

a The shared memory is hidden from the pro-
grammer. Practically all application program-
mers never use primitives that manipulate
shared memory; the primitives are intended
for writing special system processes and not
normally exposed to the programmer.

b This is not strictly true; processes can mutate
local data, though such mutation is discour-
aged and rarely necessary.

Erlang

DOI:10.1145/1810891.1810910

The same component isolation that made
it effective for large distributed telecom
systems makes it effective for multicore
CPUs and networked applications.

BY JOE ARMSTRONG

J.
 A

rm
st

ro
ng

, “
E

rla
ng

”,
C

A
C

M
, 5

3(
9)

,
D

O
I:1

0.
11

45
/1

81
08

91
.1

81
09

10

Message Passing: Scala Example

7

class Ping(count: int, pong: Actor) extends Actor {
 def act() {
 var pingsLeft = count - 1
 pong ! Ping
 loop {
 react {
 case Pong =>
 if (pingsLeft % 1000 == 0)
 Console.println("Ping: pong")
 if (pingsLeft > 0) {
 pong ! Ping
 pingsLeft -= 1
 } else {
 Console.println("Ping: stop")
 pong ! Stop
 exit()
 }
 }
 }
 }
}

class Pong extends Actor {
 def act() {
 var pongCount = 0
 loop {
 react {
 case Ping =>
 if (pongCount % 1000 == 0)
 Console.println("Pong: ping "+pongCount)
 sender ! Pong
 pongCount = pongCount + 1
 case Stop =>
 Console.println("Pong: stop")
 exit()
 }
 }
 }
}

object pingpong extends Application {
 val pong = new Pong
 val ping = new Ping(100000, pong)
 ping.start
 pong.start
}$ scalac pingpong.scala

$ scala -cp . examples.actors.pingpong
Pong: ping 0
Ping: pong
Pong: ping 1000
Ping: pong
Pong: ping 2000
...
Ping: stop
Pong: stop

Advantages of Erlang/Scala Model

8

• Weak coupling of processes via asynchronous and
dynamically typed messages:
• Expressive and flexible

• Robust framework for error handling

• Relative ease of upgrading running systems

• Potential disadvantage: checking happens at run
time, so guarantees of robustness are probabilistic
• Statically typed message passing systems like Singularity provide for

compile-time checking that a process can respond to messages

• Rendezvous-based synchronous systems provide better tests for liveness

Robust Message Passing Systems

• The system is massively concurrent – errors in one
part can be handled elsewhere

• Error handling philosophy in Erlang:
• Let some other process do the error recovery

• If you can’t do what you want to do, die

• Let it crash

• Do not program defensively

• Be concerned with the overall system reliability, not
the reliability of any one component

9

J. Armstrong, “Making reliable distributed systems in the presence
of software errors”, PhD thesis, KTH, Stockholm, December 2003,
http://www.sics.se/~joe/thesis/armstrong_thesis_2003.pdf

http://akka.io/ for an alternative Scala actors library, implementing
these fault tolerance concepts

Let it Crash

• In a single-process system, that process must be
responsible for handling errors
• If the single process fails, then the entire application has failed

• In a multi-process system, each individual process
is less precious – it’s just one of many
• Changes the philosophy of error handling

• A process which encounters a problem should not try to handle that
problem – instead, fail loudly, cleanly, and quickly “let it crash”

• Let another process cleanup and deal with the problem

• Processes become much simpler, since they’re not cluttered with error
handling code

10

Remote Error Handling

• How to handle errors in a concurrent distributed
system?
• Isolate the problem, let an unaffected process be responsible

for recovery

• Don’t trust the faulty component

• Analogy to hardware fault tolerance

• Processes are linked, and the runtime is set to
trap errors and send a message to the linked
process on failure
• e.g., process PID2 has requested notification of failure of

PID1; runtime sends an “EXIT” message on failure, to tell
PID2 that PID1 failed, and why

• Process PID2 then restarts PID1, and any other dependent
processes

11

PID1 PID2
{‘EXIT’, PID, Reason}

Remote Error Handling: Advantages

• Remote error handling has several advantages:
• “The error-handling code and the code which has the error execute within

different threads of control

• The code which solves the problem is not cluttered up with the code
which handles the exception

• The method works in a distributed system and so porting code from a
single-node system to a distributed system needs little change to the
error-handling code

• Systems can be built and tested on a single node system, but deployed
on a multi-node distributed system without massive changes to the code”

12

From: J. Armstrong, “Making reliable distributed systems in the presence
of software errors”, PhD thesis, KTH, Stockholm, December 2003.

Erlang Supervision Hierarchies

• Organise problems into tree-structured groups
of processes, letting the higher nodes in the tree
monitor and correct errors in the lower nodes
• Supervision trees are trees of supervisors – processes that

monitor other processes in the system

• Supervisors monitor workers – which perform tasks – or
other supervisors

• Workers are instances of behaviours – processes whose
operation is characterised by callback functions (i.e., the
Erlang equivalent of objects)

• E.g., server, event handler, finite state machine, supervisor, application

• Abstract common behaviours into objects

• Workers managed by supervisor processes that
restart them in the case of failure, or otherwise
handle errors

13

OTP: Open Telecom Platform –
a library of useful behaviours
for writing telecoms software

Erlang: Case Study

• Ericsson AXD301 160Gbps ATM switch
• 1.1 million lines of Erlang

• 2248 Erlang modules (equivalent to classes in an object-oriented system)

• Dimensioned to handle ~50,000 simultaneous flows, with ~120 in setup or
teardown phase at any one time

• 99.9999999% reliable in real-world deployment on 11 routers at a major
Ericsson customer (~0.5 seconds downtime per year)

• Yet, process failures do occur, and are handled by the supervision
hierarchy and distributed error recovery

14

Systems Upgrade and Evolution

• Message passing allows for easy system upgrade
• Rather than passing messages directly to a server, pass them

via a proxy

• Proxy can load a new version of the server and redirect
messages, without disrupting existing clients

• Eventually, all clients are talking to the new server; old server
is garbage collected

• Allows for gradual transparent system upgrade
• A running system can be upgraded without disrupting service

• Use of dynamic typing can make the upgrade
easier
• New components of the system can generate additional

messages, which are ignored by old components

• Supervisor hierarchy allows system to notice if components
fail, and fallback to known good version

• Backwards compatible extensions are simple to add in this
manner

15

Client

Old
Server

New
Server

Proxy

Discussion and Further Reading

• J. Armstrong, “Erlang”, CACM, 53(9), September 2010,
DOI:10.1145/1810891.1810910

• Discussion:
• Is the Erlang approach to error handling appropriate, or is a statically

typed system desirable?

16

68 COMMUNICATIONS OF THE ACM | SEPTEMBER 2010 | VOL. 53 | NO. 9

contributed articles

ERLANG IS A concurrent programming language
designed for programming fault-tolerant distributed
systems at Ericsson and has been (since 2000) freely
available subject to an open-source license. More
recently, we’ve seen renewed interest in Erlang, as
the Erlang way of programming maps naturally to
multicore computers. In it the notion of a process is
fundamental, with processes created and managed
by the Erlang runtime system, not by the underlying
operating system. The individual processes, which are
programmed in a simple dynamically typed functional
programming language, do not share memory and
exchange data through message passing, simplifying
the programming of multicore computers.

Erlang2 is used for programming fault-tolerant,
distributed, real-time applications. What differentiates
it from most other languages is that it’s a concurrent
programming language; concurrency belongs to
the language, not to the operating system. Its
programs are collections of parallel processes
cooperating to solve a particular problem that can
be created quickly and have only limited memory

overhead; programmers can create
large numbers of Erlang processes yet
ignore any preconceived ideas they
might have about limiting the number
of processes in their solutions.

All Erlang processes are isolated
from one another and in principle
are “thread safe.” When Erlang ap-
plications are deployed on multicore
computers, the individual Erlang pro-
cesses are spread over the cores, and
programmers do not have to worry
about the details. The isolated pro-
cesses share no data, and polymor-
phic messages can be sent between
processes. In supporting strong iso-
lation between processes and poly-
morphism, Erlang could be viewed
as extremely object-oriented though
without the usual mechanisms associ-
ated with traditional OO languages.

Erlang has no mutexes, and pro-
cesses cannot share memory.a Even
within a process, data is immutable.
The sequential Erlang subset that ex-
ecutes within an individual process is a
dynamically typed functional program-
ming language with immutable state.b
Moreover, instead of classes, methods,
and inheritance, Erlang has modules
that contain functions, as well as high-
er-order functions. It also includes pro-
cesses, sophisticated error handling,
code-replacement mechanisms, and a
large set of libraries.

Here, I outline the key design crite-
ria behind the language, showing how
they are reflected in the language itself,
as well as in programming language
technology used since 1985.

Shared Nothing
The Erlang story began in mid-1985
when I was a new employee at the Er-
icsson Computer Science Lab in Stock-

a The shared memory is hidden from the pro-
grammer. Practically all application program-
mers never use primitives that manipulate
shared memory; the primitives are intended
for writing special system processes and not
normally exposed to the programmer.

b This is not strictly true; processes can mutate
local data, though such mutation is discour-
aged and rarely necessary.

Erlang

DOI:10.1145/1810891.1810910

The same component isolation that made
it effective for large distributed telecom
systems makes it effective for multicore
CPUs and networked applications.

BY JOE ARMSTRONG

