
Transactional Memory and Concurrency

Advanced Operating Systems (M)
Lecture 18

Concurrency, Threads, and Locks

• Operating systems expose concurrency
via processes and threads
• Processes are isolated with separate memory areas

• Threads share access to a common pool of memory

• The processor/language memory models
specify how concurrent access to shared
memory works
• Generally enforce synchronisation via explicit locks

around critical sections (e.g. Java synchronized
methods and statements; pthread mutexes)

• Very limited guarantees about unlocked concurrent
access to shared memory

2

Critical
Section

Critical
Section

Blocked

Ti
m

e

Thread A Thread B

Limitations of Locking

• Limitations of locks for managing concurrency:
• Difficult to enforce locking
• Users of shared data must acquire and release the locks

• Encapsulating shared data in objects that manage the lock can help

• Difficult to guarantee freedom from deadlocks
• Usual solution: acquire and release locks in a fixed order

• But, conflicts with encapsulation of locks within objects to enforce locking

• Failures are silent
• Race conditions due to incorrect locking generally only show under load

• Extremely difficult to locate and debug

• Balancing performance and correctness is difficult
• Too many locks inhibit concurrency and reduce performance; too few lead to subtle bugs

• Implication: ensuring correct use of locks is difficult

3

Composition of Lock-based Code

• Correctness of small-scale code using locks can be ensured by careful coding
(at least in theory)

• A more fundamental issue: lock-based code does not compose to larger scale
• Assume a correctly locked bank account class, with

methods to credit and debit money from an account

• Want to take money from a1 and move it to a2,
without exposing an intermediate state where
the money is in neither account

• Can’t be done without locking all other access
to a1 and a2 while the transfer is in progress

• The individual operations are correct, but the combined operation is not

• This is lack of abstraction a limitation of the lock-based concurrency model,
and cannot be fixed by careful coding

• Locking requirements form part of the API of an object

4

a1.debit(v)
a2.credit(v)

Preemption exposes
intermediate state

Transactions for Managing Concurrency

• An alternative approach: use atomic transactions to
manage concurrency
• A program is a sequence of concurrent atomic actions

• Atomic actions succeed or fail in their entirety, and
intermediate states are not visible to other threads

• The runtime must ensure actions have the usual ACID properties:
• Atomicity – all changes to the data are performed, or none are

• Consistency – data is in a consistent state when a transaction starts, and when it ends

• Isolation – intermediate states of a transaction are invisible to other transactions

• Durability – once committed, results of a transaction persist

• Advantages:
• Transactions can be composed arbitrarily, without affecting correctness

• Avoid deadlock due to incorrect locking, since there are no locks

5

atomic {
 a1.debit(v)
 a2.credit(v)
}

Transactional Memory Programming Model

• Simple programming model:
• Blocks of code can be labelled atomic {…}

• Run concurrently and atomically with respect to every other atomic {…}
blocks – controls concurrency and ensures consistent data structures

• Implemented via optimistic synchronisation
• A thread-local transaction log is maintained, records every memory read

and write made by the atomic block

• When an atomic block completes, the log is validated to check that it has
seen a consistent view of memory

• If validation succeeds, the transaction commits its changes to memory; if
not, the transaction is rolled-back and retried from scratch

6

Limitations of the Programming Model

• Transactions may be re-run automatically, if their
transaction log fails to validate

• Places restrictions on transaction behaviour:
• Transactions must be referentially transparent
• They produce the same answer each time they’re executed

• Transactions must do nothing irrevocable

• Might launch the missiles multiple times, if it gets re-run due to validation failure caused by
doMoreStuff

• Might accidentally launch the missiles if a concurrent thread modifies n or k while the
transaction is running (this will cause a transaction failure, but too late to stop the launch)

• These restrictions must be enforced, else we trade hard-to-find locking
bugs for hard-to-find transaction bugs

7

atomic {
 if (n > k) then launchMissiles();
 doMoreStuff;
}

Managing Communication and I/O

• Communication and I/O must be limited during a
transaction
• Pure functions can be executed normally

• Functions that only perform memory actions can be executed normally,
provided transaction log tracks the memory actions and validates them
before the transaction commits

• Functions that perform I/O are prohibited within a transaction

• Difficult to ensure through programmer discipline –
needs language support

8

Implementations of Transactional Memory

• Transactions can be implemented in hardware or
software
• Need to track memory accesses, and potentially perform rollback

• Can be done by a run-time support library, or using dedicated hardware

• To date, have used software-based implementations; hardware-based
implementations likely in future
• e.g., Intel has announced support in their Haswell platform, due in 2013

• Difficulty enforcing transactions are side-effect free,
so they can safely be rolled-back
• Requires programming language (type-system) support

9

Controlling Side Effects

• Monads → well-defined way to control side-effects
in functional languages
• A monad M a describes an action (i.e., a function) that, when executed,

produces a result of type a; along with rules for chaining actions

• A common use is for controlling I/O operations:
• The putChar function takes a character, and returns an

I/O action that can display the character when performed

• The getChar function is an I/O action; when performed
it reads and returns a character

• The main function is itself an I/O action, which wraps and performs the other actions

• The definition of the I/O monad type ensures that a function that is not
passed an I/O action cannot perform I/O
• This is one part of the puzzle for transactional memory: define atomic {…} to so that it

doesn’t take an I/O action

10

putChar :: Char -> IO ()
getChar :: IO Char

Controlling Side Effects in Transactions

• How to track side-effecting memory actions?
• Use another monad STM a to wrap

the transaction

• Manage side-effect via a TVar type

• The newTVar function takes a value of type a,
returns a new TVar to hold the value, wrapped
in an STM monad action

• readTVar takes a TVar and returns an STM monad action; when performed this returns the
value of that TVar; writeTVar function takes a TVar and a value, and returns an STM
action that assigns the value to the TVar

• Define atomic {…} to perform an
STM transaction, and return an I/O
action that performs the I/O and side effects that run the transaction

• The newTVar, readTVar, and writeTVar functions need an STM action, and so can only
run in the context of an atomic block that provides such an action

11

-- The STM monad itself
data STM a
instance Monad STM

atomic :: STM a -> IO a

-- Transactional variables
data TVar a
newTVar :: a -> STM (TVar a)
readTVar :: TVar a -> STM a
writeTVar :: TVar a -> a -> STM ()

Transactional Memory in Haskell

• Transactional memory is a good fit with Haskell
• Pure functions and monads ensure transaction semantics are preserved

• I/O and side-effects contained in STM action of an atomic {…} block

• The TVar implementation is responsible for tracking side effects

• The atomic {…} block validates, then commits the transaction (by returning an IO action to
perform the transaction)

• Untracked I/O or side-effects cannot be performed within an atomic {…}
block, since there is no way to access an IO action directly

• There is no IO action in scope, so code requiring one will not compile

• Only way to access to an IO action is via the STM action passed to the atomic {…} block

• A TVar requires an STM action, but these are only available in an atomic {…} block; hence
can’t update a TVar outside a transaction (and hence can’t break atomicity guidelines)

12

STM Haskell Example: Resource Manager

• Implement a resource manager, granting
access to integral chunks of the resource,
enforcign access control between threads
• getR r n should return n units of the resource r

blocking until it is available

• putR r n should return n units of the resource r
to the available pool – implementation on the right

• The use of the STM monad requires that
the putR function be called from within an
atomic {…} block (this is enforced by the
compiler)

13

type Resource = TVar Int

putR :: Resource -> Int -> STM ()
putR r i = do {
 v <- readTVar r;
 writeTVar r (v + i)
}

main = do {
 ...;
 atomic (putR r 3);
 ...;
}

Blocking Memory Transactions

• Transactions control access to resources,
they do not provide synchronisation
• Address by providing a retry operation for atomic blocks

e.g., consider the getR implementation on the right

• The retry function has type STM a, so
must run within an STM action
• That is, it must run within an atomic block

• Calling retry function aborts and restarts the current transaction, but blocks
until one of its associated TVars has been modified
• The system tracks access to the TVars to maintain the transaction log, so this is easily implemented

• The retry function is generally called when other concurrency approaches
would block waiting for a signal

14

getR :: Resource -> Int -> STM ()
getR r i = do {
 v <- readTVar r;
 if (v < i) then
 retry
 else
 writeTVar r (v - i)
}

retry :: STM a

Sequential Composition

• The entire set of operations surrounded in an atomic block appears
to take place indivisibly
• e.g., the operation on the right atomically gets 3 units of

r1 then 7 of r2, the do notation provides for sequential
composition of STM actions

• Note:
• The type system ensures STM actions can only be executed in an atomic block

• Actions accumulated over the entire atomic block execute or are rolled back when
the transaction log for that block is validated

• Either call to getR can invoke retry, causing the entire atomic block to be restarted

• Any STM action can be robustly composed with other STM actions, and the resulting
sequence of actions will still execute atomically

15

atomic (do {getR r1 3; getR r2 7})

Composition of Alternatives

• May want to try one operation, and if that fails, try something else
• Useful for error handling

• STM Haskell defines the orElse function
which takes two STM actions, and returns
one
• Calling s1 `orElse` s2 first tries to run s1; if s1

calls retry then it’s abandoned without effect and
s2 is run instead

• If s2 also calls retry, then the entire action is restarted

• An alternative error handling method is throwing an exception
• Throwing an exception causes the transaction abort and be validated;

• If the transaction validates, the exception propagates; else the exception is caught
and the transaction retried (the exception might be due to the inconsistency that
caused validation to fail)

16

orElse :: STM a -> STM a -> STM a

atomic (getR r1 3 ‘orElse‘ getR r2 7)

Transactional Memory in Other Languages

• STM Haskell is very powerful – but relies on the
type system to ensure safe composition and retry

• Integration into mainstream languages is difficult
• Most languages cannot require use of pure functions

• Most languages cannot limit the use of I/O and side effects

• Transaction memory can be used without these, but requires programmer
discipline to ensure correctness – and has silent failure modes

• Unclear that the approach generalises to other
languages

17

Discussion and Further Reading

• T. Harris, S. Marlow, S. Peyton Jones and M. Herlihy,
“Composable Memory Transactions”, CACM, 51(8),
August 2008. DOI:10.1145/1378704.1378725

• Is software transactional memory a realistic technique?

• Do its requirements for a purely functional language,
with monadic I/O, restrict it to being a research toy?

• How much benefit can be gained from transactional
memory in more traditional languages?

18

AUGUST 2008 | VOL. 51 | NO. 8 | COMMUNICATIONS OF THE ACM 91

DOI:10.1145/1378704.1378725

Composable Memory Transactions
By Tim Harris, Simon Marlow, Simon Peyton Jones, and Maurice Herlihy

Abstract
Writing concurrent programs is notoriously difficult and
is of increasing practical importance. A particular source
of concern is that even correctly implemented concurrency
abstractions cannot be composed together to form larger
abstractions. In this paper we present a concurrency model,
based on transactional memory, that offers far richer com-
position. All the usual benefits of transactional memory are
present (e.g., freedom from low-level deadlock), but in addi-
tion we describe modular forms of blocking and choice that
were inaccessible in earlier work.

1. INTRODUCTION
The free lunch is over.25 We have been used to the idea that
our programs will go faster when we buy a next- generation
processor, but that time has passed. While that next-
 generation chip will have more CPUs, each individual CPU
will be no faster than the previous year’s model. If we want
our programs to run faster, we must learn to write parallel
programs.

Writing parallel programs is notoriously tricky. Main-
stream lock-based abstractions are difficult to use and they
make it hard to design computer systems that are reliable
and scalable. Furthermore, systems built using locks are dif-
ficult to compose without knowing about their internals.

To address some of these difficulties, several research-
ers (including ourselves) have proposed building program-
ming language features over software transactional memory
(STM), which can perform groups of memory operations
atomically.23 Using transactional memory instead of locks
brings well-known advantages: freedom from deadlock and
priority inversion, automatic roll-back on exceptions or tim-
eouts, and freedom from the tension between lock granular-
ity and concurrency.

Early work on software transactional memory suffered
several shortcomings. Firstly, it did not prevent transactional
code from bypassing the STM interface and accessing data
directly at the same time as it is being accessed within a trans-
action. Such conflicts can go undetected and prevent transac-
tions executing atomically. Furthermore, early STM systems
did not provide a convincing story for building operations
that may block—for example, a shared work-queue support-
ing operations that wait if the queue becomes empty.

Our work on STM-Haskell set out to address these prob-
lems. In particular, our original paper makes the following
contributions:

We re-express the ideas of transactional memory in the
setting of the purely functional language Haskell
(Section 3). As we show, STM can be expressed particu-
larly elegantly in a declarative language, and we are able
to use Haskell’s type system to give far stronger guaran-

tees than are conventionally possible. In particular, we
guarantee “strong atomicity”15 in which transactions
always appear to execute atomically, no matter what
the rest of the program is doing. Furthermore transac-
tions are compositional: small transactions can be
glued together to form larger transactions.
We present a modular form of blocking (Section 3.2).
The idea is simple: a transaction calls a retry opera-
tion to signal that it is not yet ready to run (e.g., it is try-
ing to take data from an empty queue). The programmer
does not have to identify the condition which will
enable it; this is detected automatically by the STM.
The retry function allows possibly blocking transac-
tions to be composed in sequence. Beyond this, we also
provide orElse, which allows them to be composed as
alternatives, so that the second is run if the first retries
(see Section 3.4). This ability allows threads to wait for
many things at once, like the Unix select system
call—except that orElse composes, whereas select
does not.

Everything we describe is fully implemented in the Glas-
gow Haskell Compiler (GHC), a fully fledged optimizing
compiler for Concurrent Haskell; the STM enhancements
were incorporated in the GHC 6.4 release in 2005. Further
examples and a programmer-oriented tutorial are also
available.19

Our main war cry is compositionality: a programmer can
control atomicity and blocking behavior in a modular way
that respects abstraction barriers. In contrast, lock-based
approaches lead to a direct conflict between abstraction and
concurrency (see Section 2). Taken together, these ideas offer
a qualitative improvement in language support for modular
concurrency, similar to the improvement in moving from as-
sembly code to a high-level language. Just as with assembly
code, a programmer with sufficient time and skills may ob-
tain better performance programming directly with low-level
concurrency control mechanisms rather than transactions—
but for all but the most demanding applications, our higher-
level STM abstractions perform quite well enough.

This paper is an abbreviated and polished version of an
earlier paper with the same title.9 Since then there has been
a tremendous amount of activity on various aspects of trans-
actional memory, but almost all of it deals with the question
of atomic memory update, while much less attention is paid
to our central concerns of blocking and synchronization be-
tween threads, exemplified by retry and orElse. In our
view this is a serious omission: locks without condition vari-
ables would be of limited use.

Transactional memory has tricky semantics, and the
original paper gives a precise, formal semantics for transac-
tions, as well as a description of our implementation. Both
are omitted here due to space limitations.

1_CACM_V51.8.indb 91 7/21/08 10:13:41 AM

