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Concurrency, Threads, and Locks

• Operating systems expose concurrency 
via processes and threads
• Processes are isolated with separate memory areas

• Threads share access to a common pool of memory

• The processor/language memory models 
specify how concurrent access to shared 
memory works
• Generally enforce synchronisation via explicit locks 

around critical sections (e.g. Java synchronized 
methods and statements; pthread mutexes)

• Very limited guarantees about unlocked concurrent 
access to shared memory
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Limitations of Locking

• Limitations of locks for managing concurrency:
• Difficult to enforce locking
• Users of shared data must acquire and release the locks

• Encapsulating shared data in objects that manage the lock can help

• Difficult to guarantee freedom from deadlocks
• Usual solution: acquire and release locks in a fixed order

• But, conflicts with encapsulation of locks within objects to enforce locking

• Failures are silent
• Race conditions due to incorrect locking generally only show under load

• Extremely difficult to locate and debug

• Balancing performance and correctness is difficult
• Too many locks inhibit concurrency and reduce performance; too few lead to subtle bugs

• Implication: ensuring correct use of locks is difficult
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Composition of Lock-based Code

• Correctness of small-scale code using locks can be ensured by careful coding  
(at least in theory)

• A more fundamental issue: lock-based code does not compose to larger scale
• Assume a correctly locked bank account class, with

methods to credit and debit money from an account

• Want to take money from a1 and move it to a2, 
without exposing an intermediate state where 
the money is in neither account

• Can’t be done without locking all other access 
to a1 and a2 while the transfer is in progress

• The individual operations are correct, but the combined operation is not

• This is lack of abstraction a limitation of the lock-based concurrency model, 
and cannot be fixed by careful coding

• Locking requirements form part of the API of an object
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Transactions for Managing Concurrency

• An alternative approach: use atomic transactions to 
manage concurrency
• A program is a sequence of concurrent atomic actions

• Atomic actions succeed or fail in their entirety, and
intermediate states are not visible to other threads

• The runtime must ensure actions have the usual ACID properties:
• Atomicity – all changes to the data are performed, or none are

• Consistency – data is in a consistent state when a transaction starts, and when it ends

• Isolation – intermediate states of a transaction are invisible to other transactions

• Durability – once committed, results of a transaction persist

• Advantages:
• Transactions can be composed arbitrarily, without affecting correctness

• Avoid deadlock due to incorrect locking, since there are no locks
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atomic {
  a1.debit(v)
  a2.credit(v)
}



Transactional Memory Programming Model

• Simple programming model:
• Blocks of code can be labelled atomic {…}

• Run concurrently and atomically with respect to every other atomic {…} 
blocks – controls concurrency and ensures consistent data structures

• Implemented via optimistic synchronisation
• A thread-local transaction log is maintained, records every memory read 

and write made by the atomic block

• When an atomic block completes, the log is validated to check that it has 
seen a consistent view of memory

• If validation succeeds, the transaction commits its changes to memory; if 
not, the transaction is rolled-back and retried from scratch

6



Limitations of the Programming Model

• Transactions may be re-run automatically, if their 
transaction log fails to validate

• Places restrictions on transaction behaviour:
• Transactions must be referentially transparent
• They produce the same answer each time they’re executed

• Transactions must do nothing irrevocable

• Might launch the missiles multiple times, if it gets re-run due to validation failure caused by 
doMoreStuff

• Might accidentally launch the missiles if a concurrent thread modifies n or k while the 
transaction is running (this will cause a transaction failure, but too late to stop the launch)

• These restrictions must be enforced, else we trade hard-to-find locking 
bugs for hard-to-find transaction bugs
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atomic {
  if (n > k) then launchMissiles();
  doMoreStuff;
}



Managing Communication and I/O

• Communication and I/O must be limited during a 
transaction
• Pure functions can be executed normally

• Functions that only perform memory actions can be executed normally, 
provided transaction log tracks the memory actions and validates them 
before the transaction commits

• Functions that perform I/O are prohibited within a transaction

• Difficult to ensure through programmer discipline – 
needs language support
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Implementations of Transactional Memory

• Transactions can be implemented in hardware or 
software
• Need to track memory accesses, and potentially perform rollback

• Can be done by a run-time support library, or using dedicated hardware

• To date, have used software-based implementations; hardware-based 
implementations likely in future
• e.g., Intel has announced support in their Haswell platform, due in 2013

• Difficulty enforcing transactions are side-effect free, 
so they can safely be rolled-back
• Requires programming language (type-system) support
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Controlling Side Effects

• Monads → well-defined way to control side-effects 
in functional languages
• A monad M a describes an action (i.e., a function) that, when executed, 

produces a result of type a; along with rules for chaining actions

• A common use is for controlling I/O operations:
• The putChar function takes a character, and returns an 

I/O action that can display the character when performed

• The getChar function is an I/O action; when performed 
it reads and returns a character

• The main function is itself an I/O action, which wraps and performs the other actions

• The definition of the I/O monad type ensures that a function that is not 
passed an I/O action cannot perform I/O
• This is one part of the puzzle for transactional memory: define atomic {…} to so that it 

doesn’t take an I/O action
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putChar :: Char -> IO ()
getChar :: IO Char



Controlling Side Effects in Transactions

• How to track side-effecting memory actions? 
• Use another monad STM a to wrap

the transaction

• Manage side-effect via a TVar type

• The newTVar function takes a value of type a, 
returns a new TVar to hold the value, wrapped
in an STM monad action

• readTVar takes a TVar and returns an STM monad action; when performed this returns the 
value of that TVar; writeTVar function takes a TVar and a value, and returns an STM 
action that assigns the value to the TVar

• Define atomic {…} to perform an 
STM transaction, and return an I/O 
action that performs the I/O and side effects that run the transaction

• The newTVar, readTVar, and writeTVar functions need an STM action, and so can only 
run in the context of an atomic block that provides such an action
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-- The STM monad itself 
data STM a 
instance Monad STM

atomic :: STM a -> IO a

-- Transactional variables 
data TVar a 
newTVar   :: a -> STM (TVar a) 
readTVar  :: TVar a -> STM a 
writeTVar :: TVar a -> a -> STM ()



Transactional Memory in Haskell

• Transactional memory is a good fit with Haskell 
• Pure functions and monads ensure transaction semantics are preserved

• I/O and side-effects contained in STM action of an atomic {…} block

• The TVar implementation is responsible for tracking side effects

• The atomic {…} block validates, then commits the transaction (by returning an IO action to 
perform the transaction)

• Untracked I/O or side-effects cannot be performed within an atomic {…} 
block, since there is no way to access an IO action directly

• There is no IO action in scope, so code requiring one will not compile

• Only way to access to an IO action is via the STM action passed to the atomic {…} block

• A TVar requires an STM action, but these are only available in an atomic {…} block; hence 
can’t update a TVar outside a transaction (and hence can’t break atomicity guidelines)
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STM Haskell Example: Resource Manager

• Implement a resource manager, granting 
access to integral chunks of the resource, 
enforcign access control between threads
• getR r n should return n units of the resource r 

blocking until it is available

• putR r n should return n units of the resource r 
to the available pool – implementation on the right

• The use of the STM monad requires that 
the putR function be called from within an 
atomic {…} block (this is enforced by the 
compiler)
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type Resource = TVar Int

putR :: Resource -> Int -> STM () 
putR r i = do { 
  v <- readTVar r;
  writeTVar r (v + i)
}

main = do {
  ...; 
  atomic (putR r 3); 
  ...;
}



Blocking Memory Transactions

• Transactions control access to resources, 
they do not provide synchronisation
• Address by providing a retry operation for atomic blocks

e.g., consider the getR implementation on the right

• The retry function has type STM a, so
must run within an STM action 
• That is, it must run within an atomic block

• Calling retry function aborts and restarts the current transaction, but blocks 
until one of its associated TVars has been modified
• The system tracks access to the TVars to maintain the transaction log, so this is easily implemented

• The retry function is generally called when other concurrency approaches 
would block waiting for a signal
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getR :: Resource -> Int -> STM () 
getR r i = do { 
  v <- readTVar r; 
  if (v < i) then 
    retry 
  else 
    writeTVar r (v - i)
}

retry :: STM a



Sequential Composition

• The entire set of operations surrounded in an atomic block appears 
to take place indivisibly 
• e.g., the operation on the right atomically gets 3 units of

r1 then 7 of r2, the do notation provides for sequential 
composition of STM actions

• Note:
• The type system ensures STM actions can only be executed in an atomic block

• Actions accumulated over the entire atomic block execute or are rolled back when 
the transaction log for that block is validated

• Either call to getR can invoke retry, causing the entire atomic block to be restarted

• Any STM action can be robustly composed with other STM actions, and the resulting 
sequence of actions will still execute atomically
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atomic (do {getR r1 3; getR r2 7})



Composition of Alternatives

• May want to try one operation, and if that fails, try something else
• Useful for error handling

• STM Haskell defines the orElse function 
which takes two STM actions, and returns 
one
• Calling s1 `orElse` s2 first tries to run s1; if s1

calls retry then it’s abandoned without effect and
s2 is run instead

• If s2 also calls retry, then the entire action is restarted

• An alternative error handling method is throwing an exception
• Throwing an exception causes the transaction abort and be validated; 

• If the transaction validates, the exception propagates; else the exception is caught 
and the transaction retried (the exception might be due to the inconsistency that 
caused validation to fail)
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orElse :: STM a -> STM a -> STM a

atomic (getR r1 3 ‘orElse‘ getR r2 7)



Transactional Memory in Other Languages

• STM Haskell is very powerful – but relies on the 
type system to ensure safe composition and retry

• Integration into mainstream languages is difficult
• Most languages cannot require use of pure functions

• Most languages cannot limit the use of I/O and side effects

• Transaction memory can be used without these, but requires programmer 
discipline to ensure correctness – and has silent failure modes

• Unclear that the approach generalises to other 
languages
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Discussion and Further Reading

• T. Harris, S. Marlow, S. Peyton Jones and M. Herlihy, 
“Composable Memory Transactions”, CACM, 51(8), 
August 2008. DOI:10.1145/1378704.1378725

• Is software transactional memory a realistic technique? 

• Do its requirements for a purely functional language, 
with monadic I/O, restrict it to being a research toy?

• How much benefit can be gained from transactional 
memory in more traditional languages?
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Composable Memory Transactions
By Tim Harris, Simon Marlow, Simon Peyton Jones, and Maurice Herlihy

Abstract
Writing concurrent programs is notoriously difficult and 
is of increasing practical importance. A particular source 
of concern is that even correctly implemented concurrency 
abstractions cannot be composed together to form larger 
abstractions. In this paper we present a concurrency model, 
based on transactional memory, that offers far richer com-
position. All the usual benefits of transactional memory are 
present (e.g., freedom from low-level deadlock), but in addi-
tion we describe modular forms of blocking and choice that 
were inaccessible in earlier work.

1. INTRODUCTION
The free lunch is over.25 We have been used to the idea that 
our programs will go faster when we buy a next- generation 
processor, but that time has passed. While that next-
 generation chip will have more CPUs, each individual CPU 
will be no faster than the previous year’s model. If we want 
our programs to run faster, we must learn to write parallel 
programs.

Writing parallel programs is notoriously tricky. Main-
stream lock-based abstractions are difficult to use and they 
make it hard to design computer systems that are reliable 
and scalable. Furthermore, systems built using locks are dif-
ficult to compose without knowing about their internals.

To address some of these difficulties, several research-
ers (including ourselves) have proposed building program-
ming language features over software transactional memory 
(STM), which can perform groups of memory operations 
atomically.23 Using transactional memory instead of locks 
brings well-known advantages: freedom from deadlock and 
priority inversion, automatic roll-back on exceptions or tim-
eouts, and freedom from the tension between lock granular-
ity and concurrency.

Early work on software transactional memory suffered 
several shortcomings. Firstly, it did not prevent transactional 
code from bypassing the STM interface and accessing data 
directly at the same time as it is being accessed within a trans-
action. Such conflicts can go undetected and prevent transac-
tions executing atomically. Furthermore, early STM systems 
did not provide a convincing story for building operations 
that may block—for example, a shared work-queue support-
ing operations that wait if the queue becomes empty.

Our work on STM-Haskell set out to address these prob-
lems. In particular, our original paper makes the following 
contributions:

We re-express the ideas of transactional memory in the 
setting of the purely functional language Haskell 
(Section 3). As we show, STM can be expressed particu-
larly elegantly in a declarative language, and we are able 
to use Haskell’s type system to give far stronger guaran-

tees than are conventionally possible. In particular, we 
guarantee “strong atomicity”15 in which transactions 
always appear to execute atomically, no matter what 
the rest of the program is doing. Furthermore transac-
tions are compositional: small transactions can be 
glued together to form larger transactions.
We present a modular form of blocking (Section 3.2). 
The idea is simple: a transaction calls a retry opera-
tion to signal that it is not yet ready to run (e.g., it is try-
ing to take data from an empty queue). The programmer 
does not have to identify the condition which will 
enable it; this is detected automatically by the STM.
The retry function allows possibly blocking transac-
tions to be composed in sequence. Beyond this, we also 
provide orElse, which allows them to be composed as 
alternatives, so that the second is run if the first retries 
(see Section 3.4). This ability allows threads to wait for 
many things at once, like the Unix select system 
call—except that orElse composes, whereas select 
does not.

Everything we describe is fully implemented in the Glas-
gow Haskell Compiler (GHC), a fully fledged optimizing 
compiler for Concurrent Haskell; the STM enhancements 
were incorporated in the GHC 6.4 release in 2005. Further 
examples and a programmer-oriented tutorial are also 
available.19

Our main war cry is compositionality: a programmer can 
control atomicity and blocking behavior in a modular way 
that respects abstraction barriers. In contrast, lock-based 
approaches lead to a direct conflict between abstraction and 
concurrency (see Section 2). Taken together, these ideas offer 
a qualitative improvement in language support for modular 
concurrency, similar to the improvement in moving from as-
sembly code to a high-level language. Just as with assembly 
code, a programmer with sufficient time and skills may ob-
tain better performance programming directly with low-level 
concurrency control mechanisms rather than transactions—
but for all but the most demanding applications, our higher-
level STM abstractions perform quite well enough.

This paper is an abbreviated and polished version of an 
earlier paper with the same title.9 Since then there has been 
a tremendous amount of activity on various aspects of trans-
actional memory, but almost all of it deals with the question 
of atomic memory update, while much less attention is paid 
to our central concerns of blocking and synchronization be-
tween threads, exemplified by retry and orElse. In our 
view this is a serious omission: locks without condition vari-
ables would be of limited use.

Transactional memory has tricky semantics, and the 
original paper gives a precise, formal semantics for transac-
tions, as well as a description of our implementation. Both 
are omitted here due to space limitations.
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