P Unaversity | School of
of Glasgow | Computing Science

Concurrency 2. Programming Heterogenous
Multicore Systems

Advanced Operating Systems (M)
Lecture 17

Lecture Outline

® Heterogeneous instruction set systems

® Programming models

e Multi-kernel peer model
e Offload to slave processor

e Abstraction via virtual machine

® Discussion

e Hybrid models — Microsoft's Accelerator framework

Heterogeneous Instruction Set Systems

® |ncreasingly common for a single system to Coll Broadbond Engine Processor
have cores running different instruction sets w

e CPU+GPU

e CPU + offload of TCP, crypto, or multimedia functions

l‘
- .
| &
v
.

e Cell processor with PPE + multiple SPE

e Desirable when different instruction sets have
radically different performance characteristics
e GPU hardware does simple SIMD-style computations

at high speed, but performs very poorly for code with
large numbers of conditional branches

e Atypical CPU is better suited for complex conditional code,
but performs poorly with SIMD operations

e (CPU + GPU model is ubiquitous; others becoming more common

Programming Models

® How to program a heterogenous instruction set
system?

e |f the cores have radically different characteristics, do they need different
programming models and/or languages?

e Should the cores be peers, or is a master/slave model appropriate?

® Three main alternatives have been explored

e Multi-kernel model — heterogenous cores
e (Offload to slave processor

e Abstraction via virtual machines

Multi-kernel. Heterogenous Cores

e |f cores are full-featured, a multi-kernel model may
be appropriate

e The multi-kernel model is a distributed system, with message passing —
the underlying instruction set is unimportant, but the kernel needs to be
recompiled for each architecture

e Applications are either limited to a subset of the cores, require compilation
as fat binaries, or use JIT compilation

° May not be possible to effectively balance load across the system, due to limitations where
certain processes can execute

° Performance may suffer if related processes can’t be co-located due to resource constraints
® Heavy-weight approach, but offers considerable flexibility

e Not widely implemented — systems with multiple full-featured cores
generally use a homogenous instruction set

Multi-kernel: Example — Helios

® Aresearch prototype multi-kernel system |g |[..]| § || & M E
i : 5] 2 [8 & [8
designed to exploit heterogenous cores s 1< | 2F “EINE
— i <C
e Multi-kernel extension to Singularity
Hardware abstraction Iayerl DMA DMAl Hardware abstraction layer
i Runs on x86 NUMA SyStemS’ and on x86 SyStemS Coordinator kernel Sa:ellitetllernel I
with offload to an ARM processor on a RAID card x86 XScale Programmable Device
e Based on a safellite kernel abstraction, 2= Local channel | Remote channel stub
a”OWIng Weak cores tO delegate some Helios multi-kernel architecture
work to more full-featured cores
e All kernels export the same services and message-
passing APls, but some services are implemented
by forwarding messages to other cores
* Applications distributed as JIT compiled byte code; i b Natngale, . Hodson, R Melroy, G Hawblizel and G. Hurt. Hols:
express affinity to other processes in metadata to | Symposium on Operating Systems Prinoples (SOSP), Big Sky, MT USA, |
i October 2009. ACM. DOI 10.1145/1629575.1629597

allow dynamic load balancing across cores S —— 5

e (Good performance on benchmarks, but these only
considered a limited set of processes on the ARM
core, with clear communication patterns and affinity
— unclear how this will work in general with highly
asymmetric cores

Slave Processor

® The system has a master CPU, plus one or more
slave processors running a different instruction set

e The programming model for the slave processors is different to the master

e Slave processors often too limited to run a full kernel and general-purpose
programming language; code for the slave processors written in a special
language, and compiled separately (e.g., OpenCL or CUDA)

® Slave processors don’t run independently — they're

resources invoked by the master CPU

e Graphics processing
e TCP or crypto offload

Slave Processor: Example — OpenCL

Slave processors are GPU devices — large
grid of compute cores designed for SIMD-
style array processing

512 cores available on modern GPUs

Weak support for conditional branches — the model is
that each core runs the same code on different data

Slave processor code written in OpenCL C

Extended subset of C: http://www.khronos.org/opencl/
Adds built-in vector, 2D, and 3D image types

Adds pointer qualifiers to reference host and GPU
memory; use of pointers restricted since memory is
not shared between host and device

] Must explicitly copy inputs and outputs to/from slave device

Very restricted standard library

Defines the concept of a kernel function that can be
JIT compiled and executed on a device, and runtime
support code to allow device management

Runtime creates massive numbers of threads, each
running the kernel on different parts of the data

i]

Processing e I .
|

Compute Unit Compute Device

The OpenCL architecture

Application

OpenCL kernels

OpenCL framework

OpenCL runtime

Driver

GPU hardware

Slave Processor: Example — OpenCL

® OpenCL runtime on host system manages offload
of OpenCL code to slave devices

JIT compilation; host driver code controls exactly what OpenCL functions
execute, and when

OpenCL devices do not run an OS — they’re dumb devices, managed by a
device driver

e | ow-level APl and programming model

High conceptual burden to use

Cannot run general purpose code; programming and communications
model is too restricted

Does not easily integrate with host applications — too much boilerplate

VM Abstraction

e Use of separate languages and compilation stages
for slave processors is complex and error prone

e OpenCL and CUDA have complex and poorly-defined semantics

e High cognitive overhead on programmers; difficult to develop and debug

e Alternative: write in a high-level language targeting
a virtual machine; let the VM handle the offload

e E.g., aJava virtual machine that can JIT compile for different cores
® Pushes complexity onto the VM — simple for application programmer

e But, high-level languages often not a good fit for slave processors

° e.g., the JVM has no natural means to express SIMD-style array processing operations, and

encourages conditional execution, imperative code, and mutable state — the opposite of what
is needed for good GPU code

° But, a language optimised for GPU processing would perform poorly on a general-purpose
CPU, with a small number of cores optimised for imperative code

|0

VM Abstraction: Example — Hera-JVM

| Application | Key
| Java Library | Java Code
| Runtime System |
Assembly Code

LowLevel|| PPC || |LowLevel|| SPE
Assembly || Compiler |, [Assembly || Compiler
|
|

Processing Core

PPE Core 1] SPE Core
SPE SPE SPE SPE
! ! t !
P(();V:gc Element Interconnect Bus Memory
! ! | !
SPE SPE SPE SPE

(a) The architecture of the Cell processor.

— Control Flow
@b Data Flow

SPE Private [| -.DMA |
Transfer
Core Local Engine
(SPU) Memory (MFC)

Main Memory
SPE

(b) An SPE core’s memory subsystem.

..

'R. Mcliroy and J. Sventek, Hera-JVM: A Runtime System for Heterogeneous
i Multi-Core Architectures, Proc. ACM SIGPLAN Conference on Object-

i Oriented Programming Systems, Languages, and Applications (OOPSLA),

: Reno, Nevada, October 2010.

: DOI: 10.1145/1869459.1869478

e A JVM for the Cell processor, than can
offload methods from PPE to SPE cores

JIT compilation; methods compiled for appropriate
core based on runtime code placement algorithm

Data caching: SPE memory is not cache coherent;
data cached on SPE when method starts; cache
flushed at synchronisation points, following Java
memory model

Methods copied to SPE memory in their entirety;
migration onto the SPE causes an entire method,
and any methods it calls, to run on the SPE

Garbage collector understands both architectures,
and the caches on the SPEs

Hard to decide which methods to migrate to SPE:
] Explicit annotations (@RunOnSPECore, @RunOnPPECore)
work, but place high overhead on programmer

° Behaviour hints (@ArithmeticCode, @ObjectAccessCode,
@LargeWorkingSet) allow the JVM runtime to automatically
migrate methods to the SPEs, but are suboptimal

° Optimal solution is an open problem

http://splashcon.org/
http://splashcon.org/
http://splashcon.org/
http://splashcon.org/
http://dx.doi.org/10.1145/1869459.1869478
http://dx.doi.org/10.1145/1869459.1869478

Discussion

e (Offload to slave processor model is common

Hard for programmer, but gives good performance

Main kernel treats the GPU as a resource, that can be claimed by a
process, and managed as any other resource

® Abstraction via virtual machine conceptually clean

In principle, allows transparent offload of work from main processor to
subordinate processors such as GPUs

Difficult in practice: applications written without account for the different
processor types and capabilities, and don’t aid the runtime; insufficient
information for the runtime to effectively offload work — likely inefficient

Hybrid Virtual Machine/Slave Processor

e Hybrid model: wrap a device-specific programming
model in the virtual machine, alongside a general
purpose language

e E.g., for GPU offload, add a data parallel array datatype, then JIT compile
operations on those arrays to execute on the GPU cores

e Explicit model of device-specific operations, and
control over when they execute

® \irtual machine hides low-level details

Example: Accelerator

e Extension to C# to provide data-
parallel arrays with GPU offload

e Support operations such as conversion
to/from standard arrays, element-wise
arithmetic, reductions, transformations,
and matrix algebra

e Data parallel arrays are lazy, and don't
compute their value until converted back
to a standard array

e Lazy evaluation helps efficiency: runtime
JIT compiles all operations on a single
data parallel array at once, and passes
to the GPGPU for execution as a single
block

e Similar model to OpenCL, except
the complexity of managing the
GPU is pushed onto the VM

e Programming model is very similar, and
there is similar control over when code
executes on the GPU

static float[,] Blur(float[,] array,
float[,] result;
DFPA parallelArray = new DFPA (array) ;

float[] kernel) {

FPA resultX = new FPA(Of, parallelArray.Shape) ;
for (int 1 = 0; i < kernel.Length; i++) {
int[] shiftDir = new int[] { O, i};
resultX += PA.Shift(parallelArray,
}

FPA resultY =
for (int i =
int[] shiftDir =
resultY += PA.Shift(resultX,

new FPA(Of, parallelArray.Shape) ;

0; i < kernel.Length; i++) {

new int[] { i, 0 };

shiftDir) * kernell[i];
}

PA.ToArray (resultY, out result);
parallelArray.Dispose() ;

return result;

D. Tarditi, S. Puri, and J. Oglesby. Accelerator: using data parallelism to program GPUs for general-
i purpose use. In Proceedings of the International Conference on Architectural Support for Programming :
i Languages and Operating Systems (ASPLOS), San Jose, CA, USA, October 2006. ACM. :

shiftDir) * kernell[i];

Discussion and Further Reading

D. Tarditi, S. Puri, and J. Oglesby. Accelerator: using data
arallelism to program GPUs for general-purpose use. Proc.
International Conference on Architectural Support for

rogramming Languages and Operating Systems, San Jose,

A, USA, October 2006. DOI: 10.1145/1168857.1168898

Mcllroy and J. Sventek, Hera-JVM: A Runtime System for
eterogeneous Multi-Core Architectures, Proc. ACM
IGPLAN Conference on Object-Oriented Programming
ystems, Languages, and Applications (OOPSLA), Reno,
evada, October 2010. DOI: 10.1145/1869459.1869478

Both to be discussed in tutorial tomorrow (conceptual level —
no need to consider performance results

Accelerator: Using Data Parallelism to Program GPUs for
General-Purpose Uses

David Tarditi ~ Sidd Puri Jose Oglesby
Microsoft Research
{dtarditisiddpuri joseogl} @microsoft.com

Abstract

GPUS r it o ogtam o generpurpos wes. Progran:
merscan it learn s APIS and convert thei spplications

i e s We i asystem that
uses data parallelism 1o program GPUS fo urpose uses
instcad. Programimers use conentionil mvpnrmn progrmming

1y toopimised GPU piel shader code and AP cal, We desribe

the compilation techniques used to do this. We evaluate the effec-

tiveness of using data paralclism o program GPUs by providing

resuls fo 3 et of compu-tensive benchmaks. We compare
A

cc of the be

hand-writenpinlshders The speds o he el e
v il i S0% o e speeds of . it sl s

code.'Some henchmarks signifcantly outperforn C v

CPU.they ar up 1§ tmes e then C code ronni

a o

Categories and Subject Descriptors D.1.3 [Py
nigues]: Concurrent Programmiag- P.m\ldl’m
[Programming Languages]: Proces:

ramming Tech-
ning: D34

ompilers

General Torms Messrement. Pesormanc, Bxperimentaion

Keywords _Graphics processing units, data paralelism, justin-
time compilation

1. Introduction
Highly progammatl srphis processin unics (GPU) became
wailable in 2001 101 and e evovd pidy since then (151
GPU o highly paralel processors tha deliver much higher
foaing ot ym\ummnu forsome vty e compal
CPUS.For example T Radeon x1900 processor has 45

shader proceson,cach o i capale 11 Roaing. poin o
erations per cyele, at a clock speed of 650 MHz. It has a peak.
fouting-poin peformance o over 350 GFLOPS using sngle-
precision floating-point numbers, counting muliply-adds as two
LOPs. GPUS have an expliitly paralle p

their performance continues 1o increase as transistor counts in
“The performance available on GPUS has led o iterest in using
GPUS for general-purposeprogramming (16, 8]. I is diffcul,
however, for most programmers to program GPUS for general-
purpose uses.
i this paper, we show how o use data parallelsm (0 pro;

GPU for generapupos uss. We st with 4 comenioml i
perative language. C# (which i similar to Java). We provide a i
byt impleents an st dta type providig s pule
armays: no aspects of GPUS are exposed to programmers. The Ii-

brary evaluates the data-parallel eperion uing GPU il osher
cperuions ar ealuted o th CPU. For effiency i Iy
does ot immeciatlyperfo, i parall aperatons. It it
builds a graph of desired operations and compiles the operations on
demand to GPU pixel shader code and API calls

Data pardlel rrye only provide aregate Sperdtions ver en
tire input arrays. The operations are a subset of those found in lan-
suages like APL and include element-wise arithmetic and compr.
ison operators, reduction operations (such as sum), and transfor
nations on artays. Data-paralle armays are functional: cach oper-

aton produces new datparallel . Programmrs st o
lily comert ok nd o between comentonal ays an
e arae s The sy compiaon i syl done when
& program comerts adaa-perallel arry 1 normal ey
ompiingdot-pll perions il 103 GPU allows w10

mplement the operai nily: the system can avoid creat.
ind arge mumbers of tmporary m. panlel s and opinize
i ders. It also allows us exposing

APls Compilation t runtme s allws e sysm 0

propertics and fetues hat va 2 GPU mimcrers ana

We have implemented these ideas in a system called A
. We evaluate the cffectiveness of the spproach usin
enchmarksforcomputcintcnsivc 1skssuch e P
and compute ision. un on seves generations of GPUS rom both

ATl

ind NVidia, We implemented the benchmarks in hand-uwrit
nmM‘m,um Tor GPUs, C# using Accelerator,and C-+for

e CPU. The C progams nluding compilaion o, are
wpiclly ithin 2-of he specd o the hand-wrinen pixcl shader

e, and sometmes ceed tht speeds. The C¥ programe.
Tike the hand-writien pixel shader programs, often outperform the
s programs o w0 185

Prior workonpograminin GPUs o senral puspose uses
ther targets the specialized GPU programming model dirctly or
provides a siream programming abstraction of GPUs, It is diff
eult o target the GPU direetly: Fiest, programmers need to learn
the graphics programming model, which i specialized to the st of

Hera-JVM: A Runtime System for

Heterogeneous Mul

Ross Mellroy *
Microsoft Research Cambridge
rmcilroy@microsoft.com

tract
Heterogeneous muli-core processors, such s the 1BM Cell
processor, can deliver high performance. However, th
processors are notoriously difficult to program:

cores support different instruction set architectures, and the
processor as @ whole does not provide coherence between
the it

ent cores” local memories.
. Herw VM, 2 implementton of the Juva
Virusl Machine which operates over the
thereby making this platforms more readily
mainsiream developero. Hera VM supporte the Tl Java
language; threads from an unmodified Java application can
be simultancously executed on both the main PowerPC-
based core and on the additional SPE accelerator cores. Mi-
gration of threads between these cores is transparent fron
the point of view of the application, requiring no modifica-
tion to Java source code or bytecode. Hera-TVM supports
the existing Java Memory Model, even though the underly-
rdware does not provide cache coherence between the

jera-JVM’s performance under a series
world Java benchmarks from the SpecIVM, Java

Hera-JVM can achieve speedups of up (o 2.25x by using
one of the Cell processor’s SPE accelerator cores, compared
to cxcouion on t min PoerPGbased core When all

Core Architectures

Joe Sventek
University of Glasgow
joe@des gla.ac.uk

1. Introduction

Commodiy mictoprocesors e providing nceasing un-
be cth formance, as issues such as

dissipation and instruction
Jevel praleham limit the performance improvements hat
can be gained by a single core. Current commodity multi-
core processors are symmelric, with each processing core
being identical. This kind of architecture provides a simple
platform on which to build applications, however, a Hetero
geneous Multi-core Architecture (HMAD), consisting of i
ferent types of processing cores, has the potential (0 provide
greater performance and efficiency [1, 6]

There are two primary ways in which an HMA can im-
prove performance. First, heterogencous cores allow special-
stion f some cores o ipron the pefomanceofparicu-
lar application types, while other cores can remain mor
il pupos, sueh that th performance o oher appications
does not suffer, Second, an HMA can also enable programs
1o scale better in the presence of serial sections of a paral-
el workload. Amdahl’s law [4] shows that even a relatively
small fraction of sequential code can severely limit the ove
all scalability of an algorithm. A HMA can devote silicon
area towards a complex core, on which sequential code can
be exceuted quickly, .\ml use the rest of its silicon area for
ss which parallel work-
o o s, Tt onain an FVIA o provide better
potential speedups compared with an equivalent symmetric
1 Amdahis law is taken into account [8]
However,this potenial for higher performance comes t

six SPE cores are exploited, parallel workloads can achiew
Specdups of 1 1o 15 compared 1o executon on he single
PowerPC core.

Categories and Subject Dscriptors. C13 [Processor -
chiecues: Other Arcitctre Sylos—Hoterogeneus (-
bridy syemst D34 (Prgramming Lamguages] Proe.

essors—Run-time environments.

General Terms ~ Design, Languages, Performances.

Work performed while o the University of Glasgon:

Pecnision o mske gl o and copis of sl o pr f i wor o grsnal o

the cost of order o exploit an HMA,
programmers st tak nto account the difetent srengis

ek of cach of he mlble pro
e ackof functonaly on crai corc (.., onting pont
hardware or operating system support); potentially different
instruction sets and programming environments on each of
the core types; and (often) a non-coherent shared memory
system between cores of different types.

If mainstream application developers are to exploit HMAS,
they must be made simpler to program. High level virtual
machine based languages, such as Java, present an opportu-
nity 1o hide the details of heterogeneous architecture from
the developer, behind a homogeneous virtual machine inter.
face.

http://splashcon.org/
http://splashcon.org/
http://splashcon.org/
http://splashcon.org/
http://splashcon.org/
http://splashcon.org/
http://dx.doi.org/10.1145/1869459.1869478
http://dx.doi.org/10.1145/1869459.1869478

