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Lecture Outline
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• Discussion
• Hybrid models – Microsoft’s Accelerator framework
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Heterogeneous Instruction Set Systems

• Increasingly common for a single system to 
have cores running different instruction sets
• CPU + GPU

• CPU + offload of TCP, crypto, or multimedia functions

• Cell processor with PPE + multiple SPE

• Desirable when different instruction sets have 
radically different performance characteristics
• GPU hardware does simple SIMD-style computations 

at high speed, but performs very poorly for code with 
large numbers of conditional branches

• A typical CPU is better suited for complex conditional code,
but performs poorly with SIMD operations

• CPU + GPU model is ubiquitous; others becoming more common
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Programming Models

• How to program a heterogenous instruction set 
system?
• If the cores have radically different characteristics, do they need different 

programming models and/or languages?

• Should the cores be peers, or is a master/slave model appropriate? 

• Three main alternatives have been explored
• Multi-kernel model – heterogenous cores

• Offload to slave processor

• Abstraction via virtual machines

4



Multi-kernel: Heterogenous Cores

• If cores are full-featured, a multi-kernel model may 
be appropriate
• The multi-kernel model is a distributed system, with message passing –

the underlying instruction set is unimportant, but the kernel needs to be 
recompiled for each architecture

• Applications are either limited to a subset of the cores, require compilation 
as fat binaries, or use JIT compilation

• May not be possible to effectively balance load across the system, due to limitations where 
certain processes can execute

• Performance may suffer if related processes can’t be co-located due to resource constraints

• Heavy-weight approach, but offers considerable flexibility

• Not widely implemented – systems with multiple full-featured cores 
generally use a homogenous instruction set
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Multi-kernel: Example – Helios

• A research prototype multi-kernel system 
designed to exploit heterogenous cores

• Multi-kernel extension to Singularity
• Runs on x86 NUMA systems, and on x86 systems 

with offload to an ARM processor on a RAID card

• Based on a satellite kernel abstraction, 
allowing weak cores to delegate some 
work to more full-featured cores
• All kernels export the same services and message-

passing APIs, but some services are implemented 
by forwarding messages to other cores

• Applications distributed as JIT compiled byte code; 
express affinity to other processes in metadata to 
allow dynamic load balancing across cores

• Good performance on benchmarks, but these only 
considered a limited set of processes on the ARM 
core, with clear communication patterns and affinity 
– unclear how this will work in general with highly 
asymmetric cores
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This figure shows a general overview of the architecture of the Helios operating system executing on a machine with one general purpose
CPU and a single programmable device. Applications co-located on the same kernel communicate via a fast, statically verified, message-
passing interface. Applications on different kernels communicate via remote message-passing channels, which transparently marshal and send
messages between satellite kernels. The numbers above the channels are affinity values provided by applications to the operating system.
Helios uses affinity values as hints to determine where a process should execute

Figure 1: Helios architecture

upon the affinity values a process expresses and the location of the
other processes with which it wishes to communicate. We note that
affinity does not prevent a process from harming its own perfor-
mance. The values are only hints, and we assume that the fact that
they are easily modified will allow poorly designed affinity policies
to be easily remedied.

2.4 Encapsulate Disparate Architectures
The last design goal for Helios is to efficiently encapsulate a

process that may run on multiple platforms while preserving the
opportunity to exploit platform-specific features. Helios achieves
this design goal by using a two-phase compilation strategy. Appli-
cations are first compiled into the common intermediate language
(CIL), which is the byte-code of the .NET platform. We expect ap-
plications to ship as CIL binaries. The second compilation phase
translates the intermediate language into the ISA of a particular
processor. Currently, all Helios applications are written in Sing#,
compiled into CIL, and then compiled again into different ISAs us-
ing a derivative of the Marmot [7] compiler called Bartok.
As an alternative, one could ship fat binaries, which would con-

tain a version of the application for each available platform it sup-
ports. Packaging an application using CIL has two advantages over
fat binaries. First, a developer that uses fat binaries must choose
ahead of time which platforms to support and fat binaries will grow
in size as the number of ISAs supported by an application increases.
Second, CIL already contains infrastructure for efficiently support-
ing multiple versions of a method. This feature allows an applica-
tion to take advantage of device-specific features if they are present,
while still functioning if these features are missing. For example,
an application could have one process that executes large amounts
of vector math. If a GPU were present, the calculations would be
accelerated, but if it were not, the process would still function us-
ing a general purpose CPU. Helios already uses this functionality
in libraries that support applications, such as code to implement

and code that implements an
primitive. The two-phase compilation strategy also means

that an older application could run on a new programmable device
without modification, as long as a compiler exists to translate from
CIL to the new instruction set.

3. IMPLEMENTATION
Figure 1 provides an overview of Helios running on a general

purpose CPU and an XScale programmable device. Each kernel
runs its own scheduler and memory manager, while the coordinator
kernel also manages the namespace, which is available to all satel-
lite kernels via remote message passing. In the example, an appli-
cation has a local message-passing channel to the file system, and a
remote message-passing channel to the networking stack, which is
executing on a programmable NIC. The numbers above each chan-
nel describe the affinity the application or service has assigned to
the channel. Since the file system and networking stack have pos-
itive affinities with their device drivers, they have been co-located
with each driver in a separate kernel. The application has expressed
positive affinity to the file system and no preference to the network-
ing stack, therefore the application runs on the same kernel as the
file system.

3.1 Singularity Background
Helios was built by modifying the Singularity RDK [22] to sup-

port satellite kernels, remote message passing, and affinity. We
begin by providing a brief overview of Singularity.
Singularity is an operating system written almost entirely in the

Sing# [6] derivative of the C# programming language. Applica-
tions in Singularity are composed of one or more processes, each
of which is composed of one or more threads. Threads share a sin-
gle address space, while processes are isolated from each other and
can only communicate via message passing. Applications written
for Singularity are type and memory safe. The operating system re-
lies on software isolation to protect processes from each other and
therefore all processes run in the same address space at the highest
privilege level (ring 0 on an x86 architecture).
Singularity supports a threading model similar to POSIX, where

threads have contexts that are visible to and scheduled by the op-
erating system. Further, threads have access to all the usual syn-
chronization primitives available in C#. Since all processes exe-
cute in the same address space and rely on software isolation, con-
text switches between processes are no more costly than context
switches between threads. Further, Singularity does not require an
MMU or a virtual address space. Virtual memory is, however, cur-

Helios multi-kernel architecture 



Slave Processor

• The system has a master CPU, plus one or more 
slave processors running a different instruction set
• The programming model for the slave processors is different to the master

• Slave processors often too limited to run a full kernel and general-purpose 
programming language; code for the slave processors written in a special 
language, and compiled separately (e.g., OpenCL or CUDA)

• Slave processors don’t run independently – they’re 
resources invoked by the master CPU
• Graphics processing

• TCP or crypto offload
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Slave Processor: Example – OpenCL

• Slave processors are GPU devices – large 
grid of compute cores designed for SIMD-
style array processing
• 512 cores available on modern GPUs

• Weak support for conditional branches – the model is 
that each core runs the same code on different data

• Slave processor code written in OpenCL C
• Extended subset of C: http://www.khronos.org/opencl/

• Adds built-in vector, 2D, and 3D image types

• Adds pointer qualifiers to reference host and GPU 
memory; use of pointers restricted since memory is 
not shared between host and device

• Must explicitly copy inputs and outputs to/from slave device

• Very restricted standard library

• Defines the concept of a kernel function that can be 
JIT compiled and executed on a device, and runtime 
support code to allow device management

• Runtime creates massive numbers of threads, each 
running the kernel on different parts of the data
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3.2 Execution Model 

Execution of an OpenCL program occurs in two parts: kernels that execute on one or more 

OpenCL devices and a host program that executes on the host. The host program defines the 

context for the kernels and manages their execution. 

The core of the OpenCL execution model is defined by how the kernels execute.  When a kernel 

is submitted for execution by the host, an index space is defined.  An instance of the kernel  

executes for each point in this index space. This kernel instance is called a work-item and is 

identified by its point in the index space, which provides a global ID for the work-item. Each 

work-item executes the same code but the specific execution pathway through the code and the 

data operated upon can vary per work-item.   

Work-items are organized into work-groups. The work-groups provide a more coarse-grained 

decomposition of the index space.   Work-groups are assigned a unique work-group ID with the 

same dimensionality as the index space used for the work-items. Work-items are assigned a 

unique local ID within a work-group so that a single work-item can be uniquely identified by its 

global ID or by a combination of its local ID and work-group ID.  The work-items in a given 

work-group execute concurrently on the processing elements of a single compute unit. 

The index space supported in OpenCL 1.0 is called an NDRange.  An NDRange is an N-

dimensional index space, where N is one, two or three.  An NDRange is defined by an integer 

array of length N specifying the extent of the index space in each dimension. Each work-item’s 

global ID and local ID are N-dimensional tuples.  The global ID components are values in the 

range from zero to the number of elements in that dimension minus one.  

 

Figure 3.1: Platform model … one host plus one or more compute devices each 

with one or more compute units each with one or more processing elements. 

[Source: The OpenCL specification, v1.0]
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Slave Processor: Example – OpenCL

• OpenCL runtime on host system manages offload 
of OpenCL code to slave devices
• JIT compilation; host driver code controls exactly what OpenCL functions 

execute, and when

• OpenCL devices do not run an OS – they’re dumb devices, managed by a 
device driver

• Low-level API and programming model
• High conceptual burden to use

• Cannot run general purpose code; programming and communications 
model is too restricted

• Does not easily integrate with host applications – too much boilerplate
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VM Abstraction

• Use of separate languages and compilation stages 
for slave processors is complex and error prone
• OpenCL and CUDA have complex and poorly-defined semantics

• High cognitive overhead on programmers; difficult to develop and debug

• Alternative: write in a high-level language targeting 
a virtual machine; let the VM handle the offload
• E.g., a Java virtual machine that can JIT compile for different cores

• Pushes complexity onto the VM – simple for application programmer

• But, high-level languages often not a good fit for slave processors
• e.g., the JVM has no natural means to express SIMD-style array processing operations, and 

encourages conditional execution, imperative code, and mutable state – the opposite of what 
is needed for good GPU code

• But, a language optimised for GPU processing would perform poorly on a general-purpose 
CPU, with a small number of cores optimised for imperative code
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VM Abstraction: Example – Hera-JVM

• A JVM for the Cell processor, than can 
offload methods from PPE to SPE cores
• JIT compilation; methods compiled for appropriate 

core based on runtime code placement algorithm

• Data caching: SPE memory is not cache coherent; 
data cached on SPE when method starts; cache 
flushed at synchronisation points, following Java 
memory model

• Methods copied to SPE memory in their entirety; 
migration onto the SPE causes an entire method, 
and any methods it calls, to run on the SPE

• Garbage collector understands both architectures, 
and the caches on the SPEs

• Hard to decide which methods to migrate to SPE:

• Explicit annotations (@RunOnSPECore, @RunOnPPECore) 
work, but place high overhead on programmer

• Behaviour hints (@ArithmeticCode, @ObjectAccessCode, 
@LargeWorkingSet) allow the JVM runtime to automatically 
migrate methods to the SPEs, but are suboptimal

• Optimal solution is an open problem
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Figure 2. The structure of Hera-JVM. Much of Hera-JVM’s
runtime can be shared by both cores, given its Java in Java
design.

phy, this code is largely portable. Thus, other than a small
number of architecture-specific routines, the same runtime
system code is shared by both core types (Figure 2). This
approach extends the philosophy of hiding the architecture’s
heterogeneity right through application code, the Java Lib-
rary code and the majority of the runtime system’s code,
simplifying the runtime system’s design. This also improves
the runtime system’s maintainability; the fact that the same
code is shared by both core types reduces the likelihood of
introducing integration bugs and inconsistencies in shared
data structures.

Hera-JVM is a non-interpreting JVM; all application, lib-
rary and runtime Java methods are compiled to machine
code before being executed. Other than the subset of the run-
time system methods which are pre-compiled into the boot-
image, all Java methods are compiled just in time. Thus Java
code is distributed in architecturally-neutral Java Bytecode,
which will only be compiled for a particular core architec-
ture if it is to be executed by a thread running on that core
type. Since it is expected that most applications will exhibit
a partitioning between code which is best run on the PPE or
the SPEs, most methods will only ever be compiled for one
of the two core’s architectures. Thus, the compilation over-
head (both in time and memory requirements) of running an
application on an HMA, such as the Cell, need be little more
than running on a single architecture processor.

4.1 Compiling Java Bytecode for the SPE Cores
To execute Java code on the SPE cores of the Cell processor,
Hera-JVM requires a Java bytecode to SPE machine code
compiler and some low-level runtime system support code.
The low-level runtime system support code is the only part of
the Java runtime system which is kept permanently resident
in the SPE’s local memory (taking up less than 4KB of each
SPE’s 256KB of local memory). This low-level support code
deals with caching of data and code, and the lowest levels of
inter-thread synchronization and interrupt handling. The rest
of the Hera-JVM runtime system is written in Java and can
be cached into the SPE’s local memory as required like any
other Java method.

The remainder of this section describes the process by
which this compiler and runtime system support code en-
ables the SPE cores to execute Java code. A running example
of a simple Java method “sum()”, that calculates the total
of all the elements in a linked list, will be used to illustrate

i n t sum ( Li s tNode n ) {
i n t t o t a l = 0 ;

whi le ( n != n u l l ) {

t o t a l += n . v a l ;

n = n . n e x t ( ) ;

}
re turn t o t a l ;

}
(a) Java Code

0 : i c o n s t 0
1 : i s t o r e 1
2 : a l o a d 0
3 : i f n u l l <21>
6 : i l o a d 1
7 : a l o a d 0
8 : g e t f i e l d <va l>
1 1 : i a d d
1 2 : i s t o r e 1
1 3 : a l o a d 0
1 4 : i n v o k e v i r t <next>
1 7 : a s t o r e 0
1 8 : go to <2>
2 1 : i l o a d 1
2 2 : i r e t u r n

(b) Resulting Bytecode

Figure 3. Example Java method - summing a linked list.

different aspects of this process. Figure 3 shows the source
code for this method (left), and the resulting Java bytecode
(right). Hera-JVM does not require any changes to the Java
source-to-bytecode compiler or to the bytecode format.

A Java method, such as sum() in Figure 3, is compiled
into a block of machine code that can be executed natively
by an SPE core. Fundamental bytecodes, such as arithmetic
and branch operations, can be translated directly into one
or more SPE machine instructions by the compiler. More
complex bytecodes, such as the new bytecode used for ob-
ject allocation, are translated into calls to special runtime
system entry points. These runtime system entry points are
special Java methods that perform the required operation,
then return execution to the original method. Since this run-
time system code is shared by both the PPE and SPE cores,
these complex bytecode operations can essentially be lever-
aged from the existing JikesRVM implementation. Similarly,
complex runtime system components, such as file handling,
class loading or thread scheduling, can be supported on ei-
ther core type with little modification.

As a stack-oriented language, Java bytecodes implicitly
operate on variables located on an operand stack. For exam-
ple, the iadd bytecode in Figure 3 pops two integer values
off the operand stack, adds them, and pushes the result back
onto the operand stack. Since almost every bytecode pushes
or pops values from the stack, it is important that these op-
erations are efficient.

A thread’s stack resides in main memory (so that it can
be accessed by any core upon which it is scheduled), how-
ever, having SPE cores operate directly on this stack in main
memory would be incredibly inefficient, due to their DMA-
based access to main memory. Therefore, the top portion of
the currently executing thread’s stack is held in the SPE’s lo-
cal memory to provide efficient stack access. Upon a thread
switch, a 16KB block at the top of the thread’s stack is
copied into a reserved portion of the SPE’s local memory.
Stack updates are performed on this local copy, which is
then written back to main memory when the thread is context
switched from this core.

This paper introduces Hera-JVM, a Java Virtual Machine
(JVM) which hides the heterogeneous nature of the Cell
multi-core processor behind a homogeneous virtual machine
interface. The Cell multi-core processor is a particularly
challenging environment on which to develop applications,
due to cores with different instruction set architectures and a
non-coherent memory subsystem.

Hera-JVM supports the full Java language1; unmodified
Java applications can be executed across both the Cell pro-
cessor’s main PowerPC-based core and the additional SPE
accelerator cores. Migration of threads between core types
is handled transparently from the point of view of the ap-
plication and does not require application source code to
be modified. Hera-JVM uses a Just-In-Time (JIT) compiler
to generate machine code for the disparate instruction sets
of these two core types on-demand. Threads running on ei-
ther core type can invoke native methods, dynamically allo-
cate memory, have it recovered by GC, and synchronize us-
ing shared-memory data structures (consistent with the Java
Memory Model [10]), even though the hardware does not
provide hardware cache coherency.

This paper builds upon the work presented in [13], but
describes a much more complete runtime system that can
support real-world Java applications as well as providing a
much more thorough evaluation of this runtime system.

The main contributions of this work are:

• The creation of the first JVM implementation to support
execution of real-world Java applications across hetero-
geneous processing core types with different instruction
sets architectures (ISAs) and provide transparent migra-
tion of threads between these core types.

• A software caching mechanism that provides efficient
access to the non-coherent memory subsystem of the
Cell processor by employing high-level type information
embedded in Java bytecode.

• Demonstration of real-world Java workloads that exhibit
up to a 2.25x speedup when executed on one of the Cell
processor’s SPE accelerator cores, compared to execution
on its main PPE core, and up to a 13x speedup if scaled
across all 6 SPE cores.

Section 2 introduces the Cell processor in more detail,
outlining the main features of its architecture that make ap-
plication development difficult. Section 3 presents the de-
sign principles around which Hera-JVM is based and dis-
cusses the problems that the Cell processor’s unusual ar-
chitecture presents in achieving these principles. Section 4
describes the implementation of these design principles in
Hera-JVM for the Cell processor. Section 5 expands upon
this implementation overview to provide more in-depth de-
tails of the features which are required for Hera-JVM to

1 The only deviation from the Java Runtime Specification is that it uses
a different floating point rounding mode (rounding towards zero instead
of rounding to nearest). This is due to lack of hardware support on one
of the Cell processor’s cores types. It only affects the least significant bit
of single precision flotation point calculations; the more commonly used
double precision format is unaffected.

SPE SPE SPE SPE

SPE SPE SPE SPE

PowerPC
(PPE)

Element Interconnect Bus Memory

(a) The architecture of the Cell processor.
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(b) An SPE core’s memory subsystem.

Figure 1. The Cell Processor.

support real-world Java applications on the Cell processor.
Hera-JVM’s performance under both synthetic and real-
world Java benchmarks is presented in Section 6. Section 7
contrasts Hera-JVM with relevant related work. Finally, Sec-
tion 8 concludes and discusses possible future directions for
this work.

2. Background: The Cell Processor
The Cell processor [6, 9, 17] was developed primarily
for multimedia applications, specifically the game market,
where it is the main processor used by the Sony Playsta-
tion 3. It is also being actively employed in a variety of other
areas, such as scientific and high performance computing.

The Cell processor contains two different processing
core types: a single Power Processing Element (PPE) core;
and eight Synergistic Processing Engine (SPE) cores (Fig-
ure 1(a)). Both core types are dual issue, in-order architec-
tures, running at 3.2 GHz, however, they have substantially
different architectures. The PPE is a conventional 64-bit
PowerPC-based core, supporting the Linux operating system
and any applications compiled for the PowerPC architecture.
The SPEs are designed to perform the bulk of the computa-
tion on the Cell processor. They have a unique instruction-
set, highly tuned for floating point, data-parallel workloads.
The SPEs do not run any operating system code, relying on
the PPE to perform operations such as page table updates or
file I/O.

The processing cores share access to external DRAM
memory through a circular ring-based Element Interconnect
Bus [2]. The PPE core has a two-level cache to reduce
data access latencies, with a 64KB L1 cache (split evenly
between data and instruction caches) and a 512KB L2 cache.

Unlike the PPE, the SPE cores do not have transparent
hardware caches for accessing main memory; instead, each
SPE contains 256KB of non-coherent, private, local mem-
ory. The processing elements of the SPEs can access only
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Discussion

• Offload to slave processor model is common
• Hard for programmer, but gives good performance

• Main kernel treats the GPU as a resource, that can be claimed by a 
process, and managed as any other resource

• Abstraction via virtual machine conceptually clean
• In principle, allows transparent offload of work from main processor to 

subordinate processors such as GPUs

• Difficult in practice: applications written without account for the different 
processor types and capabilities, and don’t aid the runtime; insufficient 
information for the runtime to effectively offload work – likely inefficient
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Hybrid Virtual Machine/Slave Processor

• Hybrid model: wrap a device-specific programming 
model in the virtual machine, alongside a general 
purpose language
• E.g., for GPU offload, add a data parallel array datatype, then JIT compile 

operations on those arrays to execute on the GPU cores

• Explicit model of device-specific operations, and 
control over when they execute

• Virtual machine hides low-level details

13



Example: Accelerator

• Extension to C# to provide data-
parallel arrays with GPU offload
• Support operations such as conversion 

to/from standard arrays, element-wise 
arithmetic, reductions, transformations, 
and matrix algebra

• Data parallel arrays are lazy, and don’t 
compute their value until converted back 
to a standard array

• Lazy evaluation helps efficiency: runtime 
JIT compiles all operations on a single 
data parallel array at once, and passes 
to the GPGPU for execution as a single 
block

• Similar model to OpenCL, except 
the complexity of managing the 
GPU is pushed onto the VM
• Programming model is very similar, and 

there is similar control over when code 
executes on the GPU
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D. Tarditi, S. Puri, and J. Oglesby. Accelerator: using data parallelism to program GPUs for general- 
purpose use. In Proceedings of the International Conference on Architectural Support for Programming 
Languages and Operating Systems (ASPLOS), San Jose, CA, USA, October 2006. ACM.

static float[,] Blur(float[,] array, float[] kernel) {
  float[,] result; 
  DFPA parallelArray = new DFPA(array);

  FPA resultX = new FPA(0f, parallelArray.Shape); 
  for (int i = 0; i < kernel.Length; i++) {
    int[] shiftDir = new int[] { 0, i}; 
    resultX += PA.Shift(parallelArray, shiftDir) * kernel[i];
  }

  FPA resultY = new FPA(0f, parallelArray.Shape); 
  for (int i = 0; i < kernel.Length; i++) {
    int[] shiftDir = new int[] { i, 0 }; 
    resultY += PA.Shift(resultX, shiftDir) * kernel[i];
  }
  PA.ToArray(resultY, out result); 
  parallelArray.Dispose(); 
  return result;
}



Discussion and Further Reading

• D. Tarditi, S. Puri, and J. Oglesby. Accelerator: using data 
parallelism to program GPUs for general-purpose use. Proc. 
International Conference on Architectural Support for 
Programming Languages and Operating Systems, San Jose, 
CA, USA, October 2006. DOI: 10.1145/1168857.1168898

• R. McIlroy and J. Sventek, Hera-JVM: A Runtime System for 
Heterogeneous Multi-Core Architectures, Proc. ACM 
SIGPLAN Conference on Object-Oriented Programming 
Systems, Languages, and Applications (OOPSLA), Reno, 
Nevada, October 2010. DOI: 10.1145/1869459.1869478

• Both to be discussed in tutorial tomorrow (conceptual level – 
no need to consider performance results)
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Accelerator: Using Data Parallelism to Program GPUs for
General-Purpose Uses

David Tarditi Sidd Puri Jose Oglesby
Microsoft Research
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Abstract
GPUs are difficult to program for general-purpose uses. Program-
mers can either learn graphics APIs and convert their applications
to use graphics pipeline operations or they can use stream program-
ming abstractions of GPUs. We describe Accelerator, a system that
uses data parallelism to program GPUs for general-purpose uses
instead. Programmers use a conventional imperative programming
language and a library that provides only high-level data-parallel
operations. No aspects of GPUs are exposed to programmers. The
library implementation compiles the data-parallel operations on the
fly to optimized GPU pixel shader code and API calls. We describe
the compilation techniques used to do this. We evaluate the effec-
tiveness of using data parallelism to program GPUs by providing
results for a set of compute-intensive benchmarks. We compare
the performance of Accelerator versions of the benchmarks against
hand-written pixel shaders. The speeds of the Accelerator versions
are typically within 50% of the speeds of hand-written pixel shader
code. Some benchmarks significantly outperform C versions on a
CPU: they are up to 18 times faster than C code running on a CPU.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming—Parallel Programming; D.3.4
[Programming Languages]: Processors—Compilers

General Terms Measurement, Performance, Experimentation,
Languages

Keywords Graphics processing units, data parallelism, just-in-
time compilation

1. Introduction
Highly programmable graphics processing units (GPUs) became
available in 2001 [10] and have evolved rapidly since then [15].
GPUs are now highly parallel processors that deliver much higher
floating-point performance for some workloads than comparable
CPUs. For example, the ATI Radeon x1900 processor has 48 pixel
shader processors, each of which is capable of 4 floating-point op-
erations per cycle, at a clock speed of 650 MHz. It has a peak
floating-point performance of over 250 GFLOPS using single-
precision floating-point numbers, counting multiply-adds as two
FLOPs. GPUs have an explicitly parallel programming model and
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their performance continues to increase as transistor counts in-
crease.

The performance available on GPUs has led to interest in using
GPUs for general-purpose programming [16, 8]. It is difficult,
however, for most programmers to program GPUs for general-
purpose uses.

In this paper, we show how to use data parallelism to program
GPUs for general-purpose uses. We start with a conventional im-
perative language, C# (which is similar to Java). We provide a li-
brary that implements an abstract data type providing data-parallel
arrays; no aspects of GPUs are exposed to programmers. The li-
brary evaluates the data-parallel operations using a GPU; all other
operations are evaluated on the CPU. For efficiency, the library
does not immediately perform data-parallel operations. Instead, it
builds a graph of desired operations and compiles the operations on
demand to GPU pixel shader code and API calls.

Data-parallel arrays only provide aggregate operations over en-
tire input arrays. The operations are a subset of those found in lan-
guages like APL and include element-wise arithmetic and compar-
ison operators, reduction operations (such as sum), and transfor-
mations on arrays. Data-parallel arrays are functional: each oper-
ation produces a new data-parallel array. Programmers must ex-
plicitly convert back and forth between conventional arrays and
data-parallel arrays. The lazy compilation is typically done when
a program converts a data-parallel array to a normal array.

Compiling data-parallel operations lazily to a GPU allows us to
implement the operations efficiently: the system can avoid creat-
ing large numbers of temporary data-parallel arrays and optimize
the creation of pixel shaders. It also allows us to avoid exposing
GPU details to programmers: the system manages the use of GPU
resources automatically and amortizes the cost of accessing graph-
ics APIs. Compilation at run time also allows the system to handle
properties and features that vary across GPU manufacturers and
models.

We have implemented these ideas in a system called Acceler-
ator. We evaluate the effectiveness of the approach using a set of
benchmarks for compute-intensive tasks such as image processing
and computer vision, run on several generations of GPUs from both
ATI and NVidia. We implemented the benchmarks in hand-written
pixel shader assembly for GPUs, C# using Accelerator, and C++ for
the CPU. The C# programs, including compilation overhead, are
typically within 2×of the speed of the hand-written pixel shader
programs, and sometimes exceed their speeds. The C# programs,
like the hand-written pixel shader programs, often outperform the
C++ programs (by up to 18×).

Prior work on programming GPUs for general-purpose uses ei-
ther targets the specialized GPU programming model directly or
provides a stream programming abstraction of GPUs. It is diffi-
cult to target the GPU directly. First, programmers need to learn
the graphics programming model, which is specialized to the set of
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Abstract
Heterogeneous multi-core processors, such as the IBM Cell
processor, can deliver high performance. However, these
processors are notoriously difficult to program: different
cores support different instruction set architectures, and the
processor as a whole does not provide coherence between
the different cores’ local memories.

We present Hera-JVM, an implementation of the Java
Virtual Machine which operates over the Cell processor,
thereby making this platforms more readily accessible to
mainstream developers. Hera-JVM supports the full Java
language; threads from an unmodified Java application can
be simultaneously executed on both the main PowerPC-
based core and on the additional SPE accelerator cores. Mi-
gration of threads between these cores is transparent from
the point of view of the application, requiring no modifica-
tion to Java source code or bytecode. Hera-JVM supports
the existing Java Memory Model, even though the underly-
ing hardware does not provide cache coherence between the
different core types.

We examine Hera-JVM’s performance under a series
of real-world Java benchmarks from the SpecJVM, Java
Grande and Dacapo benchmark suites. These benchmarks
show a wide variation in relative performance on the dif-
ferent core types of the Cell processor, depending upon the
nature of their workload. Execution of these benchmarks on
Hera-JVM can achieve speedups of up to 2.25x by using
one of the Cell processor’s SPE accelerator cores, compared
to execution on the main PowerPC-based core. When all
six SPE cores are exploited, parallel workloads can achieve
speedups of up to 13x compared to execution on the single
PowerPC core.

Categories and Subject Descriptors C.1.3 [Processor Ar-
chitectures]: Other Architecture Styles—Heterogeneous (hy-
brid) systems; D.3.4 [Programming Languages]: Proc-
essors—Run-time environments.

General Terms Design, Languages, Performances.
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1. Introduction
Commodity microprocessors are providing increasing num-
bers of cores to improve their performance, as issues such as
memory access latency, energy dissipation and instruction
level parallelism limit the performance improvements that
can be gained by a single core. Current commodity multi-
core processors are symmetric, with each processing core
being identical. This kind of architecture provides a simple
platform on which to build applications, however, a Hetero-
geneous Multi-core Architecture (HMA), consisting of dif-
ferent types of processing cores, has the potential to provide
greater performance and efficiency [1, 6].

There are two primary ways in which an HMA can im-
prove performance. First, heterogeneous cores allow special-
isation of some cores to improve the performance of particu-
lar application types, while other cores can remain more gen-
eral purpose, such that the performance of other applications
does not suffer. Second, an HMA can also enable programs
to scale better in the presence of serial sections of a paral-
lel workload. Amdahl’s law [4] shows that even a relatively
small fraction of sequential code can severely limit the over-
all scalability of an algorithm. A HMA can devote silicon
area towards a complex core, on which sequential code can
be executed quickly, and use the rest of its silicon area for
a large number of simple cores, across which parallel work-
loads can be scaled. This enables an HMA to provide better
potential speedups compared with an equivalent symmetric
architecture when Amdahl’s law is taken into account [8].

However, this potential for higher performance comes at
the cost of program complexity. In order to exploit an HMA,
programmers must take into account: the different strengths
and weaknesses of each of the available processing cores;
the lack of functionality on certain cores (e.g., floating point
hardware or operating system support); potentially different
instruction sets and programming environments on each of
the core types; and (often) a non-coherent shared memory
system between cores of different types.

If mainstream application developers are to exploit HMAs,
they must be made simpler to program. High level virtual
machine based languages, such as Java, present an opportu-
nity to hide the details of a heterogeneous architecture from
the developer, behind a homogeneous virtual machine inter-
face.
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