P Unaversity | School of
of Glasgow | Computing Science

Concurrency 1: Hardware Trends and
Programming Models for NUMA Systems

Advanced Operating Systems (M)
Lecture 16

Lecture Outline

® Hardware Trends

® Programming NUMA Systems

e (Cache coherence and messaging

e |mplications for kernel design

e The multi-kernel model

e Example: Barrelfish

Hardware Trends

e Power consumption limits clock rate: | T T [
we can’t cool faster cores .. vl
. . o Intel CPU Trends A
® |nstruction level parallelism is limited (sources: Intel, Wikipedia, K. Olukotun) .
e Moore’s “law” continues — transistor

counts keep growing exponentially 10,00 3

® Increase in on-chip memory

1,000

° Increase in number of cores

e |[ncrease in integration (“system on a chip”) 100

10

e Systems have more cores and other

resources, but we see only a limited : 4 : ot e |
increase in performance per core o e
e Homogeneous cores in NUMA systems 01970 e e i m 20 2o meic

e Heterogenous designs

http://www.ddj.com/
http://www.ddj.com/

Multicore Hardware: NUMA

e Homogeneous and compatible cores — all cores
are equivalent and have high-performance

e Memory access is non-uniform (NUMA)

Large on-chip cache memory
Main memory off-chip, accessed via interconnect
Cache coherency protocols maintain random access illusion

Memory access latency varies hugely depending on which
core is accessing which memory bank

e Typical approach for x86-based systems to date

Obvious evolution of uniprocessor designs to multicore world

CpPU

CpPU

Cl

Co

C2 C3

4 o3

C7

Cé6

Die

Die

Die

Die

Memory

Gbe

PCle

Controller

Memory

Controller
Hub

e

Hub

Memory

Memory

Figure 1. Structure of the Intel system

.| Core 0

=
o

CPU

=
o

PCI/Host
Bridge

PCI/Host

Figure 2. Structure of the AMD system

Memory

Gbe

Multicore Hardware: Heterogeneous Cores

e Heterogeneous multiprocessor: CPU
with multiple special purpose cores

e |BM Cell Broadband Engine, AMD Fusion,
NVIDIA Project Denver, Intel Larrabee, ...

Cell Broadband Engine Processor

e Asymmetric processing capabilities

e High-performance and low-power cores on a
single die (e.g., ARM big.LITTLE model, with
both Cortex A7 and A15 cores on-die)

e GPU-like cores for graphics operations

e Offload for crypto algorithms, TCP stack, etc.

e Asymmetric memory access models

° Non-cache coherent

e Cores explicitly do not share memory

e Common for mobile phones, games
consoles, and other non-PC hardware

Programming Model

e T[raditional hardware designs give the appearance
of a uniform flat memory, shared between cores

e Complex cache coherency protocols and memory models

e \arying degrees of success in hiding the diversity

® |ncreasingly an illusion, maintained by underlying

inter-core network
e e.9., AMD HyperTransport, Intel QuickPath

e Point-to-point communications/switching
network with message passing protocol

® Newer architectures explicitly

d—»
4 (<>

PCle+> 0 «> 2 >
7y 7y

‘[|cPu

CPU|(CPU

CPU

6|

2 L1

L1

L1

L1

A 4 A 4
PCle +->[1 Je->{ 3]«

54
<7
/

L2

L2

L2

L2

HyperTransport links

v
7

L3

[RAM

RAM

Figure 2: Node layout of an 8x4-core AMD system

expose heterogeneity to programmers

e |BM Cell processor is the canonical example

6

Design Approaches for Handling Diversity

® The range of system designs in increasing

¢ Non-uniformity in memory access: multiple levels of partially shared cache
Is typical; HyperTransport — network-like communication between cores

e Diversity of cores within a system, or instruction sets between cores:

° Sony Playstation 3 with IBM Cell processor

° Systems with CPU and GPGPU

° Systems with FPGA cards attached as reconfigurable coprocessors,
° TCP offload onto network adapters

e Diversity of system designs

° Server hardware vs. smartphone hardware — yet both have to be supported by variants of the
same operating system (MacOS X = i0S = modified Mach microkernel with BSD Unix layer)

® [wo design questions:

e How to optimise kernel for diverse NUMA architectures?

e How to design a kernel for heterogenous instruction sets? [— lecture 17]

NUMA Optimisations: Memory Allocation

® | ocality-aware memory allocation

e NMemory is discontiguous between nodes — partitioned address space

e Threads should allocate memory local to the node on which they execute;
essentially an independent memory management subsystem per node

° The malloc () APl is not sufficient in itself — cannot ensure that related data accessed by

multiple threads is allocated in memory that is located on the same node, and cannot place
allocations on particular nodes (pinning threads to particular nodes can help here)

e Replication of kernel memory on multiple cores

e Read-only memory regions accessed by multiple threads should be
replicated across nodes

° e.g., the kernel code, shared libraries such as 1ibc

e Requires support from VM system, to map a virtual address to a different
physical address on each core

e Un-copy-on-write to collapse replicas down to a single page if a write
occurs

NUMA Optimisations: Scheduling

e Scheduler must be aware of CPU
topology, so it can assign threads
to physically close processors

struct sched domain in Linux

® Three layers of topology

Hyper-threading within a core (siblings)
Cores within a physical CPU package
Physical CPUs within a NUMA node

e | oad balancing between nodes

CPU intensive tasks should be separate
Communicating threads should be close

Monitor and periodically rebalance —
heuristic driven, hard to formulate a
general policy

Linux has sched setaffinity() to
bind thread to a particular set of CPUs,
to allow manual optimisation

Node Domain

|—P CPU: 01,23 —» CPU:4586,7

-

T

Physical CPU Domain

’—b CPU: 0,1 —» CPU:23 —-|
i 1

T

Physical CPU Domain

|—P CPU:45 —» CPU.6,7 —|

f

f

Sibling Domain Sibling Domain

Sibling Domain Sibling Domain

|—-> CPU:0 — CPU:1 —| I—D CPU:2 — CPU: 3 —-| |—->

CPU:4 — CPU:5 ——| |——> CPU:6 —» CPU: 7 —l

struct sched domain {
/* These fields must be setup */
struct sched domain *parent;
struct sched group *groups;
cpumask_t span;
unsigned long min_interval;
unsigned long max_interval;
unsigned int busy factor;
unsigned int imbalance pct;
unsigned long long cache hot time;
unsigned int cache nice tries;
unsigned int per cpu gain;
int flags;

/* Runtime fields. */

unsigned long last balance;
unsigned int balance_ interval;
unsigned int nr_balance failed;

}i

struct sched group {
struct sched group *next;
cpumask_t cpumask;
unsigned long cpu_power;

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*

/*

top domain must be null terminated */
the balancing groups of the domain */
span of all CPUs in this domain */
Minimum balance interval ms */
Maximum balance interval ms */

less balancing by factor if busy */
No balance until over watermark */
Task considered cache hot (ns) */
Leave cache hot tasks for # tries */
CPU % gained by adding domain cpus */
See SD * */

init to jiffies. units in jiffies */
initialise to 1. units in ms. */
initialise to 0 */

Must be a circular list */

Cache Coherence is not a Panacea

e (Cost of maintaining cache coherence is increasing
rapidly

e Do all processors need to have a consistent view of memory — even just
at synchronisation points defined by the memory model?

e Potentially significant performance gains to be achieved by partitioning
memory between processors — as discussed

° Scheduling threads that share memory on processors that share cache can result in
significant speedup

e Equally — significant slowdowns can occur if unrelated data accessed by
two cores shares a cache line

° Access by one core invalidates the cache, causing a flush to main memory and reload; the
other core then accesses, and the data is flushed back — ping-pong occurs

° Can causes slowdowns of many orders of magnitude

Messages are Cheap and Easy

e \Which is cheaper — message passing
or shared memory?

e Graph shows shared memory costs (1-8
cores, SHM1...SHM8) and message passing
costs (MSG1...MSG8) for a 4 x quad-core
server, with AMD HyperTransport

Latency (cycles x 1000)

e (Cost of cache coherency protocols increases
with the number of cores — messages can be
cheaper, depending on the architecture

e Which is easier to program?

Cores

e Shared-state concurrency is notoriously hard

to program (locks, etc.) Figure 3: Comparison of the cost of updating shared state

e Systems that avoid shared mutable state are using shared memory and message passing.
frequently cited as easier to reason about

e How long will the hardware be able to
maintain illusion of shared memory?

Implications for Kernel Design

® A single kernel instance may not be appropriate

e There may be no single “central” processor to initialise the kernel

e How to coordinate the kernel between peer processors?

® Multicore processors are increasing distributed
systems at heart — can we embrace this?

The Multi-kernel Model

° Make OS structure hardware neutral

Arch-specific
code

App App App App ® Three design principles for a multi-
S N | | I - kernel operating system
Agreement : OS node OS node OS node /] ,\ OS node :))) o
aoortms 1 | [State — s 1k Async messages) Fsmenl| ! e Make all inter-core communication explicit
: replica replica replica \] l/ replica }

e View state as replicated instead of shared

Heterogeneous
cores

< Interconnect >

e Build a distributed system that can use shared memory where possible as an
optimisation, rather than a system that relies on shared memory

e The model is no longer that of a single operating system; rather a collection
of cooperating kernels

Principle 1: Explicit Communication

e Multi-kernel model relies on message passing

e The only shared memory used by the kernels is that used to implement
message passing (user-space programs can request shared memory in
the usual way, if desired)

° Strict isolation of kernel instances can be enforced by hardware
° Share immutable data — message passing, not shared state

e | atency of message passing is explicitly visible

° Leads to asynchronous designs, since it becomes obvious where the system will block waiting
for a synchronous reply

° Differs from conventional kernels which are primarily synchronous, since latencies are invisible

e Kernels become simpler to verify — explicit communication can be
validated using formals methods developed for network protocols

Principle 2: Hardware Neutral Kernels

® \Write clean, portable, code wherever possible

® | ow-level hardware access is necessarily processor/system specific

e Message passing is performance critical: should use of system-specific
optimisations where necessary

e Device drivers and much other kernel code can be generic and portable —
better suited for heterogeneity

e Highly-optimised code is difficult to port

° Optimisations tend to tie it to the details of a particular platform

° The more variety of hardware platforms a multi-kernel must operate on, the better it is to have
acceptable performance everywhere, than high-performance on one platform, poor elsewhere

® Hardware is changing faster than system software

Principle 3: Replicated State

® A multi-kernel does not share state between cores

e All data structures are local to each core

e Anything needing global coordination must be managed using a
distributed protocol

e This includes things like the scheduler run-queues, network sockets, etc.

° e.g., there is no way to list all running processes, without sending each core a message
asking for its list, then combining the results

e Adistributed system of cooperating kernels, not a single multiprocessor
kernel

Multi-kernel Example: Barrelfish

Implementation of multi-kernel
model for x86 NUMA systems

CPU drivers

Enforces memory protection, authorisation,
and the security model

e Schedules user-space processes for its core

e Mediates access to the core and associated
hardware (MMU, APIC, etc.)

e Provides inter-process communication for
applications on the core

e |mplementation is completely event-driven,
single-threaded, and non-preemptable

e ~7500 lines of code (C + assembler)

Monitors

e Coordinate system-wide state across cores

Applications written to a subset of
the POSIX APls

App App App App

User l ------------------------------- -I

11 Monitor Monitor | = = Monitor |

space ------------------ U EP-C ------------ I
Kernel CPU CPU CPU
space: driver driver < Send IPI > driver
x86-64 x86-64 x86-64

Hardware: ooy Apic| |CPU/APIC & hocor " |oPU/APIC
MMU MMU ache-coherence, VMU

Interrupts

® Microkernel system

e Network stack, memory allocation via
capability system, etc., all run in user
space

® NMessage passing tuned to the
details of HyperTransport and
x86 cache-coherency protocols

e Highly system specific — port to ARM is
underway

Baumann et al, “The Multikernel: A new OS architecture for scalable 5
: multicore systems”, Proc. ACM SOSP 2009. DOI 10.1145/1629575.1629579 :

Further Reading and Discussion

e A.Baumann et al, “The Multikernel: A new OS

architecture for scalable multicore systems”, Proc.
ACM SOSP 2009. DOI 10.1145/1629575.1629579

e Barrelfish is clearly an extreme: a shared-nothing
system implemented on a hardware platform that
permits some efficient sharing

° Is it better to start with a shared-nothing model, and implement
sharing as an optimisation, or start with a shared-state system,
and introduce message passing?

° ere is the boundary for a Barrelfish-like system?

e Distinction between a distributed multi-kernel and a distributed
system of networked computers?

The Multikernel: A new OS architecture for scalable multicore systems

Andrew Baumann; Paul Barham! Pierre-Evariste Dagand? Tim Harris{ Rebecca Isaacs!
Simon Peter; Timothy Roscoe; Adrian Schiipbach; and Akhilesh Singhania®

“Systems Group, ETH Zurich

"Microsoft Research, Cambridge

Abstract

Commodity computer systems contain more and more
processor cores and exhibit increasingly diverse archi-
tectural tradeoffs, including memory hierarchies, inter-
connects, instruction sets and variants, and IO configu-
rations. Previous high-performance computing systems
have scaled in specific cases, but the dynamic nature of
modern client and server workloads, coupled with the
impossibility of statically optimizing an OS for all work-
loads and hardware variants pose serious challenges for
operating system structures.

We argue that the challenge of future multicore hard-
ware is best met by embracing the networked nature of
the machine, rethinking OS architecture using ideas from
distributed systems. We investigate a new OS structure,
the multikernel, that treats the machine as a network of
independent cores, assumes no inter-core sharing at the
lowest level, and moves traditional OS functionality to
a distributed system of processes that communicate via
message-passing.

‘We have implemented a multikernel OS to show that
the approach is promising, and we describe how tradi-
tional scalability problems for operating
as memory management) can be effectively res
messages and can exploit insights from distributed sys-
tems and networking. An evaluation of our prototype on
multicore s shows that, even on present-day ma-
chines, the performance of a multikernel is comparable
with a conventional OS, and can scale better to support
future hardware.

1 Introduction

Computer hardware is changing and diversifying faster
than system software. A diverse mix of cores, caches, in-
terconnect links, IO devices and accelerators, combined
with increasing core counts, leads to substantial scalabil-
ity and correctness challenges for OS designers.

fENS Cachan Bretagne

S s e sl o ey o

Agreement

algorithms !

Archrspecifc
code

Figure 1: The multikernel model.

Such hardware, while in some regards similar to ear-
lier parallel systems, is new in the general-purpose com-
puting domain. We increasingly find multicore systems
in a variety of environments ranging from personal com-
puting platforms to data centers, with workloads that are
less predictable, and often more OS-intensive, than tradi-
tional high-performance computing applications. It is no
longer acceptable (or useful) to tune a general-purpose
OS design for a particular hardware model: the deployed
hardware varies wildly, and optimizations become obso-
lete after a few years when new hardware arrives.

Moreover, these optimizations involve tradeoffs spe-
cific to hardware parameters such as the cache hierarchy,
the memory consistency model, and relative costs of lo-
cal and remote cache access, and so are not portable be-
tween different hardware types. Often, they are not even

to future g of the same i
Typically, because of these difficulties, a scalability prob-
lem must affect a substantial group of users before it will
receive developer attention.

‘We attribute these engineering difficulties to the ba-
sic structure of a shared-memory kernel with data struc-
tures protected by locks, and in this paper we argue for
rethinking the structure of the OS as a distributed sys-
tem of functional units communicating via explicit mes-

