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Lecture Outline

• Hardware Trends

• Programming NUMA Systems
• Cache coherence and messaging

• Implications for kernel design
• The multi-kernel model

• Example: Barrelfish

2



• Power consumption limits clock rate: 
we can’t cool faster cores

• Instruction level parallelism is limited

• Moore’s “law” continues – transistor 
counts keep growing exponentially
• Increase in on-chip memory

• Increase in number of cores

• Increase in integration (“system on a chip”)

• Systems have more cores and other 
resources, but we see only a limited 
increase in performance per core
• Homogeneous cores in NUMA systems

• Heterogenous designs

Hardware Trends
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Multicore Hardware: NUMA

• Homogeneous and compatible cores – all cores 
are equivalent and have high-performance

• Memory access is non-uniform (NUMA)
• Large on-chip cache memory

• Main memory off-chip, accessed via interconnect

• Cache coherency protocols maintain random access illusion

• Memory access latency varies hugely depending on which 
core is accessing which memory bank

• Typical approach for x86-based systems to date
• Obvious evolution of uniprocessor designs to multicore world
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Figure 1. Structure of the Intel system
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Figure 2. Structure of the AMD system

To run our benchmarks, we booted the hardware using our bare
Barrelfish kernel. No interrupts, other than the interprocessor in-
terrupt when required, were enabled and no tasks other than the
benchmark were running. Every benchmark was repeated 1,000,000
times, the aggregate measured by the processor’s cycle counter, and
the average taken.

3.1 IPI latency
To learn more about the communication latencies within a modern
PC, we measured the interprocessor interrupt (IPI) latency between
cores in our test systems. IPI is one example of direct communi-
cation between cores, and can be important for OS messaging and
synchronisation operations.

IPI roundtrip latency was measured using IPI ping-pong. In-
cluded in the total number of ticks is the code overhead needed to
send the IPI and to acknowledge the last interrupt in the APIC. For
our measurements, this overhead is not relevant, because we are
interested in the differences rather than absolute latencies.

We measured the various IPI latencies on our two systems; the
results are shown in Tables 1 and 2. As expected, sending an IPI
between two cores on the same socket is faster than sending to a
different socket, and sending an IPI to a core on the same die (in
the Intel case) is the fastest operation. The differences are of the

Roundtrip Latency
Ticks µ sec

Same Die 1096 0.41
Same Socket 1160 0.43
Different Socket 1265 0.47

Table 1. IPI latencies on the Intel system

Roundtrip Latency
Ticks µ sec

Same Socket 794 0.28
Different Socket 879 0.31

Table 2. IPI latencies on the AMD system

order of 10–15%. These may be significant, but it seems plausible
that a simple OS abstraction on this hardware that treats all cores
the same will not suffer severe performance loss over one that is
aware of the interconnect topology.

3.2 Memory hierarchy
Modern multicore systems often have CPU-local memory, to re-
duce memory contention and shared bus load. In such NUMA sys-
tems, it is possible to access non-local memory, and these accesses
are cache-coherent, but they require significantly more time than
accesses to local memory.

We measured the differences in memory access time from the
four cores on our AMD-based system. Each socket in this system
is connected to two banks of local memory while the other two
banks are accessed over the HyperTransport bus between the two
sockets. Our system has 8 gigabytes of memory installed evenly
across the four available memory banks. The benchmark accesses
memory within two gigabyte regions to measure its the latency. The
memory regions were accessed through uncached mappings, and
were touched before starting to prime the TLB. This benchmark
was executed on all four cores.

Table 3 shows the results as average latencies per core and mem-
ory region. As can be seen, the differences are significant. We
also ran the same benchmark on the Intel-based SMP system. As
expected, the latencies were the same (299 cycles) for every core.

Memory access is one case where current hardware shows sub-
stantial diversity, and not surprisingly is therefore where most of
the current scalability work on commodity operating systems has
focused.

3.3 Device access
In systems (such as our AMD machine) with more of a network-
like interconnect, the time to access devices depending on core.
Modern systems, such as our AMD machine, have more than one
PCI root complex; cores near the root complex have faster access to

Memory region Core 0 Core 1 Core 2 Core 3
0–2GB 192 192 319 323
2–4GB 192 192 319 323
4–6GB 323 323 191 192
6–8GB 323 323 191 192

Table 3. Memory access latencies (in cycles) on the AMD system

A. Schu ̈pbach, et al., Embracing diversity in the Barrelfish manycore operating system. 
Proc. Workshop on Managed Many-Core Systems, Boston, MA, USA, June 2008. ACM.



Multicore Hardware: Heterogeneous Cores

• Heterogeneous multiprocessor: CPU 
with multiple special purpose cores
• IBM Cell Broadband Engine, AMD Fusion, 

NVIDIA Project Denver, Intel Larrabee, … 

• Asymmetric processing capabilities 
• High-performance and low-power cores on a 

single die (e.g., ARM big.LITTLE model, with 
both Cortex A7 and A15 cores on-die)

• GPU-like cores for graphics operations

• Offload for crypto algorithms, TCP stack, etc.

• Asymmetric memory access models
• Non-cache coherent

• Cores explicitly do not share memory

• Common for mobile phones, games 
consoles, and other non-PC hardware
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Programming Model

• Traditional hardware designs give the appearance 
of a uniform flat memory, shared between cores
• Complex cache coherency protocols and memory models

• Varying degrees of success in hiding the diversity

• Increasingly an illusion, maintained by underlying 
inter-core network
• e.g., AMD HyperTransport, Intel QuickPath

• Point-to-point communications/switching
network with message passing protocol

• Newer architectures explicitly 
expose heterogeneity to programmers
• IBM Cell processor is the canonical example
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Figure 2: Node layout of an 8�4-core AMD system

2.2 Cores are increasingly diverse
Diversity is not merely a challenge across the range of
commodity machines. Within a single machine, cores
can vary, and the trend is toward a mix of di�erent cores.
Some will have the same instruction set architecture
(ISA) but di�erent performance characteristics [34, 59],
since a processor with large cores will be ine⇥cient for
readily parallelized programs, but one using only small
cores will perform poorly on the sequential parts of a
program [31, 42]. Other cores have di�erent ISAs for
specialized functions [29], and many peripherals (GPUs,
network interfaces, and other, often FPGA-based, spe-
cialized processors) are increasingly programmable.

Current OS designs draw a distinction between
general-purpose cores, which are assumed to be homo-
geneous and run a single, shared instance of a kernel,
and peripheral devices accessed through a narrow driver
interface. However, we are not the only researchers to
see an increasing need for OSes to manage the software
running on such cores much as they manage CPUs to-
day [55]. Moreover, core heterogeneity means cores can
no longer share a single OS kernel instance, either be-
cause the performance tradeo�s vary, or because the ISA
is simply di�erent.

2.3 The interconnect matters
Even for contemporary cache-coherent multiprocessors,
message-passing hardware has replaced the single shared
interconnect [18, 33] for scalability reasons. Hardware
thus resembles a message-passing network, as in the
interconnect topology of the commodity PC server in
Figure 2. While on most current hardware the cache-
coherence protocol between CPUs ensures that the OS
can continue to safely assume a single shared mem-
ory, networking problems like routing and congestion
are well-known concerns on large-scale multiprocessors,
and are now issues in commodity intra-machine intercon-
nects [18]. Future hardware will comprise fewer chips
but exhibit network e�ects inside the chip, such as with
ring [38, 61] and mesh networks [68, 70]. The impli-
cation is that system software will have to adapt to the
inter-core topology, which in turn will di�er between ma-
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Figure 3: Comparison of the cost of updating shared state
using shared memory and message passing.

chines and become substantially more important for per-
formance than at present.

2.4 Messages cost less than shared memory
In 1978 Lauer and Needham argued that message-
passing and shared-memory operating systems are duals,
and the choice of one model over another depends on
the machine architecture on which the OS is built [43].
Of late, shared-memory systems have been the best fit
for PC hardware in terms of both performance and good
software engineering, but this trend is reversing. We can
see evidence of this by an experiment that compares the
costs of updating a data structure using shared memory
with the costs using message passing. The graph in Fig-
ure 3 plots latency against number of cores for updates of
various sizes on the 4�4-core AMD system (described in
Section 4.1).

In the shared memory case, threads pinned to each
core directly update the same small set of memory loca-
tions (without locking) and the cache-coherence mech-
anism migrates data between caches as necessary. The
curves labeled SHM1–8 show the latency per operation
(in cycles) for updates that directly modify 1, 2, 4 and 8
shared cache lines respectively. The costs grow approxi-
mately linearly with the number of threads and the num-
ber of modified cache lines. Although a single core can
perform the update operation in under 30 cycles, when 16
cores are modifying the same data it takes almost 12,000
extra cycles to perform each update. All of these extra
cycles are spent with the core stalled on cache misses
and therefore unable to do useful work while waiting for
an update to occur.

In the case of message passing, client threads issue a
lightweight remote procedure call [10], (which we as-
sume fits in a 64-byte cache line), to a single server

3
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Design Approaches for Handling Diversity

• The range of system designs in increasing
• Non-uniformity in memory access: multiple levels of partially shared cache 

is typical; HyperTransport → network-like communication between cores

• Diversity of cores within a system, or instruction sets between cores: 
• Sony Playstation 3 with IBM Cell processor

• Systems with CPU and GPGPU

• Systems with FPGA cards attached as reconfigurable coprocessors, 

• TCP offload onto network adapters

• Diversity of system designs
• Server hardware vs. smartphone hardware – yet both have to be supported by variants of the 

same operating system (MacOS X = iOS = modified Mach microkernel with BSD Unix layer)

• Two design questions:
• How to optimise kernel for diverse NUMA architectures?

• How to design a kernel for heterogenous instruction sets? [→ lecture 17]

7



NUMA Optimisations: Memory Allocation

• Locality-aware memory allocation
• Memory is discontiguous between nodes – partitioned address space

• Threads should allocate memory local to the node on which they execute; 
essentially an independent memory management subsystem per node

• The malloc() API is not sufficient in itself – cannot ensure that related data accessed by 
multiple threads is allocated in memory that is located on the same node, and cannot place 
allocations on particular nodes (pinning threads to particular nodes can help here)

• Replication of kernel memory on multiple cores
• Read-only memory regions accessed by multiple threads should be 

replicated across nodes
• e.g., the kernel code, shared libraries such as libc

• Requires support from VM system, to map a virtual address to a different 
physical address on each core

• Un-copy-on-write to collapse replicas down to a single page if a write 
occurs

8



NUMA Optimisations: Scheduling

• Scheduler must be aware of CPU 
topology, so it can assign threads 
to physically close processors
• struct sched_domain in Linux

• Three layers of topology
• Hyper-threading within a core (siblings)

• Cores within a physical CPU package

• Physical CPUs within a NUMA node

• Load balancing between nodes
• CPU intensive tasks should be separate

• Communicating threads should be close

• Monitor and periodically rebalance – 
heuristic driven, hard to formulate a 
general policy

• Linux has sched_setaffinity() to 
bind thread to a particular set of CPUs, 
to allow manual optimisation

9
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Figure 3: SMT NUMA Domains

physical CPU. Without careful consideration
of this property, a typical NUMA sched do-
mains hierarchy would perform badly, trying
to load balance single CPU nodes often (an ob-
vious waste of cycles) and between node do-
mains only rarely (also bad since these actually
represent the physical CPUs).

4.2 Sched Domains Implementation

4.2.1 Structure

The sched_domain structure stores pol-
icy parameters and flags and, along with
the sched_group structure, is the primary
building block in the domain hierarchy. Fig-
ure 4 describes these structures. The sched_
domain structure is constructed into an up-
wardly traversable tree via the parent pointer,
the top level domain setting parent to NULL.
The groups list is a circular list of of sched_
group structures which essentially define the
CPUs in each child domain and the relative
power of that group of CPUs (two physical
CPUs are more powerful than one SMT CPU).
The span member is simply a bit vector with a
1 for every CPU encompassed by that domain
and is always the union of the bit vector stored

in each element of the groups list. The remain-
ing fields define the scheduling policy to be fol-
lowed while dealing with that domain, see Sec-
tion 4.2.2.

While the hierarchy may seem simple, the de-
tails of its construction and resulting tree struc-
tures are not. For performance reasons, the
domain hierarchy is built on a per-CPU basis,
meaning each CPU has a unique instance of
each domain in the path from the base domain
to the highest level domain. These duplicate
structures do share the sched_group struc-
tures however. The resulting tree is difficult to
diagram, but resembles Figure 5 for the ma-
chine with two SMT CPUs discussed earlier.

In accordance with common practice, each
architecture may specify the construction of
the sched domains hierarchy and the pa-
rameters and flags defining the various poli-
cies. At the time of this writing, only i386
and ppc64 defined custom construction rou-
tines. Both architectures provide for SMT
processors and NUMA configurations. With-
out an architecture-specific routine, the kernel
uses the default implementations in sched.c,
which do take NUMA into account.

M. Bligh et al., Linux on NUMA systems. Proc. Ottawa Linux Symposium, July 2004
Linux Symposium 2004 • Volume One • 95

struct sched_domain {
/* These fields must be setup */
struct sched_domain *parent; /* top domain must be null terminated */
struct sched_group *groups; /* the balancing groups of the domain */
cpumask_t span; /* span of all CPUs in this domain */
unsigned long min_interval; /* Minimum balance interval ms */
unsigned long max_interval; /* Maximum balance interval ms */
unsigned int busy_factor; /* less balancing by factor if busy */
unsigned int imbalance_pct; /* No balance until over watermark */
unsigned long long cache_hot_time; /* Task considered cache hot (ns) */
unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
unsigned int per_cpu_gain; /* CPU % gained by adding domain cpus */
int flags; /* See SD_* */

/* Runtime fields. */
unsigned long last_balance; /* init to jiffies. units in jiffies */
unsigned int balance_interval; /* initialise to 1. units in ms. */
unsigned int nr_balance_failed; /* initialise to 0 */

};

struct sched_group {
struct sched_group *next; /* Must be a circular list */
cpumask_t cpumask;
unsigned long cpu_power;

};

Figure 4: Sched Domains Structures

4.2.2 Policy

The new scheduler attempts to keep the sys-
tem load as balanced as possible by running re-
balance code when tasks change state or make
specific system calls, we will call this event
balancing, and at specified intervals measured
in jiffies, called active balancing. Tasks must
do something for event balancing to take place,
while active balancing occurs independent of
any task.

Event balance policy is defined in each
sched_domain structure by setting a com-
bination of the #defines of figure 6 in the flags
member.

To define the policy outlined for the dual SMT
processor machine in Section 4.1, the low-
est level domains would set SD_BALANCE_
NEWIDLE and SD_WAKE_IDLE (as there is
no cache penalty for running on a differ-
ent sibling within the same physical CPU),
SD_SHARE_CPUPOWER to indicate to the
scheduler that this is an SMT processor (the

scheduler will give full physical CPU ac-
cess to a high priority task by idling the
virtual sibling CPU), and a few common
flags SD_BALANCE_EXEC, SD_BALANCE_
CLONE, and SD_WAKE_AFFINE. The next
level domain represents the physical CPUs
and will not set SD_WAKE_IDLE since cache
warmth is a concern when balancing across
physical CPUs, nor SD_SHARE_CPUPOWER.
This domain adds the SD_WAKE_BALANCE
flag to compensate for the removal of SD_
WAKE_IDLE. As discussed earlier, an SMT
NUMA system will have these two domains
and another node-level domain. This do-
main removes the SD_BALANCE_NEWIDLE
and SD_WAKE_AFFINE flags, resulting in
far fewer balancing across nodes than within
nodes. When one of these events occurs, the
scheduler search up the domain hierarchy and
performs the load balancing at the highest level
domain with the corresponding flag set.

Active balancing is fairly straightforward and
aids in preventing CPU-hungry tasks from hog-
ging a processor, since these tasks may only



Cache Coherence is not a Panacea

• Cost of maintaining cache coherence is increasing 
rapidly
• Do all processors need to have a consistent view of memory – even just 

at synchronisation points defined by the memory model?

• Potentially significant performance gains to be achieved by partitioning 
memory between processors – as discussed

• Scheduling threads that share memory on processors that share cache can result in 
significant speedup

• Equally – significant slowdowns can occur if unrelated data accessed by 
two cores shares a cache line

• Access by one core invalidates the cache, causing a flush to main memory and reload; the 
other core then accesses, and the data is flushed back – ping-pong occurs

• Can causes slowdowns of many orders of magnitude
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Messages are Cheap and Easy

• Which is cheaper – message passing 
or shared memory?
• Graph shows shared memory costs (1-8 

cores, SHM1...SHM8) and message passing 
costs (MSG1...MSG8) for a 4 x quad-core 
server, with AMD HyperTransport

• Cost of cache coherency protocols increases 
with the number of cores – messages can be 
cheaper, depending on the architecture

• Which is easier to program?
• Shared-state concurrency is notoriously hard 

to program (locks, etc.)

• Systems that avoid shared mutable state are 
frequently cited as easier to reason about

• How long will the hardware be able to 
maintain illusion of shared memory?
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Figure 2: Node layout of an 8�4-core AMD system

2.2 Cores are increasingly diverse
Diversity is not merely a challenge across the range of
commodity machines. Within a single machine, cores
can vary, and the trend is toward a mix of di�erent cores.
Some will have the same instruction set architecture
(ISA) but di�erent performance characteristics [34, 59],
since a processor with large cores will be ine⇥cient for
readily parallelized programs, but one using only small
cores will perform poorly on the sequential parts of a
program [31, 42]. Other cores have di�erent ISAs for
specialized functions [29], and many peripherals (GPUs,
network interfaces, and other, often FPGA-based, spe-
cialized processors) are increasingly programmable.

Current OS designs draw a distinction between
general-purpose cores, which are assumed to be homo-
geneous and run a single, shared instance of a kernel,
and peripheral devices accessed through a narrow driver
interface. However, we are not the only researchers to
see an increasing need for OSes to manage the software
running on such cores much as they manage CPUs to-
day [55]. Moreover, core heterogeneity means cores can
no longer share a single OS kernel instance, either be-
cause the performance tradeo�s vary, or because the ISA
is simply di�erent.

2.3 The interconnect matters
Even for contemporary cache-coherent multiprocessors,
message-passing hardware has replaced the single shared
interconnect [18, 33] for scalability reasons. Hardware
thus resembles a message-passing network, as in the
interconnect topology of the commodity PC server in
Figure 2. While on most current hardware the cache-
coherence protocol between CPUs ensures that the OS
can continue to safely assume a single shared mem-
ory, networking problems like routing and congestion
are well-known concerns on large-scale multiprocessors,
and are now issues in commodity intra-machine intercon-
nects [18]. Future hardware will comprise fewer chips
but exhibit network e�ects inside the chip, such as with
ring [38, 61] and mesh networks [68, 70]. The impli-
cation is that system software will have to adapt to the
inter-core topology, which in turn will di�er between ma-
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Figure 3: Comparison of the cost of updating shared state
using shared memory and message passing.

chines and become substantially more important for per-
formance than at present.

2.4 Messages cost less than shared memory
In 1978 Lauer and Needham argued that message-
passing and shared-memory operating systems are duals,
and the choice of one model over another depends on
the machine architecture on which the OS is built [43].
Of late, shared-memory systems have been the best fit
for PC hardware in terms of both performance and good
software engineering, but this trend is reversing. We can
see evidence of this by an experiment that compares the
costs of updating a data structure using shared memory
with the costs using message passing. The graph in Fig-
ure 3 plots latency against number of cores for updates of
various sizes on the 4�4-core AMD system (described in
Section 4.1).

In the shared memory case, threads pinned to each
core directly update the same small set of memory loca-
tions (without locking) and the cache-coherence mech-
anism migrates data between caches as necessary. The
curves labeled SHM1–8 show the latency per operation
(in cycles) for updates that directly modify 1, 2, 4 and 8
shared cache lines respectively. The costs grow approxi-
mately linearly with the number of threads and the num-
ber of modified cache lines. Although a single core can
perform the update operation in under 30 cycles, when 16
cores are modifying the same data it takes almost 12,000
extra cycles to perform each update. All of these extra
cycles are spent with the core stalled on cache misses
and therefore unable to do useful work while waiting for
an update to occur.

In the case of message passing, client threads issue a
lightweight remote procedure call [10], (which we as-
sume fits in a 64-byte cache line), to a single server
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Implications for Kernel Design

• A single kernel instance may not be appropriate
• There may be no single “central” processor to initialise the kernel

• How to coordinate the kernel between peer processors?

• Multicore processors are increasing distributed 
systems at heart – can we embrace this?

12



The Multi-kernel Model

• Three design principles for a multi-
kernel operating system
• Make all inter-core communication explicit

• Make OS structure hardware neutral

• View state as replicated instead of shared

13

The Multikernel: A new OS architecture for scalable multicore systems

Andrew Baumann�, Paul Barham†, Pierre-Evariste Dagand‡, Tim Harris†, Rebecca Isaacs†,
Simon Peter�, Timothy Roscoe�, Adrian Schüpbach�, and Akhilesh Singhania�

�Systems Group, ETH Zurich
†Microsoft Research, Cambridge ‡ENS Cachan Bretagne

Abstract
Commodity computer systems contain more and more
processor cores and exhibit increasingly diverse archi-
tectural tradeo�s, including memory hierarchies, inter-
connects, instruction sets and variants, and IO configu-
rations. Previous high-performance computing systems
have scaled in specific cases, but the dynamic nature of
modern client and server workloads, coupled with the
impossibility of statically optimizing an OS for all work-
loads and hardware variants pose serious challenges for
operating system structures.

We argue that the challenge of future multicore hard-
ware is best met by embracing the networked nature of
the machine, rethinking OS architecture using ideas from
distributed systems. We investigate a new OS structure,
the multikernel, that treats the machine as a network of
independent cores, assumes no inter-core sharing at the
lowest level, and moves traditional OS functionality to
a distributed system of processes that communicate via
message-passing.

We have implemented a multikernel OS to show that
the approach is promising, and we describe how tradi-
tional scalability problems for operating systems (such
as memory management) can be e�ectively recast using
messages and can exploit insights from distributed sys-
tems and networking. An evaluation of our prototype on
multicore systems shows that, even on present-day ma-
chines, the performance of a multikernel is comparable
with a conventional OS, and can scale better to support
future hardware.

1 Introduction

Computer hardware is changing and diversifying faster
than system software. A diverse mix of cores, caches, in-
terconnect links, IO devices and accelerators, combined
with increasing core counts, leads to substantial scalabil-
ity and correctness challenges for OS designers.
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Figure 1: The multikernel model.

Such hardware, while in some regards similar to ear-
lier parallel systems, is new in the general-purpose com-
puting domain. We increasingly find multicore systems
in a variety of environments ranging from personal com-
puting platforms to data centers, with workloads that are
less predictable, and often more OS-intensive, than tradi-
tional high-performance computing applications. It is no
longer acceptable (or useful) to tune a general-purpose
OS design for a particular hardware model: the deployed
hardware varies wildly, and optimizations become obso-
lete after a few years when new hardware arrives.

Moreover, these optimizations involve tradeo�s spe-
cific to hardware parameters such as the cache hierarchy,
the memory consistency model, and relative costs of lo-
cal and remote cache access, and so are not portable be-
tween di�erent hardware types. Often, they are not even
applicable to future generations of the same architecture.
Typically, because of these di⇥culties, a scalability prob-
lem must a�ect a substantial group of users before it will
receive developer attention.

We attribute these engineering di⇥culties to the ba-
sic structure of a shared-memory kernel with data struc-
tures protected by locks, and in this paper we argue for
rethinking the structure of the OS as a distributed sys-
tem of functional units communicating via explicit mes-

1

Baumann et al, “The Multikernel: A new OS architecture for scalable multicore 
systems”, Proc. ACM SOSP 2009. DOI 10.1145/1629575.1629579

• Build a distributed system that can use shared memory where possible as an 
optimisation, rather than a system that relies on shared memory

• The model is no longer that of a single operating system; rather a collection 
of cooperating kernels



Principle 1: Explicit Communication

• Multi-kernel model relies on message passing
• The only shared memory used by the kernels is that used to implement 

message passing (user-space programs can request shared memory in 
the usual way, if desired)

• Strict isolation of kernel instances can be enforced by hardware

• Share immutable data – message passing, not shared state

• Latency of message passing is explicitly visible
• Leads to asynchronous designs, since it becomes obvious where the system will block waiting 

for a synchronous reply

• Differs from conventional kernels which are primarily synchronous, since latencies are invisible

• Kernels become simpler to verify – explicit communication can be 
validated using formals methods developed for network protocols

14



Principle 2: Hardware Neutral Kernels

• Write clean, portable, code wherever possible
• Low-level hardware access is necessarily processor/system specific

• Message passing is performance critical: should use of system-specific 
optimisations where necessary

• Device drivers and much other kernel code can be generic and portable – 
better suited for heterogeneity

• Highly-optimised code is difficult to port
• Optimisations tend to tie it to the details of a particular platform

• The more variety of hardware platforms a multi-kernel must operate on, the better it is to have 
acceptable performance everywhere, than high-performance on one platform, poor elsewhere

• Hardware is changing faster than system software
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Principle 3: Replicated State

• A multi-kernel does not share state between cores
• All data structures are local to each core

• Anything needing global coordination must be managed using a 
distributed protocol

• This includes things like the scheduler run-queues, network sockets, etc.
• e.g., there is no way to list all running processes, without sending each core a message 

asking for its list, then combining the results

• A distributed system of cooperating kernels, not a single multiprocessor 
kernel
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Multi-kernel Example: Barrelfish

• Implementation of multi-kernel 
model for x86 NUMA systems

• CPU drivers
• Enforces memory protection, authorisation, 

and the security model

• Schedules user-space processes for its core

• Mediates access to the core and associated 
hardware (MMU, APIC, etc.) 

• Provides inter-process communication for 
applications on the core

• Implementation is completely event-driven, 
single-threaded, and non-preemptable

• ~7500 lines of code (C + assembler)

• Monitors
• Coordinate system-wide state across cores

• Applications written to a subset of 
the POSIX APIs
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Figure 5: Barrelfish structure

we have liberally borrowed ideas from many other oper-
ating systems.

4.1 Test platforms
Barrelfish currently runs on x86-64-based multiproces-
sors (an ARM port is in progress). In the rest of this pa-
per, reported performance figures refer to the following
systems:

The 2�4-core Intel system has an Intel s5000XVN
motherboard with 2 quad-core 2.66GHz Xeon X5355
processors and a single external memory controller. Each
processor package contains 2 dies, each with 2 cores and
a shared 4MB L2 cache. Both processors are connected
to the memory controller by a shared front-side bus, how-
ever the memory controller implements a snoop filter to
reduce coherence tra�c crossing the bus.

The 2�2-core AMD system has a Tyan Thunder
n6650W board with 2 dual-core 2.8GHz AMD Opteron
2220 processors, each with a local memory controller
and connected by 2 HyperTransport links. Each core has
its own 1MB L2 cache.

The 4�4-core AMD system has a Supermicro H8QM3-
2 board with 4 quad-core 2.5GHz AMD Opteron 8380
processors connected in a square topology by four Hy-
perTransport links. Each core has a private 512kB L2
cache, and each processor has a 6MB L3 cache shared
by all 4 cores.

The 8�4-core AMD system has a Tyan Thunder S4985
board with M4985 quad CPU daughtercard and 8 quad-
core 2GHz AMD Opteron 8350 processors with the in-
terconnect in Figure 2. Each core has a private 512kB L2
cache, and each processor has a 2MB L3 cache shared by
all 4 cores.

4.2 System structure
The multikernel model calls for multiple independent OS
instances communicating via explicit messages. In Bar-
relfish, we factor the OS instance on each core into a
privileged-mode CPU driver and a distinguished user-
mode monitor process, as in Figure 5 (we discuss this
design choice below). CPU drivers are purely local

to a core, and all inter-core coordination is performed
by monitors. The distributed system of monitors and
their associated CPU drivers encapsulate the functional-
ity found in a typical monolithic microkernel: schedul-
ing, communication, and low-level resource allocation.

The rest of Barrelfish consists of device drivers and
system services (such as network stacks, memory allo-
cators, etc.), which run in user-level processes as in a
microkernel. Device interrupts are routed in hardware to
the appropriate core, demultiplexed by that core’s CPU
driver, and delivered to the driver process as a message.

4.3 CPU drivers
The CPU driver enforces protection, performs authoriza-
tion, time-slices processes, and mediates access to the
core and its associated hardware (MMU, APIC, etc.).
Since it shares no state with other cores, the CPU driver
can be completely event-driven, single-threaded, and
nonpreemptable. It serially processes events in the form
of traps from user processes or interrupts from devices or
other cores. This means in turn that it is easier to write
and debug than a conventional kernel, and is small2 en-
abling its text and data to be located in core-local mem-
ory.

As with an exokernel [22], a CPU driver abstracts very
little but performs dispatch and fast local messaging be-
tween processes on the core. It also delivers hardware
interrupts to user-space drivers, and locally time-slices
user-space processes. The CPU driver is invoked via
standard system call instructions with a cost comparable
to Linux on the same hardware.

The current CPU driver in Barrelfish is heavily spe-
cialized for the x86-64 architecture. In the future, we
expect CPU drivers for other processors to be simi-
larly architecture-specific, including data structure lay-
out, whereas the monitor source code is almost entirely
processor-agnostic.

The CPU driver implements a lightweight, asyn-
chronous (split-phase) same-core interprocess commu-
nication facility, which delivers a fixed-size message to
a process and if necessary unblocks it. More complex
communication channels are built over this using shared
memory. As an optimization for latency-sensitive opera-
tions, we also provide an alternative, synchronous oper-
ation akin to LRPC [9] or to L4 IPC [44].

Table 1 shows the one-way (user program to user pro-
gram) performance of this primitive. On the 2�2-core
AMD system, L4 performs a raw IPC in about 420 cy-
cles. Since the Barrelfish figures also include a sched-

2The x86-64 CPU driver, including debugging support and libraries,
is 7135 lines of C and 337 lines of assembly (counted by David
A. Wheeler’s “SLOCCount”), 54kB of text and 370kB of static data
(mainly page tables).
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• Microkernel system
• Network stack, memory allocation via 

capability system, etc., all run in user 
space

• Message passing tuned to the 
details of HyperTransport and 
x86 cache-coherency protocols

• Highly system specific – port to ARM is 
underway

Baumann et al, “The Multikernel: A new OS architecture for scalable 
multicore systems”, Proc. ACM SOSP 2009. DOI 10.1145/1629575.1629579



Further Reading and Discussion

• A. Baumann et al, “The Multikernel: A new OS 
architecture for scalable multicore systems”, Proc. 
ACM SOSP 2009. DOI 10.1145/1629575.1629579

• Barrelfish is clearly an extreme: a shared-nothing 
system implemented on a hardware platform that 
permits some efficient sharing
• Is it better to start with a shared-nothing model, and implement 

sharing as an optimisation, or start with a shared-state system, 
and introduce message passing?

• Where is the boundary for a Barrelfish-like system?
• Distinction between a distributed multi-kernel and a distributed 

system of networked computers?
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Abstract
Commodity computer systems contain more and more
processor cores and exhibit increasingly diverse archi-
tectural tradeo�s, including memory hierarchies, inter-
connects, instruction sets and variants, and IO configu-
rations. Previous high-performance computing systems
have scaled in specific cases, but the dynamic nature of
modern client and server workloads, coupled with the
impossibility of statically optimizing an OS for all work-
loads and hardware variants pose serious challenges for
operating system structures.

We argue that the challenge of future multicore hard-
ware is best met by embracing the networked nature of
the machine, rethinking OS architecture using ideas from
distributed systems. We investigate a new OS structure,
the multikernel, that treats the machine as a network of
independent cores, assumes no inter-core sharing at the
lowest level, and moves traditional OS functionality to
a distributed system of processes that communicate via
message-passing.

We have implemented a multikernel OS to show that
the approach is promising, and we describe how tradi-
tional scalability problems for operating systems (such
as memory management) can be e�ectively recast using
messages and can exploit insights from distributed sys-
tems and networking. An evaluation of our prototype on
multicore systems shows that, even on present-day ma-
chines, the performance of a multikernel is comparable
with a conventional OS, and can scale better to support
future hardware.

1 Introduction

Computer hardware is changing and diversifying faster
than system software. A diverse mix of cores, caches, in-
terconnect links, IO devices and accelerators, combined
with increasing core counts, leads to substantial scalabil-
ity and correctness challenges for OS designers.
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Figure 1: The multikernel model.

Such hardware, while in some regards similar to ear-
lier parallel systems, is new in the general-purpose com-
puting domain. We increasingly find multicore systems
in a variety of environments ranging from personal com-
puting platforms to data centers, with workloads that are
less predictable, and often more OS-intensive, than tradi-
tional high-performance computing applications. It is no
longer acceptable (or useful) to tune a general-purpose
OS design for a particular hardware model: the deployed
hardware varies wildly, and optimizations become obso-
lete after a few years when new hardware arrives.

Moreover, these optimizations involve tradeo�s spe-
cific to hardware parameters such as the cache hierarchy,
the memory consistency model, and relative costs of lo-
cal and remote cache access, and so are not portable be-
tween di�erent hardware types. Often, they are not even
applicable to future generations of the same architecture.
Typically, because of these di⇥culties, a scalability prob-
lem must a�ect a substantial group of users before it will
receive developer attention.

We attribute these engineering di⇥culties to the ba-
sic structure of a shared-memory kernel with data struc-
tures protected by locks, and in this paper we argue for
rethinking the structure of the OS as a distributed sys-
tem of functional units communicating via explicit mes-
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