
Dependable Kernel Architectures

Advanced Operating Systems (M)
Lecture 13

Lecture Outline

• The need for dependable kernels

• Kernel implementation languages
• Benefits of moving away from C

• Microkernels and strongly isolated systems
• Benefits of software isolated processes

• Microsoft’s Singularity as an example

2

How to make the kernel dependable?

• Move away from C as an implementation language
• Lack of type- and memory-safety leads to numerous bugs and security

vulnerabilities

• Limited support for concurrency – race conditions, locking problems –
makes it unsuitable for modern machine architectures

• Move towards architectures with a minimal kernel,
and strong isolation between other components of
the operating system
• The monolithic part of a kernel is a single failure domain; this needs to be

reduced to a minimum → microkernel architecture

• Easier to debug and manage components when they’re isolated from
each other, and communicate only through well-defined channels

3

Kernel Implementation Languages

• Desirable to implement kernel in a safe language
• The language should have a rigorously-defined strong type system, with

clearly specified semantics

• This does not prevent compilation to native code, if desired

• This does not require a static type system, although one may be desirable
to help find bugs early

• Desirable to support concurrency, since multicore
processors are ubiquitous
• The memory model needs to be formally defined, at least, as do any

synchronisation primitives – when do memory operations made by a
processor become visible to other processors?

• The combination of the language and its standard library might provide
higher-level communication mechanisms than traditional locking

4

Memory Models

• Many multiprocessor systems use memory that is
shared between processors
• The system may have symmetric or non-uniform memory access (NUMA)

• There may be multiple layers of caching between processors and memory

• When do a memory writes made by one processor
become visible to other processors?
• Prohibitively expensive for all threads on all processors to have the exact

same view of memory (“sequential consistency”)

• For performance, allow processors to have inconsistent views of memory,
except at synchronisation points; introduce synchronisation primitives with
well-defined semantics

• Varies between different processors – even between variants of the same
processor architecture – differences can generally be hidden by language
runtime, if there is a language-specific memory model

5

Example: The Java Memory Model

• Java has a formally defined memory model

• Between threads:
• Changes to a field made by one thread are visible to other threads if:

• The writing thread has released a synchronisation lock, and that same lock has subsequently
been acquired by the reading thread (writes with lock held are atomic to other locked code)

• If a thread writes to a field declared volatile, that write is done atomically, and immediately
becomes visible to other threads

• A newly created thread sees the state of the system as if it had just acquired a synchronisation
lock that had just been released by the creating thread

• When a thread terminates, its writes complete and become visible to other threads

• Access to fields is atomic
• i.e., you can never observe a half-way completed write, even if incorrectly synchronised

• Except for long and double fields, for which writes are only atomic if the field is volatile,
or if a synchronisation lock is held

• Within a thread: actions are seen in program order

6

[Somewhat simplified: see the Java Language Specification,
Chapter 17, for full details http://java.sun.com/docs/books/jls/]

Memory Models

• Defines the space in which the language runtime
and processor architecture can innovate, without
breaking programs
• Synchronisation between threads occurs only at well-defined instants;

memory may appear inconsistent between these times, if that helps the
processor and/or runtime system performance

• Java is unusual in having such a clearly-specified
memory model
• Other languages are less well specified, running the risk that new

processor designs can subtly break previously working programs

• C and C++, in particular, have very poorly specified memory models

7

Safe Languages

• “A safe language is one that protects its own
abstractions”
[B. Pierce, Types and Programming Languages, MIT Press, 2002]

• Undefined behaviour – as in the example on
the right – is prohibited to the extent possible
• The language specification can require that array bounds

are respected, and specify the error response to violation

• Requires both compile- and run-time checking
• The type system specifies legal properties of the program

“for proving the absence of certain program behaviours”

• Some properties can be statically checked by a compiler:
a faulty program will not compile until the bug is fixed

• Some properties require run-time checks: failure causes a
controlled error

• This does not guarantee that a program will work correctly,
but helps ensure that it fails in a predictable and consistent
way

8

-->cat tst.c
#include <stdio.h>

int main()
{
 int x;
 int a;
 int b[13];
 int c;

 a = 1;
 c = 2;

 for (x = 0; x <= 13; x++) {
 b[x] = x;
 }

 printf("a = %d\n", a);
 printf("c = %d\n", c);

 return 0;
}
-->gcc -std=c99 tst.c -o tst
-->./tst
a = 1
c = 13
-->

Example: Banishing the Null Pointer

• Many languages allow references to
nothing (i.e., the NULL pointer)

• Often see APIs written to return a pointer to an
object, or NULL if the object doesn’t exist

• A common failure is to forget to check for NULL
before using the returned object

• Causes runtime NullPointerException in
Java, or (probably) a crash in C

• Can require references to be valid, use
a different type to signal invalid values
• Haskell has the Maybe type; Scala uses an

abstract class Option[X] with subclasses
Some[X] and None

• Since Option[X] is abstract, must match on its
subclasses to access result – language requires
an exhaustive match, so the code won’t compile
if the None check is missing.

• Turns a runtime failure into a compile time check

9

char *getParameter(request_t *data, char *param) {
 ...
}

char *name = getParameter(request, “name”)
if (name != NULL) {
 printf(“%s”, toupper(name));
} else {
 printf(“No name value”);
} C

class Request {
 def getParameter(param : String):Option[String]
 ...
}

val name = request.getParameter(“name”)
name match {
 case Some(name) =>
 println(name.toUppercase)
 case None =>
 println(“No name value”)
}

Scala

Example: Pattern Matching & Messages

• Many languages support pattern matching on the
runtime type of a variable
• Syntax like a C switch statement, but can match on the type of its

argument, not just its value

• Semantics like a nested sequence of instanceof tests in Java, but
generally requires all possible subtypes to be considered

• Useful for implementing message passing
• E.g., use a ConcurrentLinkedQueue to pass data between threads,

where each data item is a subclass of some abstract class Message

• Receiver uses pattern matching on Message subtypes to call handlers;
compiler will enforce that all possible message subtypes are handled

• The same design can be implemented without compiler support, but loses the guarantee that
all subtypes of Message are handled, since its no longer checked by the type system

10

Example: Immutable Data

• Imperative programming language generally make
use of mutable data structures

• Functional languages prefer immutable data
• Once an object is created, it cannot be modified

• Data structures are updated by making a
copy of the data with the change applied

• e.g., to add an item to a list, you don’t modify the list, you instead make a new list with the item
to be inserted at the head

• Programs are written as a sequence of functions that transform data, each returning a
modified copy of the data item with some transformation applied

• Straight-forward to enforce immutability at language level (c.f., Haskell)

• Desirable when implementing concurrent systems, since immutable data
doesn’t need to be locked when accessed by multiple threads

11

[C. Okasaki, Purely Functional Data Structures, PhD thesis,
CMU, 1996. http://www.cs.cmu.edu/~rwh/theses/okasaki.pdf]

Example: Linear Types

• A variable with linear type may be used only
once; it goes out of scope after use

• Potentially useful when sharing mutable data
between threads
• Implement sharing via a sendMessage function that

takes a linear type for the data to be shared

• Message data consumed by the sendMessage
function and the receiver, and so can’t be used by the
sender once the message has been sent

• Data doesn’t need to be locked, since it can only be
used by one thread at once

• The compiler enforces that linear data is not
shared between threads
• Disadvantage: requires an unusual programming style

12

[R. Ennals et al, Linear Types for Packet Processing, Proceedings of the European Symposium
on Programming, Barcelona, March 2004. http://www.cl.cam.ac.uk/~am21/papers/esop04.pdf]

linear int x = 5;
int y = x;
int z = x + 1; // error

linear int x = 5;
linear int y = foo(x);
sendMessage(dest, y);
int z = y + 1 // error

Discussion

• Language-level features that have the potential to
make systems programming much easier
• Complexity pushed from the systems programmer to the compiler writer

• Generally require little in the way of runtime support, and so can be used
within a kernel

• Nothing here is unknown: most ideas are available
today in production-quality languages such as
Haskell, Scala, Erlang

13

Microkernels & Strongly Isolated Systems

• Desirable to separate components of a system, so
failure of a component doesn’t cause failure of the
entire system

• Traditional approach: microkernel
• Strip-down the monolithic part of the kernel to only the most essential

services; run everything else in user space

• Device drivers/services run as separate user processes, communicate
using some message passing API

• Kernel just managing process scheduling, isolation, and message passing

• Widely used in embedded systems, where robustness and flexibility to run
devices for unusual hardware are essential features

• But: difficult to make efficient, due to the need to manage page tables and
memory protection settings on each context switch, coupled with frequent
context switches

14

High-level Kernels and Software Isolation

• A possible solution:
• Microkernel system, that enforces all user-space code is written in a safe

language (e.g., by only executing byte code, no native code)
• This includes device drivers and system services running outside the microkernel

• The type system prevents malicious code obtaining extra permissions by
manipulating memory it doesn’t own

• Permissions enforcement can therefore be done entirely in software – no
need to use the MMU to enforce process separation in hardware

• A software isolated process architecture

• Example: Microsoft’s Singularity operating system

15

Singularity Architecture

• Microkernel written in C++

• All other code written in Sing#, an extension
to C# that provides for strict specification of
inter-process communication channels
• Discussed in lecture 12, in the context of device drivers

• All non-kernel code runs as sealed software
isolated processes
• This includes device drivers, and subsystems such as

the TCP/IP stack

• No shared memory, no dynamic libraries, plugins, or
other forms of run-time code loading/extension – such
features implemented by starting new software isolated
processes, with message passing communication

• Strong isolation make system more robust,
easier to develop and test

16

communication channel and pass that channel (and its
implied communication rights) to another process.
Similarly, a process can receive a channel from one
process and hand it off to a third process. The Singularity
API for creating a child process allows a process to invest
one or more communication rights into a child process at
creation time.

In general, the explicit communication invariant ensures
that a process can only communicate with the transitive
closure of processes reachable through its existing
communication graph (or extensions of the graph caused
by creation of child processes). In practice, intermediate
processes (including the kernel) and the OS
communication mechanisms can further restrict the
communication graph. For example, an intermediate
process can use access control to decide whether to
forward a communication.

The closed API invariant ensures that the API provided by
the operating system to an unprivileged process does not
include a mechanism to subvert the fixed code, state
isolation, or explicit communication invariants. For
example, the closed API invariant ensures that the base
API does not include a mechanism to write to the memory
of any other process.

Debuggers may need to violate some or all of these
invariants in order to enable a developer to examine and
control an executing process. Debuggers consequently
must be privileged programs that are given access to
functionality not available outside of a systemFs kernel. In
practice, very few users write code or run debuggers, so
production systems can enhance security by omitting this
functionality or by limiting debuggers to read-only access.

3. SINGULARITY
Singularity is an experimental operating system under
development in our lab as a basis for building more
dependable applications and systems [28]. A key design
criterion for Singularity was to increase isolation among

software components. This motivation was based on
widespread experience with MicrosoftFs software systems,
which in general are very extensible and rely heavily on
open process architectures. While we recognize both the
practical and commercial benefits of open process
architectures, we felt compelled to explore alternatives to
improve dependability.

SingularityFs sealed process architecture is constructed
from a number of mechanisms: a sealed micro-kernel,
light-weight software isolated processes (SIPs), a light-
weight language runtime, light-weight inter-process
communication channels, a process-limited API, light-
weight threads, isolated process heaps, and verifiable code.

3.1. Sealed Kernel
Figure 1 depicts the key components of the Singularity
operating system. The microkernel provides the core
functionality of the system, including page-based memory
management, process creation and termination,
communication channels, scheduling, I/O, security, and a
local directory service. The microkernel uses a hardware
abstract layer (HAL) to communicate with low-level
devices, such as interrupt controllers and timers. Most of
SingularityFs functionality resides in processes outside of
the sealed kernel. In particular, all subsystems and device
drivers run in separate processes.

Most of the kernel and language runtimes are verifiably
type safe C# or Sing# [13], but small portions of trusted
code are written in assembler, C++, or unsafe C#. All code
outside the trusted computing base is written in a safe
language (such as C#), translated to safe MSIL1, and then
verified and compiled to the native instruction set by the
Bartok compiler [16] at install time. Currently, we trust
that Bartok correctly generates safe code. In the long term
we are moving to typed assembly language (TAL) to
verify the safety of compiled code and to eliminate the
compiler from the trusted computing base [30].

3.2. Software Isolated Processes
A Singularity process, called a software isolated process
(SIP), consists of a set of memory pages, a set of threads,
and a set of channel endpoints. SingularityFs SIPs depend
on language safety and the invariants of the sealed process
architecture to provide low-cost process isolation. This
isolation starts with verification that all untrusted code
running in a SIP is type and memory safe. Language safety
ensures that untrusted code cannot create or mutate
pointers to access the memory pages of another SIP. The

1Microsoft Intermediate Language (MSIL) is the CPU-independent
instruction set accepted by the Microsoft CLR. Singularity uses the MSIL
format. Features specific to Singularity are expressed through metadata
extensions in MSIL.

Singularity Microkernel

HAL Language Runtime & GC

Scheduler Page Mgr

Security Svc Directory SvcProcess Mgr

I/O Mgr

Plug-Ins Applications Subsystems Device
Drivers

Runtime
& GC

Runtime
& GC

Runtime
& GC

Runtime
& GC

Libraries Libraries Libraries Libraries

ExHeap

Figure 1. Singularity System Architecture. [G. Hunt et al., Sealing OS processes to improve dependability and safety.

In Proc. EuroSys 2007, Lisbon, Portugal. DOI 10.1145/1272996.1273032]

Software Isolated Processes

• A software isolated process comprises a set
of memory pages, threads of execution, and
channel endpoints
• Each process has its own garbage collector to manage

its storage

• Communication is via typed channels; data is
passed using a separate exchange heap
• The type system enforces that messages contain

primitive types only – no pointers or object references

• Linear types are used to ensure that the sender does not
retain a reference to a message after it has been sent

• The message data does not need to be copied: a
reference to it is passed via the channel

• Receiver uses pattern matching to process messages;
the channel contract specifies the legal message types

• Message passing is low overhead, and safe;
the system supports large number of software
isolated processes

17

Singularity communication mechanisms and kernel API do
not allow pointers to be passed from one SIP to another.
Taken together, these mechanisms ensure the sealed
process invariants, even for SIPs executing in the same
address space.

A SIP starts with a single thread, enough memory to hold
its code, an initial set of channel endpoints, and a small
heap. It obtains additional memory by calling the kernel@s
page manager, which returns new, unshared pages. These
pages need not be adjacent to the SIP@s existing address
space, since safe programming languages do not require
contiguous address spaces.

Because user code is verified safe, several SIPs can share
the same address space. Moreover, SIPS can safely
execute at the same privileged level as the kernel.
Eliminating these hardware protection barriers reduces the
cost to create and switch contexts between SIPs.

Low cost, in turn, makes it practical to use SIPs as a fine-
grain isolation and extension mechanism. With software
isolation, system calls and inter-process communication
execute significantly faster (30L500%) and
communication-intensive programs run up to 33% faster
than on hardware-protected operating systems. Aiken et al.
[2] present an extensive comparison of hardware and
software isolation in Singularity.

SIPs are created from a signed manifest [39]. The manifest
describes the SIP@s code, resources, and dependencies on
the kernel and on other SIPs. All code within a SIP must
be listed in the manifest. Singularity SIP manifests are
entirely declarative. They describe the desired state of the
application configuration after an installation, not the
algorithm for installing the application. This frees the OS
to employ consistent algorithms to update system
configuration and to verify that an update has the desired
effect.

Upon creation, SIPs receive an immutable security
principal name based on their manifest. Because SIPs are
sealed, security policies can place high confidence that a
SIP will not be subverted by third party code. Wobber et
al. [51] describe how the Singularity security architecture
builds robust security policies on the foundation of sealed
processes.

3.3. Light-Weight Language Runtime
Unlike previous systems that relied on language safety
(e.g., Smalltalk, Cedar/Mesa, etc.), Singularity SIPs
execute autonomously. Each SIP contains its own memory
pages, language runtime, and garbage collector (GC).
Moreover, even communicating SIPs need not share a
common runtime or GC.

Because of the state isolation invariant, the runtime and
garbage collector can employ data layout and GC
algorithms appropriate for code in a particular SIP.
Experience and the large number of published garbage
collection algorithms strongly suggest that no one garbage
collector is appropriate for all applications [17].
Singularity@s sealed process architecture decouples the
algorithm, data structures, and execution of each SIP@s
garbage collector. Each SIP can select a GC to
accommodate its objectives. Moreover, the GC in a SIP
can run without coordinating with any other SIP.

A light-weight, customizable runtime is an integral part of
Singularity@s implementation of the closed process
architecture because it allows developers to use SIPs
liberally without incurring large memory overheads.
Because programs are compiled to native code at install
time, Singularity@s language runtime can be quite small.
The language runtime includes a GC, exception handling
mechanisms, and a limited amount of reflection to
determine the type of objects at runtime. Above the
language runtime sits the base class library. Because SIPs
are sealed, Bartok can reduce the footprint of the runtime
and base class library even further by removing unused
code, a process called \tree shaking] [16].

3.4. Channels
Singularity SIPs communicate exclusively by sending
messages over channels [14]. Channels enforce stronger
semantics than the low-level IPC mechanisms of other
systems. Channel communication is governed by statically
verified channel contracts, which describe messages,
message field types, and valid message interaction
sequences as finite state machines.

Messages are tagged collections of values or message
blocks in the Exchange Heap. Object references are
excluded from messages by the type system. Messages are
ownership is transferred from a sending SIP to a receiving
SIP during communication.

Endpoints and message data reside in a special set of pages
known as the Exchange Heap. The Exchange Heap is not
garbage collected, but instead uses reference counts to

Exchange Heap

Process 1 Process 2 Process 3

Figure 2. The Exchange Heap. [G. Hunt et al., Sealing OS processes to improve dependability and safety.

In Proc. EuroSys 2007, Lisbon, Portugal. DOI 10.1145/1272996.1273032]

Discussion

• The microkernel, JIT, and garbage collector are
written in unsafe C++
• Much of this might be possible to eventually migrate to a safe language

• Is it possible to implement the entire system in a safe language?

• Relies on correctness of type system and runtime
to ensure isolation
• Bugs cannot be caught by hardware process isolation, since it’s not used

• There may be an argument for using memory protection as “defence in
depth”, to protect against software failures

• JIT compilation of safe byte code introduces some
overhead, but system calls and context switches
are much faster – performance is acceptable

18

Summary

• Widely used operating systems implemented in C,
using a monolithic kernel architecture unchanged
for decades

• Modern programming languages provide features
that can ease implementation

• These can improve the efficiency of microkernels,
by introducing software isolated processes

19

Further Reading

• G. Hunt et al., Sealing OS processes to improve
dependability and safety. In Proceedings of the
European Conference on Computer Systems,
Lisbon, Portugal, March 2007. ACM/EuroSys.
DOI: 10.1145/1272998.1273032

20

Sealing OS Processes to Improve Dependability and Safety

 Galen Hunt, Mark Aiken, Manuel Fähndrich, Chris Hawblitzel, Orion Hodson,
James Larus, Steven Levi, Bjarne Steensgaard, David Tarditi, and Ted Wobber

Microsoft Research
One Microsoft Way

Redmond, WA 98052 USA

singqa@microsoft.com

ABSTRACT
In most modern operating systems, a process is a
hardware-protected abstraction for isolating code and data.
This protection, however, is selective. Many common
mechanisms<dynamic code loading, run-time code
generation, shared memory, and intrusive system APIs<
make the barrier between processes very permeable. This
paper argues that this traditional open process architecture
exacerbates the dependability and security weaknesses of
modern systems.

As a remedy, this paper proposes a sealed process
architecture, which prohibits dynamic code loading, self-
modifying code, shared memory, and limits the scope of
the process API. This paper describes the implementation
of the sealed process architecture in the Singularity
operating system, discusses its merits and drawbacks, and
evaluates its effectiveness. Some benefits of this sealed
process architecture are: improved program analysis by
tools, stronger security and safety guarantees, elimination
of redundant overlaps between the OS and language
runtimes, and improved software engineering.

Conventional wisdom says open processes are required for
performance; our experience suggests otherwise. We
present the first macrobenchmarks for a sealed-process
operating system and applications. The benchmarks show
that an experimental sealed-process system can achieve
performance competitive with highly-tuned, commercial,
open-process systems.

Categories and Subject Descriptors
D.2.3 [Software Engineering] Coding Tools and Techniques;
D.2.4 [Software Engineering] Software/Program Verification;
D.4.1 [Operating Systems]: Process Management; D.4.5
[Operating Systems]: Reliability; D.4.6 [Operating Systems]:
Organization and Design; D.4.7 [Operating Systems]: Security
and Protection.

General Terms
Design, Reliability, Experimentation.

Keywords
Open process architecture, sealed process architecture, sealed
kernel, software isolated process (SIP).

1. INTRODUCTION
Processes debuted, circa 1965, as a recognized operating
system abstraction in Multics [48]. Multics pioneered
many attributes of modern processes: OS-supported
dynamic code loading, run-time code generation, cross-
process shared memory, and an intrusive kernel API that
permitted one process to modify directly the state of
another process.

Today, this architecture<which we call the open process
architecture<is nearly universal. Although aspects of this
architecture, such as dynamic code loading and shared
memory, were not in Multics\ immediate successors (early
versions of UNIX [35] or early PC operating systems),
today\s systems, such as FreeBSD, Linux, Solaris, and
Windows, embrace all four attributes of the open process
architecture.

The open process architecture is commonly used to extend
an OS or application by dynamically loading new features
and functionality directly into a kernel or running process.
For example, Microsoft Windows supports over 100,000
third-party, in-kernel modules ranging in functionality
from device drivers to anti-virus scanners. Dynamically
loaded extensions are also widely used as web server
extensions (e.g., ISAPI extensions for Microsoft\s IIS or
modules for Apache), stored procedures in databases,
email virus scanners, web browser plug-ins, application
plug-ins, shell extensions, etc. While the role of open
processes in Windows is widely recognized, like any
versatile technology they are widely use in other systems
as well [10, 42].

1.1. Problems with Open Processes
Systems that support open processes almost always
implement process isolation through hardware mechanisms
such as memory management protection and differentiated

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers, or to redistribute to lists,
requires prior specific permission and/or a fee.
EuroSys\07, March 21d23, 2007, Lisbon, Portugal.
Copyright 2007 ACM 978-1-59593-636-3/07/0003

http://dx.doi.org/10.1145/1272998.1273032
http://dx.doi.org/10.1145/1272998.1273032

