P Unaversity | School of
of Glasgow | Computing Science

Evolution of Systems Programming

Advanced Operating Systems (M)
Lecture 11

Real-time and Embedded Programming

® Real time and embedded systems differ from
conventional desktop applications

Must respect timing constraints — scheduling theory in prior lectures
Must interact with hardware and the environment
Often very sensitive to correctness and robust operation

Often very sensitive to cost, weight, or power consumption

® |mplications to consider:

Proofs of correctness, scheduling tests, etc.

Limited resources: low level programming environments; high awareness
of systems issues; interaction with hardware

Challenges imposed on operating system and programming environment
by resource constraints and programming model

Yes, but...

e Continued advances in hardware, supporting both
traditional embedded systems and new ubiquitous
computing platforms

e Moore's “law” shows no sign of abating

® \Where are corresponding advances in software?

e Desirable to raise abstraction level: ease program development and
iIncrease productivity, employ modern software engineering techniques
and high(er) level languages

e Simplify proofs of correctness

Evolution of Systems Programming

® Use increased system performance to provide:

e |anguage and runtime support for low-level programming: interrupt
handling; device access; etfc.

e |anguage and runtime support for automatic memory management,
iIncluding real-time garbage collection

® | anguage and runtime support for real-time systems: periodic threads;
timed statements/timing annotations

e | anguage and runtime support for concurrency: type systems to ensure
correctness; message passing; transactional memory

® Emphasis on real-time, embedded, and ubiquitous
systems

e |OS and Android begin to show the possibilities — but, what next?

Low-level Programming: Device Access

® \arious approaches to low-level hardware access

e (C-style: simple and expressive, non-portable

e Ada: verbose, precise specification, portable

e (Can language and runtime support help?

e \Well-defined integral types and easy support for bit manipulation desirable

e (lear that object-oriented ideas useful for device driver families:

° MacOS X I/O Kit — object oriented device drivers using a subset of C++ (without exceptions,

multiple inheritance, templates, RTTI)
(http://developer.apple.com/library/mac/documentation/DeviceDrivers/Conceptual/lOKitFundamentals/IOKitFundamentals.pdf)

° Linux uses object-based approach for many drivers, implemented in C: higher performance,
but MacOS X drivers easier to write

° Simple object-oriented extensions to C to define sub-class relationships that can abstract out
common behaviour would provide great benefit

e PBetter ways to represent state machines, timeouts, and interrupt handlers
at language level likely beneficial — concurrency and real-time support

........................

Low-level Programming: Interrupt Handling

® |nterrupt handling system dependent

e Few systems support linking user code into interrupt handlers

e Ada real-time systems annex a notable exception:

package Ada.Interrupts is
type Interrupt Id is ...;
type Parameterless Handler is access protected procedure;

function Is Reserved(Interrupt:Interrupt Id) return Boolean;

function Is Attached(Interrupt:Interrupt Id) return Boolean;

function Current Handler (Interrupt:Interrupt Id) return Parameterless Handler;
procedure Attach Handler (Handler:Parameterless Handler, Interrupt:Interrupt Id);

procedure Detach Handler (Interrupt:Interrupt Id);

end Ada.Interrupts;

e Could provide similar standard facilities in other languages

° Must vector through hardware abstraction layer and kernel, but relatively straightforward to
implement as a standard library for adding interrupt handlers to a microkernel OS

° Could eliminate platform-specific hooks, allow portable code
° More interesting: interaction with message-passing concurrency mechanisms

Automatic Memory Management

e Real-time systems community has a strong distrust
of automatic memory management

e E.g., the real-time extensions to Java augmented the memory model with
non-garbage collected regions and manual memory management

e But, memory management problems abound

° Memory leaks and unpredictable memory allocation performance (calls to malloc () can vary
in execution time by several orders of magnitude)

° Memory corruption and buffer overflows

e (Can automatic memory management be provided
that satisfies the real-time systems community?

e Predictable, low-overhead, real-time garbage collection

e [anguages with type systems that can control resource management or
enforce access controls without hardware memory protection

° The RAIl idiom in C++ or using in C# give hints in this direction

7

Garbage Collection

e T[raditional algorithms not suitable

e Triggered at unpredictable times; unpredictable collection delays as data
IS moved to avoid heap fragmentation

® Active research into real-time garbage collection

e Two basic approaches:

° Work based: every request to allocate an object or assign an object reference does some
garbage collection; amortise collection cost with allocation cost

° Time based: schedule an incremental collector as a periodic task

® Obtain tlmlng guarantees onIy by IImItlng D. Frampton, et al., “Generational Real-Time Garbage
Collection: A Three-Part Invention for Young Objects”,
amount of garbage that can be collected Proc. ECOOP 2007. DOI 10.1007/978-3-540-73589-2_6
In a given interval
° Implication: user must indicate maximum memory consumption and allocation rate, to

determine cost of the garbage collector

° Workable solutions exist for many periodic real-time applications; same issue as certain
scheduling algorithms placing constraints on application design

......................................

Memory Protection

e Traditional memory protection is unpredictable

e Slows context switch and system call times due to managing page tables

e Requires illegal access traps and error handlers: difficult to implement

e (Can guarantee safety without hardware protection

e Strongly typed language, checked array bounds, no pointer arithmetic:
looks more like Java than C

° Difficulty is in efficient representation of data, and handling aliasing of memory regions
° Examples: BitC, Cyclone
® Much verification done at compile time; reduces run-time unpredictability

e Example: Singularity operating system from Microsoft Research

° Mostly written in extended C#, small microkernel in C++; language ensures that inter-process
communication is done via strongly-typed message passing; no hardware memory protection

° http://research.microsoft.com/os/singularity .

9

Timing and Real-time Systems

® How to ensure predictable timing?

class RealtimeThread extends java.lang.Thread

. . {
® TheOI’y Of real't|me SChedUI|ng Well-develOped, // ...additional constructors to specify

. . LE // SchedulingParameters
provided requirements are clearly specified > G

// ...adds additional methods:

¢ Introduce abstractions for periodic threads public void setScheduler (Scheduler s);
into the language and runtime support system S e e ety

° E.g., the real-time extensions to Java add RealtimeThread !

e Add timing annotations, let compiler/runtime validate scheduling proof?

° Compiler much better at counting cycles than a human on modern processor architectures

° Likely feasible to estimate worst-case execution time for many embedded codes, which can
be compared with task timing annotations

o Computationally infeasible in the general case

(due to loops, etc.) but most real time systems BP Cook, é\ P0d9'51‘f' a”df‘ Ry%‘fg&”ko .
. . . rovmg rogram lermination :
are more constrained: otherwise how can they May 2011. DOI: 10.1145/1941487.1941509

be manually proved to meet timing bounds?
° Helps debugging if not proving correctness

Timing Annotations

® |s adding such timing annotations feasible”?

® Properties of periodic tasks straight forward, if expressed in language
e Aperiodic/sporadic tasks harder, but often meaningful statistics

e But what about low-level behaviour?

° Annotate that an expression should take no more than x milliseconds; check generated code
° Operating system calls and library functions will need to be annotated

e \What are hidden timing behaviours of system?

° Scheduler and system call overhead

° malloc ()/free (), garbage collection

° Cache, memory hierarchy, memory protection

° Speculative execution, pipelining, super-scalar and out-of-order execution

® Programmers cannot count cycles; yet many still
program as if it were possible — need compiler help

Support for Concurrency

e (Concurrency increasingly important

e Multicore systems now ubiquitous

® Asynchronous interactions between software and hardware devices

® Threads and synchronisation primitives problematic

e | ow level; easy to make mistakes; hard to reason about correctness

® Are there alternatives that avoid these issues?

e Implicit concurrency; execution models which hide complexity

e Functional and/or message passing algorithms
° Example: Ericsson AXD301 160 Gbps

- o : J. Armstrong, “Making reliable distributed systems in the presence
ATM switch had 99'9999.999 % uptlme of software errors”, PhD thesis, KTH, Stockholm, December 2003,
and was (mostly) written in the Erlang http://www.sics.se/~joe/thesis/armstrong_thesis_2003.pdf

functional programming language

® Transactional memory coupled with functional languages (e.g., Haskell)

for automatic rollback and retry of transactions > Lectures 16-19 |

12

Reliability Through Clarity

e State and requirements hidden in existing code

e Need to infer high-level goals from low-level implementation

® Yet Moore's law continues: performance increasing for fixed price point,
power consumption

e Better languages and runtime support will allow
programmers to express high-level goals, system
to check implementation meets them

e Requires paradigm shift away from current implementation strategies

Further Reading

J. Shapiro, “Programming language challenges in
systems codes: why systems programmers still use
C, and what to do about it”, Proceedings of the 3rd
workshop on Programming Languages and
Operating Systems, San Jose, CA, October 2006,
DOI 10.1145/1215995.1216004

E. Brewer, J. Condit, B. McCloskey, and F. Zhou,
“Thirty Years is Long Enough: Getting Beyond C”,
Proceedings of the 10th workshop on Hot Topics in
Operating Systems, Santa Fe, NM, June 2005.

http://www.usenix.org/event/hotos05/final_papers/brewer.html

T. Sweeney, “The Next Mainstream Programming
Language”, Keynote at the 33rd Symposium on
Principles of Programming Languages, Charleston,

January 20006.
http://www.cs.princeton.edu/~dpw/popl/06/Tim-POPL.ppt

| 4

Read this —
will discuss
in tutorial 4
tomorrow

)
The Nex’r\ﬂ\\:ins‘rream

eeeeeeeeeeeeeeeeeeeeeeeeee

