
Evolution of Systems Programming

Advanced Operating Systems (M)
Lecture 11



• Real time and embedded systems differ from 
conventional desktop applications
• Must respect timing constraints – scheduling theory in prior lectures

• Must interact with hardware and the environment

• Often very sensitive to correctness and robust operation

• Often very sensitive to cost, weight, or power consumption

• Implications to consider:
• Proofs of correctness, scheduling tests, etc.

• Limited resources: low level programming environments; high awareness 
of systems issues; interaction with hardware

• Challenges imposed on operating system and programming environment 
by resource constraints and programming model
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Real-time and Embedded Programming



• Continued advances in hardware, supporting both 
traditional embedded systems and new ubiquitous 
computing platforms
• Moore’s “law” shows no sign of abating

• Where are corresponding advances in software?
• Desirable to raise abstraction level: ease program development and 

increase productivity, employ modern software engineering techniques 
and high(er) level languages

• Simplify proofs of correctness
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Yes, but...



• Use increased system performance to provide:
• Language and runtime support for low-level programming: interrupt 

handling; device access; etc.

• Language and runtime support for automatic memory management, 
including real-time garbage collection

• Language and runtime support for real-time systems: periodic threads; 
timed statements/timing annotations

• Language and runtime support for concurrency: type systems to ensure 
correctness; message passing; transactional memory

• Emphasis on real-time, embedded, and ubiquitous 
systems
• iOS and Android begin to show the possibilities – but, what next?
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Evolution of Systems Programming



Low-level Programming: Device Access

• Various approaches to low-level hardware access
• C-style: simple and expressive, non-portable

• Ada: verbose, precise specification, portable

• Can language and runtime support help?
• Well-defined integral types and easy support for bit manipulation desirable

• Clear that object-oriented ideas useful for device driver families:
• MacOS X I/O Kit – object oriented device drivers using a subset of C++ (without exceptions, 

multiple inheritance, templates, RTTI)
(http://developer.apple.com/library/mac/documentation/DeviceDrivers/Conceptual/IOKitFundamentals/IOKitFundamentals.pdf)

• Linux uses object-based approach for many drivers, implemented in C: higher performance, 
but MacOS X drivers easier to write

• Simple object-oriented extensions to C to define sub-class relationships that can abstract out 
common behaviour would provide great benefit

• Better ways to represent state machines, timeouts, and interrupt handlers 
at language level likely beneficial → concurrency and real-time support
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→ Lecture 12



Low-level Programming: Interrupt Handling

• Interrupt handling system dependent
• Few systems support linking user code into interrupt handlers

• Ada real-time systems annex a notable exception:

• Could provide similar standard facilities in other languages
• Must vector through hardware abstraction layer and kernel, but relatively straightforward to 

implement as a standard library for adding interrupt handlers to a microkernel OS

• Could eliminate platform-specific hooks, allow portable code

• More interesting: interaction with message-passing concurrency mechanisms
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package Ada.Interrupts is
  type Interrupt_Id is ...;
  type Parameterless_Handler is access protected procedure;

  function  Is_Reserved(Interrupt:Interrupt_Id) return Boolean;
  function  Is_Attached(Interrupt:Interrupt_Id) return Boolean;
  function  Current_Handler(Interrupt:Interrupt_Id) return Parameterless_Handler;
  procedure Attach_Handler(Handler:Parameterless_Handler, Interrupt:Interrupt_Id);
  procedure Detach_Handler(Interrupt:Interrupt_Id);
  ...
end Ada.Interrupts;



Automatic Memory Management

• Real-time systems community has a strong distrust 
of automatic memory management
• E.g., the real-time extensions to Java augmented the memory model with 

non-garbage collected regions and manual memory management

• But, memory management problems abound
• Memory leaks and unpredictable memory allocation performance (calls to malloc() can vary 

in execution time by several orders of magnitude)

• Memory corruption and buffer overflows

• Can automatic memory management be provided 
that satisfies the real-time systems community?
• Predictable, low-overhead, real-time garbage collection

• Languages with type systems that can control resource management or 
enforce access controls without hardware memory protection

• The RAII idiom in C++ or using in C# give hints in this direction
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• Traditional algorithms not suitable
• Triggered at unpredictable times; unpredictable collection delays as data 

is moved to avoid heap fragmentation

• Active research into real-time garbage collection
• Two basic approaches:

• Work based: every request to allocate an object or assign an object reference does some 
garbage collection; amortise collection cost with allocation cost

• Time based: schedule an incremental collector as a periodic task

• Obtain timing guarantees only by limiting
amount of garbage that can be collected 
in a given interval

• Implication: user must indicate maximum memory consumption and allocation rate, to 
determine cost of the garbage collector

• Workable solutions exist for many periodic real-time applications; same issue as certain 
scheduling algorithms placing constraints on application design
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Garbage Collection

D. Frampton, et al., “Generational Real-Time Garbage 
Collection: A Three-Part Invention for Young Objects”, 
Proc. ECOOP 2007. DOI 10.1007/978-3-540-73589-2_6

→ Lectures 14 and 15



• Traditional memory protection is unpredictable
• Slows context switch and system call times due to managing page tables

• Requires illegal access traps and error handlers: difficult to implement

• Can guarantee safety without hardware protection
• Strongly typed language, checked array bounds, no pointer arithmetic: 

looks more like Java than C
• Difficulty is in efficient representation of data, and handling aliasing of memory regions

• Examples: BitC, Cyclone

• Much verification done at compile time; reduces run-time unpredictability

• Example: Singularity operating system from Microsoft Research
• Mostly written in extended C#, small microkernel in C++; language ensures that inter-process 

communication is done via strongly-typed message passing; no hardware memory protection

• http://research.microsoft.com/os/singularity/

9

Memory Protection

→ Lecture 13



• How to ensure predictable timing?
• Theory of real-time scheduling well-developed, 

provided requirements are clearly specified

• Introduce abstractions for periodic threads 
into the language and runtime support system

• E.g., the real-time extensions to Java add RealtimeThread

• Add timing annotations, let compiler/runtime validate scheduling proof?
• Compiler much better at counting cycles than a human on modern processor architectures

• Likely feasible to estimate worst-case execution time for many embedded codes, which can 
be compared with task timing annotations 

• Computationally infeasible in the general case 
(due to loops, etc.) but most real time systems 
are more constrained: otherwise how can they
be manually proved to meet timing bounds?

• Helps debugging if not proving correctness
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Timing and Real-time Systems

class RealtimeThread extends java.lang.Thread
{
    // ...additional constructors to specify
    // SchedulingParameters
    ...

    // ...adds additional methods:
    public void    setScheduler(Scheduler s);
    public void    schedulePeriodic();
    public boolean waitForNextPeriod();
    ...
}

B. Cook, A. Podelski, and A. Rybalchenko, 
“Proving Program Termination”, CACM, 
May 2011. DOI: 10.1145/1941487.1941509



• Is adding such timing annotations feasible?
• Properties of periodic tasks straight forward, if expressed in language 

• Aperiodic/sporadic tasks harder, but often meaningful statistics

• But what about low-level behaviour?
• Annotate that an expression should take no more than x milliseconds; check generated code

• Operating system calls and library functions will need to be annotated

• What are hidden timing behaviours of system?
• Scheduler and system call overhead

• malloc()/free(), garbage collection

• Cache, memory hierarchy, memory protection

• Speculative execution, pipelining, super-scalar and out-of-order execution

• Programmers cannot count cycles; yet many still 
program as if it were possible – need compiler help
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Timing Annotations



• Concurrency increasingly important
• Multicore systems now ubiquitous

• Asynchronous interactions between software and hardware devices

• Threads and synchronisation primitives problematic
• Low level; easy to make mistakes; hard to reason about correctness

• Are there alternatives that avoid these issues?
• Implicit concurrency; execution models which hide complexity

• Functional and/or message passing algorithms
• Example: Ericsson AXD301 160 Gbps

ATM switch had 99.9999999% uptime
and was (mostly) written in the Erlang
functional programming language

• Transactional memory coupled with functional languages (e.g., Haskell) 
for automatic rollback and retry of transactions
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Support for Concurrency

J. Armstrong, “Making reliable distributed systems in the presence 
of software errors”, PhD thesis, KTH, Stockholm, December 2003, 
http://www.sics.se/~joe/thesis/armstrong_thesis_2003.pdf

→ Lectures 16-19



• State and requirements hidden in existing code
• Need to infer high-level goals from low-level implementation

• Yet Moore’s law continues: performance increasing for fixed price point, 
power consumption

• Better languages and runtime support will allow 
programmers to express high-level goals, system 
to check implementation meets them
• Requires paradigm shift away from current implementation strategies
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Reliability Through Clarity



Further Reading

• J. Shapiro, “Programming language challenges in 
systems codes: why systems programmers still use 
C, and what to do about it”, Proceedings of the 3rd 
workshop on Programming Languages and 
Operating Systems, San Jose, CA, October 2006, 
DOI 10.1145/1215995.1216004

• E. Brewer, J. Condit, B. McCloskey, and F. Zhou, 
“Thirty Years is Long Enough: Getting Beyond C”, 
Proceedings of the 10th workshop on Hot Topics in 
Operating Systems, Santa Fe, NM, June 2005. 
http://www.usenix.org/event/hotos05/final_papers/brewer.html

• T. Sweeney, “The Next Mainstream Programming 
Language”, Keynote at the 33rd Symposium on 
Principles of Programming Languages, Charleston, 
January 2006. 
http://www.cs.princeton.edu/~dpw/popl/06/Tim-POPL.ppt
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Programming Language Challenges in Systems Codes

Why Systems Programmers Still Use C, and What to Do About It

Jonathan Shapiro, Ph.D.

Systems Research Laboratory
Department of Computer Science

Johns Hopkins University

shap@cs.jhu.edu

Abstract
There have been major advances in programming languages
over the last 20 years. Given this, it seems appropriate to
ask why systems programmers continue to largely ignore
these languages. What are the deficiencies in the eyes of
the systems programmers? How have the e�orts of the
programming language community been misdirected (from
their perspective)? What can/should the PL community do
address this?

As someone whose research straddles these areas, I was
asked to give a talk at this year’s PLOS workshop. What
follows are my thoughts on this subject, which may or not
represent those of other systems programmers.

1. Introduction

Modern programming languages such as ML [16] or
Haskell [17] provide newer, stronger, and more expressive
type systems than systems programming languages such as
C [15, 13] or Ada [12]. Why have they been of so little in-
terest to systems developers, and what can/should we do
about it?

As the primary author of the EROS system [18] and its
successor Coyotos [20], both of which are high-performance
microkernels, it seems fair to characterize myself primarily
as a hardcore systems programmer and security architect.
However, there are skeletons in my closet. In the mid-1980s,
my group at Bell Labs developed one of the first large
commercial C++ applications — perhaps the first. My early
involvement with C++ includes the first book on reusable
C++ programming [21], which is either not well known or
has been graciously disregarded by my colleagues.

In this audience I am tempted to plead for mercy on the
grounds of youth and ignorance, but having been an active

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

PLOS 2006, Oct. 22, 2006, San Jose, California, United States
Copyright c� 2006 ACM 1-59593-577-0/10/2006. . . $5.00

advocate of C++ for so long this entails a certain degree
of chutzpah.1 There is hope. Microkernel developers seem to
have abandoned C++ in favor of C. The book is out of print
in most countries, and no longer encourages deviant coding
practices among susceptible young programmers.

A Word About BitC Brewer et al.’s cry that Thirty
Years is Long Enough [6] resonates. It really is a bit dis-
turbing that we are still trying to use a high-level assembly
language created in the early 1970s for critical production
code 35 years later. But Brewer’s lament begs the question:
why has no viable replacement for C emerged from the pro-
gramming languages community? In trying to answer this,
my group at Johns Hopkins has started work on a new pro-
gramming language: BitC. In talking about this work, we
have encountered a curious blindness from the PL commu-
nity.

We are often asked “Why are you building BitC?” The tacit
assumption seems to be that if there is nothing fundamen-
tally new in the language it isn’t interesting. The BitC goal
isn’t to invent a new language or any new language con-
cepts. It is to integrate existing concepts with advances in
prover technology, and reify them in a language that allows
us to build stateful low-level systems codes that we can rea-
son about in varying measure using automated tools. The
feeling seems to be that everything we are doing is straight-
forward (read: uninteresting). Would that it were so.

Systems programming — and BitC — are fundamentally
about engineering rather than programming languages. In
the 1980s, when compiler writers still struggled with inad-
equate machine resources, engineering considerations were
respected criteria for language and compiler design, and a
sense of “transparency” was still regarded as important.2

By the time I left the PL community in 1990, respect for
engineering and pragmatics was fast fading, and today it
is all but gone. The concrete syntax of Standard ML [16]
and Haskell [17] are every bit as bad as C++. It is a curi-
ous measure of the programming language community that
nobody cares. In our pursuit of type theory and semantics,

1 Chutzpah is best defined by example. Chutzpah is when a
person murders both of their parents and then asks the court
for mercy on the grounds that they are an orphan.

2 By “transparent,” I mean implementations in which the pro-
grammer has a relatively direct understanding of machine-level
behavior.

Thirty Years is Long Enough: Getting Beyond C

Eric Brewer Jeremy Condit Bill McCloskey Feng Zhou

Computer Science Division, University of California at Berkeley
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Abstract

Thirty years after its creation, C remains one of the most
widely used systems programming languages. Unfortu-
nately, the power of C has become a liability for large
systems projects, which are now focusing on security and
reliability. Modern languages and static analyses provide
an opportunity to improve the quality of systems soft-
ware, and yet adoption of these tools has been slow.
To address this problem, we propose a new language
called Ivy that has an evolutionary path from C. The
mechanism for this evolutionary path is a system of ex-
tensions and refactorings: extensions augment the lan-
guage with new features, and refactorings assist the pro-
grammer in updating their code to use these new fea-
tures. Extensions and refactorings have a wide variety of
applications, from enforcing memory safety to detecting
user/kernel pointer errors. We also demonstrate Macro-
scope, a tool we have built to enable refactoring of exist-
ing C code.

1 Introduction

Since the time of their creation, the relationship between
Unix and C has been symbiotic: C matured because
of its link to Unix, and Unix flourished because C was
a quantum leap beyond its predecessor, assembly lan-
guage. Thirty years after its creation, C is now deeply
entrenched in the operating system community—but it is
showing its age. We believe that good languages lead to
good systems; thus, it is time for new language technol-
ogy to drive new systems research. Unfortunately, res-
cuing existing systems from the perils of C is no mean
feat.
One possible approach to improving language technol-
ogy for systems is to focus on an entirely new language.
Modern languages such as Java and ML provide stronger
static guarantees, such as type and memory safety, at a
slight cost in expressiveness. This trade-off may be desir-
able for some systems, which emphasize reliability, se-
curity, and availability over raw performance. However,
these languages lack a number of useful features of C,

such as manual memory management and bit-level data
layout. Also, it is impractical to rewrite existing systems
in an entirely new language—with millions of lines of C
code running critical infrastructure, we cannot afford to
simply start over.
A second possible approach to this problem is to use
static analysis to root out software problems. The benefit
of analysis is that it finds bugs without requiring code to
be rewritten in a new language or a newmodel. However,
static analysis tools are difficult to write and often diffi-
cult to use. Since C imposes no restrictions on where and
when programs can write to memory, tools must make
very conservative assumptions about program behavior,
or else pay a huge cost in the complexity of the analysis.
And because all analyses are conservative in some way,
they usually yield large numbers of false positives, which
make real bugs more difficult to detect. These false pos-
itives, combined with long analysis times, make it dif-
ficult to integrate static analysis directly into the build
process of a program, which in turn hinders the ability
of these tools to have a lasting impact on source code
quality.
We propose a third approach that offers an evolution-

ary path from C to a new language called Ivy. This ap-
proach incorporates the advantages of both of the previ-
ous ones. First, Ivy is a programming language as op-
posed to an analysis tool; it will provide sound guar-
antees to programmers using a checker that will be in-
tegrated into the compiler. Second, Ivy will provide a
transition path from existing code by means of exten-
sions and refactorings. Extensions will add new lan-
guage features such as sophisticated data layout, concur-
rency control, and memory management, each of which
can be enabled or disabled individually. Extensions may
add language features, but they may also disable them.
For example, the memory safety extension will forbid
some uses of casting and pointer arithmetic while adding
mechanisms such as regions and built-in reference count-
ing. Refactorings will assist programmers in the transi-
tion by analyzing existing code to find patterns that could
be better expressed with a specific language extension.
Working in tandem, extensions and refactorings will en-
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Tim Sweeney

Epic Games

Read this – 
will discuss 
in tutorial 4
tomorrow


