P Unaversity | School of
of Glasgow | Computing Science

Programming Real-time and Embedded
Systems

Advanced Operating Systems (M)
Lecture 10

Lecture Outline

® Programming real-time and embedded systems

e |[nteracting with hardware
® |[nterrupt and timer latency
e NMemory issues

e Power, size and performance constraints
e System longevity

® Development and debugging

Real-time and Embedded Programming

® Real time and embedded systems differ from
conventional desktop applications

Must respect timing constraints — scheduling theory in prior lectures
Must interact with hardware and the environment
Often very sensitive to correctness and robust operation

Often very sensitive to cost, weight, or power consumption

® |mplications to consider:

Proofs of correctness, scheduling tests, etc.

Limited resources: low level programming environments; high awareness
of systems issues; interaction with hardware

Challenges imposed on operating system and programming environment
by resource constraints and programming model

Interacting with Hardware: Concepts

e Separate device bus:

Different assembler instructions to access
devices than to access main memory

Separate physical connection to the device
address/data bus

Example: early Intel PC hardware; kept for
backwards compatibility on modern PCs,
but rarely used

Program using inline assembler

e Memory mapped I/O:

Devices appear at some address in
memory; access as-if any other part of
system memory

Single set of assembler instructions for
memory access; single address and data
bus on processor

Example: most modern systems

Program using high level language

Data Data
Memory CPU Device Device
| Address bevice | “
Address
Separate device bus
Address |
CPU Memory Device Device
Data

Memory mapped architecture

Interacting with Hardware: Concepts

e Two models for device control:

Polling: device sets bit in control register
to indicate an event occurred; software
periodically inspects that register,
decides whether to take some action

Interrupt driven: device sets bit in control
register to indicate some action
occurred, then asserts a processor
interrupt to notify software; software
responds to interrupt and takes
appropriate action

Most current hardware is interrupt
driven, but can usually be switched to
polled mode (useful for high rate
sources to avoid interrupt load, or if
running a cyclic executive

e Control registers presented as bit
fields at some address range

Bit-level manipulation needed to access
fields in control register

Need to know memory address and size
of control register, layout, endianness,
and meaning of various bit fields within
the control register,

Some bits may be read- or write- only;
some may change when read

15141312110 9 8 76 5 4 3 2 1 0

Bits
15 - 12 : Errors
11 : Busy
10 = 8 : Unit select
7 : Done/ready
: Interrupt enable
- 3 : Reserved

Device function
Device enable

Interacting with Hardware: C

struct {

short errors
short busy
short unit_ sel
short done :
short irq enable :
short reserved
short dev_func

short dev _enable : _ _ _ _
} ctrl reg; e Allows implementation of device drivers

and interrupt handlers

e (allows definition of bit fields and explicit
access to a particular memory address
using pointers

Ne No

~e

e Example on left shows simple manipulation of a
control word at address 0x80000024

FNWRRWER D

~e ~e

int enable irq(void)

{ e |llusion of portable code: standard C does
ctrl reg *r = 0x80000024;

ctrl reg tmp; not specify:
e Size of basic types (e.g., number of bits in a byte,

tmp = *r; : ,
if (tmp.busy == 0) | number of bytes in an int)
tmp.irqg enable = 1; e Bit and byte ordering
*r = tmp; , .
return 1 e Alignment or atomicity of memory access
} e Each compiler/operating system platform defines
return O; these appropriately for its environment

Interacting with Hardware: Ada

type
type
type
type
type
type
reco

end

ErrorType is range 0..15;
UnitSelType is range 0..7;
ResType is range 0..7;
DevFunc is range 0..3;
Flag is (Set, NotSet);
ControlRegister is

rd

errors : ErrorType;

busy : Flag;

unitSel : UnitSelType;
done : Flag;

irgEnable : Flag;

reserved : ResType;

devFunc : DevFunc;
devEnable : Flag;

record;

for ControlRegister use

reco

end

for
for
for

rd

errors at
busy at
unitSel at
done at

irgEnable at
reserved at
devFunc at
devEnable at
record;

0*Word range 12..15;
O*Word range 11..11;
O*Word range 8..10;

0*Word range
0*Word range
0*Word range
O*word range
0*Word range

oORrRr Wo J
ONMN LGOI

ControlRegister’Size use 16;
ControlRegister’Alignment use Word;
ControlRegister’Bit order use Low_Order First;

e Ada has extensive support for low-
level hardware access and interrupt
handlers

e Precise control over record layout in memory,
byte ordering, bit size of types, etc.

e Perhaps overly verbose...?

e Facilities for interrupt handlers in the
language

e Allows portable code to be written
that manipulates hardware devices

Language Support for Hardware Access

® | anguage support for portable hardware access
conceptually nice, but less useful than might be
expected

e Real time embedded systems typically tied to platform due to specialist
hardware

e |ittle need for portability at the language level, since underlying system
unique

¢ Main advantage of Ada: strong type checking for
hardware access

Interrupt and Timed Task Latency

® Devices typically request service using interrupts

® Need predictable worst-case bounds on service time, otherwise cannot
reason about the system

e Both interrupt latency and task scheduling latency

e Examples:

e Linux has ~600us typical interrupt handler latency, often runs with 100Hz
clock for task scheduling (i.e. 10000us latency)

° Long history of problems with system call latency, causing tasks to block for hundreds of
milliseconds on certain device accesses

° Resolved for most common devices, but still unpredictable (and long) latency with uncommon
hardware

e RTLinux claims a maximum 15us interrupt handler latency, all scheduled
tasks execute within at most 35us of their scheduled time

° Other hard real-time operating systems offer similar guarantees

9

Interrupt and Timed Task Latency

¢ \Why such a difference?

e Preemptable microkernel, with single address space

® No context switch, user-to-kernel mode, overhead

e No virtual memory or memory protection
° No paging delays
° No delays while page tables adjusted

e Device drivers designed with minimal non-preemptable sections

° Light-weight, prioritised, threads fire in response to interrupts

e Does it matter? It depends on the application...

Memory Protection

¢ Many embedded systems use a single flat address
space

e Applications, shared libraries, kernel, devices all visible

e Asystem or library call is equivalent to a function call

| Application Kernel |

e Makes system calls, interrupts, very fast and predictable: no context
switch to kernel mode; no adjustment of MMU page tables

e (Consequences: no isolation between applications, or between
applications and the kernel

e Achange to one part implies that the entire system has to be revalidated,;
difficult as systems become larger

e Some systems offer limited protection: read only mapping of program/
system text; IRQ vectors

Memory Protection

® (Consequences of offering memory protection:

e Unpredictable latency

° May take longer to task switch to/from a protected task

e Memory overhead

° Protection provided on a per-page basis, leads to wastage
° Overhead of maintaining the page tables and protection maps

e (Code overhead

° Operating system is required to trap illegal access and recover system to a safe state

® \Which is easiest: proving system correct, or writing
handlers to safely recover from all possible errors?

Virtual Memory: Address Translation

® Address translation: act of making a fragmented
block of physical memory appear to be a single
contiguous block

e Useful in dynamic systems: enables requests for large blocks of memory
to be allocated when there is no physically contiguous block available

e Adds overhead, since system must manage address translation tables

° Uses memory, increases context switch time

° Complicates DMA device access

® PBetter to pre-allocate static memory pools for real-
time tasks

e Manage the sub-division of address space within the application

Virtual Memory: Paging to Disk

® Disk based virtual memory is supported by many
systems that run both real time and non-real time
tasks

® Paging to disk clearly impact real-time performance

e Unpredictable delays, depending whether page is in memory or on disk

e Systems usually provide ability to (selectively)
prevent paging

e POSIX allows regions of memory to be locked into RAM and preventing
from paging using mlock (addr, len) andmlockall ()

e \Windows allows all memory owned by a particular thread to be locked

Memory Leaks and Garbage Collection

® An embedded system has to run for a long period
of time, without user intervention

e (C programs typically have memory leaks due to programmer error

° Significant problem in long-lived or resource constrained systems
° Better to pre-allocate static buffers, avoid the chance of a memory leak
° Be very careful to free memory and other resources after use

° Do you always check for out of memory errors and recover gracefully? Recall: the recovery
code cannot allocate memory (this may include the stack frame needed to make a function
calll)

e Modern languages use garbage collection to avoid resource leaks

° Has a poor reputation due to unpredictable delays when collection occurs, but real-time
garbage collection algorithms — with predictable latency, at controlled times — do exist

Memory: What is a Small System?

® Embedded systems often very constrained
compared to typical desktop computers

® You may be running on an 8 bit processor, with kilobytes of RAM

e Operating system typically optimised for the environment, provides only
minimal required functions

° The QNX 4.x microkernel is approximately 12kbytes in size
° The VRTX microkernel is typically 4-8kbytes in size

e Forcomparison: # uname -srm
Darwin 10.5.0 1386 (MacOS X 10.6.5)

cat tst.c
int main|()

{

return 0O;

}
gcc tst.c -o tst

1s -1 tst
-rwxrwx--- 1 csp staff 8664 29 Dec 15:24 tst

|6

Effects of Cache

® You may be running on a more modern processor

e PowerPC 405CR embedded processor

° 32 bit RISC processor, compatible with desktop PowerPC

° 133MHz or 266MHz clock speed

° 500mW power consumption: Intel Atom (NetBook processors) consume ~2.5W
o CodePack™ compression of executables

° Likely has several megabytes of memory

e Relatively cheap, comparatively high performance, low power

¢ Has a small cache, which you may want to disable:

® Processor and memory speeds are closely matched

° Compare to desktop processor, with order magnitude difference
e Simpler to predict memory access times without the cache

e (Cache improves average response times, but introduces unpredictability

Power, Size and Performance Constraints

® Embedded systems often constrained hardware

e May have limits on power consumption (e.g., battery powered)
e May have to be physically small and/or robust
e May have strict heat production limits

e May have strict cost constraints

° That processor is slower, but 10¢ cheaper, the production run is 1 million, you paid your salary
for the next couple of years...

¢ Used to throwing hardware at a problem, writing
inefficient — but easy to implement — software

e Software engineering based around programmer productivity

® The constraints may be different in the embedded world...

System Longevity

o Systems may be safety critical or difficult to update

® e.g., medical devices, automotive or flight control, industrial machinery

® e.g., CD or DVD player, washing machine, microwave oven

® May need to run for many years, in environment
where failures either cause injury or are expensive
to fix

e (Can you guarantee your system will run for 10 years without crashing?
® Do you check all the return codes and handle all errors?

e Fail gracefully?

Development and Debugging

o Systems may be too limited to run compiler

e Develop using a cross compiler running on a PC, download code using a
serial line, or by burning a flash ROM and installing

¢ May have limited debugging facilities:

e Serial line connection to host PC
e | EDs on the development board
® | ogic analyser or other hardware test equipment

e Formal proofs of correctness become more attractive when real system
so difficult to analyse...

20

Summary

® | ow level and embedded programming

e (Control register access, bit packing, alignment, etc.
® Interrupts

e Memory

° Address translation

° Paging and virtual memory

° Allocation and garbage collection
° Caching

e (Consider:

e Systems issues, how features that improve general purpose performance
hinder real time systems

e (Constraints on embedded systems, differences in engineering compared
with general purpose systems

21

