
Programming Real-time and Embedded
Systems

Advanced Operating Systems (M)
Lecture 10

• Programming real-time and embedded systems
• Interacting with hardware

• Interrupt and timer latency

• Memory issues

• Power, size and performance constraints

• System longevity

• Development and debugging

2

Lecture Outline

• Real time and embedded systems differ from
conventional desktop applications
• Must respect timing constraints – scheduling theory in prior lectures

• Must interact with hardware and the environment

• Often very sensitive to correctness and robust operation

• Often very sensitive to cost, weight, or power consumption

• Implications to consider:
• Proofs of correctness, scheduling tests, etc.

• Limited resources: low level programming environments; high awareness
of systems issues; interaction with hardware

• Challenges imposed on operating system and programming environment
by resource constraints and programming model

3

Real-time and Embedded Programming

• Separate device bus:
• Different assembler instructions to access

devices than to access main memory

• Separate physical connection to the device
address/data bus

• Example: early Intel PC hardware; kept for
backwards compatibility on modern PCs,
but rarely used

• Program using inline assembler

• Memory mapped I/O:
• Devices appear at some address in

memory; access as-if any other part of
system memory

• Single set of assembler instructions for
memory access; single address and data
bus on processor

• Example: most modern systems

• Program using high level language

4

Interacting with Hardware: Concepts

CPUMemory Device Device

Address

Data Data

Device
Address

Separate device bus

CPU Memory Device Device

Data

Address

Memory mapped architecture

• Two models for device control:
• Polling: device sets bit in control register

to indicate an event occurred; software
periodically inspects that register,
decides whether to take some action

• Interrupt driven: device sets bit in control
register to indicate some action
occurred, then asserts a processor
interrupt to notify software; software
responds to interrupt and takes
appropriate action

• Most current hardware is interrupt
driven, but can usually be switched to
polled mode (useful for high rate
sources to avoid interrupt load, or if
running a cyclic executive

• Control registers presented as bit
fields at some address range
• Bit-level manipulation needed to access

fields in control register

• Need to know memory address and size
of control register, layout, endianness,
and meaning of various bit fields within
the control register,

• Some bits may be read- or write- only;
some may change when read

5

Interacting with Hardware: Concepts

015 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Bits
15 - 12 : Errors
11 : Busy
10 - 8 : Unit select
 7 : Done/ready
 6 : Interrupt enable
 5 - 3 : Reserved
 2 - 1 : Device function
 0 : Device enable

• C allows definition of bit fields and explicit
access to a particular memory address
using pointers
• Example on left shows simple manipulation of a

control word at address 0x80000024

• Allows implementation of device drivers
and interrupt handlers

• Illusion of portable code: standard C does
not specify:
• Size of basic types (e.g., number of bits in a byte,

number of bytes in an int)

• Bit and byte ordering

• Alignment or atomicity of memory access

• Each compiler/operating system platform defines
these appropriately for its environment

6

Interacting with Hardware: C

struct {
 short errors : 4;
 short busy : 1;
 short unit_sel : 3
 short done : 1;
 short irq_enable : 1
 short reserved : 3
 short dev_func : 2;
 short dev_enable : 1;
} ctrl_reg;

int enable_irq(void)
{
 ctrl_reg *r = 0x80000024;
 ctrl_reg tmp;

 tmp = *r;
 if (tmp.busy == 0) {
 tmp.irq_enable = 1;
 *r = tmp;
 return 1;
 }
 return 0;
}

• Ada has extensive support for low-
level hardware access and interrupt
handlers
• Precise control over record layout in memory,

byte ordering, bit size of types, etc.

• Perhaps overly verbose...?

• Facilities for interrupt handlers in the
language

• Allows portable code to be written
that manipulates hardware devices

7

Interacting with Hardware: Ada
type ErrorType is range 0..15;
type UnitSelType is range 0..7;
type ResType is range 0..7;
type DevFunc is range 0..3;
type Flag is (Set, NotSet);
type ControlRegister is
record
 errors : ErrorType;
 busy : Flag;
 unitSel : UnitSelType;
 done : Flag;
 irqEnable : Flag;
 reserved : ResType;
 devFunc : DevFunc;
 devEnable : Flag;
end record;

for ControlRegister use
record
 errors at 0*Word range 12..15;
 busy at 0*Word range 11..11;
 unitSel at 0*Word range 8..10;
 done at 0*Word range 7.. 7;
 irqEnable at 0*Word range 6.. 6;
 reserved at 0*Word range 3.. 5;
 devFunc at 0*word range 1.. 2;
 devEnable at 0*Word range 0.. 0;
end record;

for ControlRegister’Size use 16;
for ControlRegister’Alignment use Word;
for ControlRegister’Bit_order use Low_Order_First;
...

• Language support for portable hardware access
conceptually nice, but less useful than might be
expected
• Real time embedded systems typically tied to platform due to specialist

hardware

• Little need for portability at the language level, since underlying system
unique

• Main advantage of Ada: strong type checking for
hardware access

8

Language Support for Hardware Access

• Devices typically request service using interrupts
• Need predictable worst-case bounds on service time, otherwise cannot

reason about the system

• Both interrupt latency and task scheduling latency

• Examples:
• Linux has ~600µs typical interrupt handler latency, often runs with 100Hz

clock for task scheduling (i.e. 10000µs latency)
• Long history of problems with system call latency, causing tasks to block for hundreds of

milliseconds on certain device accesses

• Resolved for most common devices, but still unpredictable (and long) latency with uncommon
hardware

• RTLinux claims a maximum 15µs interrupt handler latency, all scheduled
tasks execute within at most 35µs of their scheduled time

• Other hard real-time operating systems offer similar guarantees

9

Interrupt and Timed Task Latency

• Why such a difference?
• Preemptable microkernel, with single address space

• No context switch, user-to-kernel mode, overhead

• No virtual memory or memory protection
• No paging delays

• No delays while page tables adjusted

• Device drivers designed with minimal non-preemptable sections
• Light-weight, prioritised, threads fire in response to interrupts

• Does it matter? It depends on the application…

10

Interrupt and Timed Task Latency

• Many embedded systems use a single flat address
space
• Applications, shared libraries, kernel, devices all visible

• A system or library call is equivalent to a function call

• Makes system calls, interrupts, very fast and predictable: no context
switch to kernel mode; no adjustment of MMU page tables

• Consequences: no isolation between applications, or between
applications and the kernel

• A change to one part implies that the entire system has to be revalidated;
difficult as systems become larger

• Some systems offer limited protection: read only mapping of program/
system text; IRQ vectors

Application Kernel

11

Memory Protection

• Consequences of offering memory protection:
• Unpredictable latency

• May take longer to task switch to/from a protected task

• Memory overhead
• Protection provided on a per-page basis, leads to wastage

• Overhead of maintaining the page tables and protection maps

• Code overhead
• Operating system is required to trap illegal access and recover system to a safe state

• Which is easiest: proving system correct, or writing
handlers to safely recover from all possible errors?

12

Memory Protection

• Address translation: act of making a fragmented
block of physical memory appear to be a single
contiguous block
• Useful in dynamic systems: enables requests for large blocks of memory

to be allocated when there is no physically contiguous block available

• Adds overhead, since system must manage address translation tables
• Uses memory, increases context switch time

• Complicates DMA device access

• Better to pre-allocate static memory pools for real-
time tasks
• Manage the sub-division of address space within the application

13

Virtual Memory: Address Translation

• Disk based virtual memory is supported by many
systems that run both real time and non-real time
tasks
• Paging to disk clearly impact real-time performance

• Unpredictable delays, depending whether page is in memory or on disk

• Systems usually provide ability to (selectively)
prevent paging
• POSIX allows regions of memory to be locked into RAM and preventing

from paging using mlock(addr, len) and mlockall()

• Windows allows all memory owned by a particular thread to be locked

14

Virtual Memory: Paging to Disk

• An embedded system has to run for a long period
of time, without user intervention
• C programs typically have memory leaks due to programmer error

• Significant problem in long-lived or resource constrained systems

• Better to pre-allocate static buffers, avoid the chance of a memory leak

• Be very careful to free memory and other resources after use

• Do you always check for out of memory errors and recover gracefully? Recall: the recovery
code cannot allocate memory (this may include the stack frame needed to make a function
call!)

• Modern languages use garbage collection to avoid resource leaks
• Has a poor reputation due to unpredictable delays when collection occurs, but real-time

garbage collection algorithms – with predictable latency, at controlled times – do exist

15

Memory Leaks and Garbage Collection

• Embedded systems often very constrained
compared to typical desktop computers
• You may be running on an 8 bit processor, with kilobytes of RAM

• Operating system typically optimised for the environment, provides only
minimal required functions

• The QNX 4.x microkernel is approximately 12kbytes in size

• The VRTX microkernel is typically 4-8kbytes in size

• For comparison:

16

Memory: What is a Small System?

uname -srm
Darwin 10.5.0 i386 (MacOS X 10.6.5)

cat tst.c
int main()
{
 return 0;
}
gcc tst.c -o tst
ls -l tst
-rwxrwx--- 1 csp staff 8664 29 Dec 15:24 tst

• You may be running on a more modern processor
• PowerPC 405CR embedded processor

• 32 bit RISC processor, compatible with desktop PowerPC

• 133MHz or 266MHz clock speed

• 500mW power consumption: Intel Atom (NetBook processors) consume ~2.5W

• CodePackTM compression of executables

• Likely has several megabytes of memory

• Relatively cheap, comparatively high performance, low power

• Has a small cache, which you may want to disable:
• Processor and memory speeds are closely matched

• Compare to desktop processor, with order magnitude difference

• Simpler to predict memory access times without the cache

• Cache improves average response times, but introduces unpredictability

17

Effects of Cache

• Embedded systems often constrained hardware
• May have limits on power consumption (e.g., battery powered)

• May have to be physically small and/or robust

• May have strict heat production limits

• May have strict cost constraints
• That processor is slower, but 10¢ cheaper, the production run is 1 million, you paid your salary

for the next couple of years…

• Used to throwing hardware at a problem, writing
inefficient – but easy to implement – software
• Software engineering based around programmer productivity

• The constraints may be different in the embedded world…

18

Power, Size and Performance Constraints

• Systems may be safety critical or difficult to update
• e.g., medical devices, automotive or flight control, industrial machinery

• e.g., CD or DVD player, washing machine, microwave oven

• May need to run for many years, in environment
where failures either cause injury or are expensive
to fix
• Can you guarantee your system will run for 10 years without crashing?

• Do you check all the return codes and handle all errors?

• Fail gracefully?

19

System Longevity

• Systems may be too limited to run compiler
• Develop using a cross compiler running on a PC, download code using a

serial line, or by burning a flash ROM and installing

• May have limited debugging facilities:
• Serial line connection to host PC

• LEDs on the development board

• Logic analyser or other hardware test equipment

• Formal proofs of correctness become more attractive when real system
so difficult to analyse…

20

Development and Debugging

• Low level and embedded programming
• Control register access, bit packing, alignment, etc.

• Interrupts

• Memory
• Address translation

• Paging and virtual memory

• Allocation and garbage collection

• Caching

• Consider:
• Systems issues, how features that improve general purpose performance

hinder real time systems

• Constraints on embedded systems, differences in engineering compared
with general purpose systems

21

Summary

