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• Implementing real time systems
• Key concepts and constraints

• System architectures:
• Cyclic executive

• Microkernel with priority scheduler

• Implementing scheduling algorithms
• Jobs, tasks, and threads

• Priority scheduling of periodic tasks
• Rate monotonic

• Earliest deadline first

• Priority scheduling of aperiodic and sporadic tasks
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Lecture Outline



• Key fact from scheduler theory: need predictable 
behaviour
• Raw performance less critical than consistent and predictable 

performance; hence focus on scheduling algorithms, scheduling tests

• Don’t want to fairly share resources – be unfair to ensure deadlines met

• Need to run on a wide range of – often custom – 
hardware
• Often resource constrained: 

• limited memory, CPU, power consumption, size, weight, budget

• Embedded and may be difficult to upgrade
• Closed set of applications, trusted code

• Strong reliability requirements – may be safety critical

• How to upgrade software in a car engine? A DVD player? After you shipped millions of 
devices?
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Implementing Real Time Systems



• General purpose operating systems not well suited 
for real time
• Assume plentiful resources, fairly shared amongst untrusted users

• Exactly the opposite of an RTOS!

• Instead want an operating system that is:
• Small and light on resources

• Predictable

• Customisable, modular and extensible

• Reliable

• …and that can be demonstrated or proven to be so
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Implications on Operating Systems



• RTOS often use cyclic executive or microkernel 
designs, rather than a traditional monolithic kernel
• Limited and well defined functionality 

• Easier to demonstrate correctness

• Easier to customise

• Provide rich scheduling primitives

• Provide rich support for concurrency

• Expose low-level system details to the applications
• Control of scheduling

• Power awareness

• Interaction with hardware devices
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Implications on Operating Systems



• The simplest RTOS use a “nanokernel” design
• Provides a minimal time service: scheduled clock pulse with fixed period

• No tasking, virtual memory/memory protection, etc.

• Allows implementation of a static cyclic schedule, provided:
• Tasks can be scheduled in a frame-based manner

• All interactions with hardware to be done on a polled basis

• OS becomes a single 
task cyclic executive

6

Cyclic Executive

setup timer
c = 0;
while (1) {
 suspend until timer expires
  c++;    
 do tasks due every cycle
 if (((c+0) % 2) == 0) 

do tasks due every 2nd cycle
 if (((c+1) % 3) == 0)

do tasks due every 3rd cycle, with phase 1
 ...
}



• Cyclic executive widely used in low-end devices
• 8 bit processors with kilobytes of memory, programmed in C via cross-

compiler, simple hardware interactions, simple static task set

• But, many real-time systems are more complex, 
and need a sophisticated operating system with 
priority scheduling
• Common approach: a microkernel with priority scheduler

• Configurable and robust, since architected around interactions between 
cooperating system servers, rather than a monolithic kernel with ad-hoc 
interactions
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Microkernel Architecture



• A microkernel RTOS typically provides a number of 
features:
• Scheduling

• Timing services, interrupt handling, support for hardware interaction

• System calls with predictable timing behaviour

• Messaging, signals and events

• Synchronisation and locking

• Memory protection

• Details often differ from non-RTOS environments
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Microkernel Architecture



• Clock driven scheduling trivial to implement via 
cyclic executive

• Other scheduling algorithms need operating 
system support:
• System calls to create, destroy, suspend and resume tasks

• Implement tasks as either threads or processes

• Processes (with separate address space and memory protection) not 
always supported by the hardware, and often not useful

• Scheduler with multiple priority levels, range of periodic task scheduling 
algorithms, support for aperiodic tasks, support for sporadic tasks with 
acceptance tests, etc.
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Scheduler Implementation



• A system comprises a set of tasks, each task is a 
series of jobs
• Tasks are typed, have various parameters (φ, p, e, D), react to events, etc.

• Acceptance test performed before admitting new tasks

• A thread is the basic unit of work handled by the 
scheduler
• Threads are the instantiation of tasks that have been admitted to the 

system

• How are tasks and jobs mapped onto threads and 
managed by the scheduler?
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Jobs, Tasks and Threads



• Real time tasks defined to execute periodically
• T = (φ, p, e, D)

• Two implementation strategies:
• Thread instantiated by system each period, runs single job

• A periodic thread ⇒ supported by some RTOS

• Clean abstraction:  a function that runs periodically; system handles timing

• High overhead due to repeated thread instantiation, although thread pools can mitigate 
overhead

• Thread instantiated once, performs job, sleeps until next period, repeats
• Lower overhead, but relies on programmer to handle timing

• Pushes conceptual burden of handling timing onto programmer

• Hard to avoid timing drift due to sleep overruns

• Most common approach
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Periodic Tasks



• Event list triggers sporadic and aperiodic tasks
• Might be external (hardware) interrupts

• Might be signalled by another task

• Several implementation strategies:
• Job runs as interrupt/signal handler

• Can be disruptive for other real-time tasks

• Handler often used to instantiate sporadic thread or queue job for server task

• Thread instantiated by system when job released
• Not well supported for user-level jobs, often used within the kernel (e.g., for device drivers; 

network processing)

• Requires scheduler assistance; high overheads unless thread pool used

• Job queued for server task
• A background server (simple, widely implemented)

• A bandwidth preserving server (useful, but hard to implement)
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Sporadic and Aperiodic Tasks



• States represent evolution of thread execution:
• Sleeping ⇒ Periodic thread queued between cycles

• Ready  ⇒ Queued at some priority, waiting to run

• Executing ⇒ Running on a processor

• Blocked ⇒ Queued waiting for a resource

• Transitions happen according to scheduling policy, 
resource access, external events
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Thread States and Transitions

Sleeping

Ready

Executing

Blocked

Thread created Thread destroyed

Resource availability

End of cycle

Start of cycle
Schedule



Abstract states…

…realised as
a set of queues

Sleeping Ready BlockedExecuting
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Mapping States onto Queues

Sleeping
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Executing
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Schedule



• How to schedule...
• Periodic fixed priority tasks 

(RM and DM)?

• Periodic dynamic priority tasks (EDF 
and LST)?

• Sporadic and aperiodic tasks?

• Vary number of queues, the 
queue selection policy, service 
discipline
• How to decide which queue holds a 

newly released thread?

• How are the queues ordered?

• From which queue is the next job to 
execute taken?
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Building a Priority Scheduler

Sleeping Ready BlockedExecuting



• Provide one ready queue per priority level
• Tasks inserted according to priority

• FIFO or round-robin servicing
• RR task budget depleted on each clock interrupt; yield when budget exhausted

• FIFO tasks run until sleep, block or yield

• Run task at the head of highest priority queue with ready tasks
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Fixed Priority Scheduling

Sleeping Ready BlockedExecuting



• Assign fixed priorities to tasks based on their rate 1/p
– Task resides in sleep queue until released at phase, φ
– When released, task inserted into a FIFO ready queue
– One ready queue for each distinct priority 
– Run task at the head of the highest priority queue with ready tasks
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Fixed Priority Scheduling: RM

Sleeping Ready BlockedExecuting



Implication: some tasks will be delayed relative to the 
“correct” schedule

A set of tasks TE(i) is mapped to the same priority 
queue as task Ti

This may delay Ti by up to

Schedulable utilisation of system will be reduced

• When building a rate monotonic system, ensure 
there are as many ready queues as priority levels

• May be limited by the operating system if present, 
and need more priority levels than there are 
queues provided
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Practical Considerations: Limited Queues
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• How to map a set of tasks needing Ωn priorities 
onto a set of Ωs priority levels, where Ωs < Ωn?
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Practical Considerations: Limited Queues

Uniform mapping: Q = | Ωn / Ωs | tasks 
map onto each system priority level

Constant Ratio mapping: k = (πi-1+1)/πi tasks where k is 
a constant map to each system priority with weight, πi

Better preserves executing time of high priority tasks.

π1 = 1

π2 = 4

π3 = 10

1

2

3

4

5

6

7

8

9



• Tasks may block for many reasons
• Disk I/O, network, inter-process communication, …

• Use multiple blocked queues

• This is a RTOS typical priority scheduler
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Blocking on Multiple Events

Sleeping Ready BlockedExecuting



• Thread priority can change during execution

• Implies that threads move between ready queues
• Search through the ready queues to find the thread changing it’s priority

• Remove from the ready queue; calculate new priority; insert at end of new 
ready queue

• Expensive operation:
• O(N) where N is the number of tasks

• Suitable for system reconfiguration or priority inheritance when the rate of 
change of priorities is slow

• Naïve implementation of EDF or LST scheduling inefficient, since require 
frequent priority changes
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Dynamic Priority Scheduling



• To directly support EDF scheduling:
• When each thread is created, its relative deadline is specified

• When a thread is released, its absolute deadline is calculated from it’s 
relative deadline and release time

• Could maintain a single ready queue:
• Conceptually simple, threads ordered by absolute deadline

• Inefficient if many active threads, since scheduling decision involves 
walking the queue of N tasks
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Earliest Deadline First Scheduling



• Maintain a ready queue for each relative deadline

• Maintain a queue, sorted by absolute deadline, 
pointing to tasks at the head of each ready queue
• Updated when tasks complete; when tasks added to empty ready queue

• Always execute the task at the head of this queue

• More efficient, since only perform a linear scan through active tasks
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Earliest Deadline First Scheduling

Sleeping Ready BlockedExecutingEDF Queue



• Straight-forward to schedule using EDF:
• Add to separate queue of ready sporadic tasks on release

• Perform acceptance test

• If accepted, insert into the EDF queue according to deadline

• Difficult if using fixed priority scheduling:
• Need a bandwidth preserving server
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Scheduling Sporadic Tasks

Sleeping Ready BlockedExecutingEDF Queue

Acceptance TestSporadic Tasks



• Server scheduled as a periodic task

• When ready and selected to execute, given 
scheduling quantum equal to the current budget
• Runs until pre-empted or blocked; or

• Runs until the quantum expires, sleeps until replenished

• At each scheduling event in the system
• Update budget consumption considering:

• time for which the bandwidth preserving server and other tasks have executed; algorithm 
depends on BP server type

• Replenish budget if necessary

• Keep remaining budget in the thread control block

• Fairly complex calculations, e.g., for sporadic server
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Bandwidth Preserving Servers



• Implementing real time systems
• Key concepts and constraints

• System architectures:
• Cyclic executive

• Microkernel with priority scheduler

• Implementing scheduling algorithms
• Jobs, tasks, and threads

• Priority scheduling of periodic tasks
• Rate monotonic

• Earliest deadline first

• Priority scheduling of aperiodic and sporadic tasks
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Summary


