
Implementing Real-time Systems

Advanced Operating Systems (M)
Lecture 9

• Implementing real time systems
• Key concepts and constraints

• System architectures:
• Cyclic executive

• Microkernel with priority scheduler

• Implementing scheduling algorithms
• Jobs, tasks, and threads

• Priority scheduling of periodic tasks
• Rate monotonic

• Earliest deadline first

• Priority scheduling of aperiodic and sporadic tasks

2

Lecture Outline

• Key fact from scheduler theory: need predictable
behaviour
• Raw performance less critical than consistent and predictable

performance; hence focus on scheduling algorithms, scheduling tests

• Don’t want to fairly share resources – be unfair to ensure deadlines met

• Need to run on a wide range of – often custom –
hardware
• Often resource constrained:

• limited memory, CPU, power consumption, size, weight, budget

• Embedded and may be difficult to upgrade
• Closed set of applications, trusted code

• Strong reliability requirements – may be safety critical

• How to upgrade software in a car engine? A DVD player? After you shipped millions of
devices?

3

Implementing Real Time Systems

• General purpose operating systems not well suited
for real time
• Assume plentiful resources, fairly shared amongst untrusted users

• Exactly the opposite of an RTOS!

• Instead want an operating system that is:
• Small and light on resources

• Predictable

• Customisable, modular and extensible

• Reliable

• …and that can be demonstrated or proven to be so

4

Implications on Operating Systems

• RTOS often use cyclic executive or microkernel
designs, rather than a traditional monolithic kernel
• Limited and well defined functionality

• Easier to demonstrate correctness

• Easier to customise

• Provide rich scheduling primitives

• Provide rich support for concurrency

• Expose low-level system details to the applications
• Control of scheduling

• Power awareness

• Interaction with hardware devices

5

Implications on Operating Systems

• The simplest RTOS use a “nanokernel” design
• Provides a minimal time service: scheduled clock pulse with fixed period

• No tasking, virtual memory/memory protection, etc.

• Allows implementation of a static cyclic schedule, provided:
• Tasks can be scheduled in a frame-based manner

• All interactions with hardware to be done on a polled basis

• OS becomes a single
task cyclic executive

6

Cyclic Executive

setup timer
c = 0;
while (1) {
 suspend until timer expires
 c++;
 do tasks due every cycle
 if (((c+0) % 2) == 0)

do tasks due every 2nd cycle
 if (((c+1) % 3) == 0)

do tasks due every 3rd cycle, with phase 1
 ...
}

• Cyclic executive widely used in low-end devices
• 8 bit processors with kilobytes of memory, programmed in C via cross-

compiler, simple hardware interactions, simple static task set

• But, many real-time systems are more complex,
and need a sophisticated operating system with
priority scheduling
• Common approach: a microkernel with priority scheduler

• Configurable and robust, since architected around interactions between
cooperating system servers, rather than a monolithic kernel with ad-hoc
interactions

7

Microkernel Architecture

• A microkernel RTOS typically provides a number of
features:
• Scheduling

• Timing services, interrupt handling, support for hardware interaction

• System calls with predictable timing behaviour

• Messaging, signals and events

• Synchronisation and locking

• Memory protection

• Details often differ from non-RTOS environments

8

Microkernel Architecture

• Clock driven scheduling trivial to implement via
cyclic executive

• Other scheduling algorithms need operating
system support:
• System calls to create, destroy, suspend and resume tasks

• Implement tasks as either threads or processes

• Processes (with separate address space and memory protection) not
always supported by the hardware, and often not useful

• Scheduler with multiple priority levels, range of periodic task scheduling
algorithms, support for aperiodic tasks, support for sporadic tasks with
acceptance tests, etc.

9

Scheduler Implementation

• A system comprises a set of tasks, each task is a
series of jobs
• Tasks are typed, have various parameters (φ, p, e, D), react to events, etc.

• Acceptance test performed before admitting new tasks

• A thread is the basic unit of work handled by the
scheduler
• Threads are the instantiation of tasks that have been admitted to the

system

• How are tasks and jobs mapped onto threads and
managed by the scheduler?

10

Jobs, Tasks and Threads

• Real time tasks defined to execute periodically
• T = (φ, p, e, D)

• Two implementation strategies:
• Thread instantiated by system each period, runs single job

• A periodic thread ⇒ supported by some RTOS

• Clean abstraction: a function that runs periodically; system handles timing

• High overhead due to repeated thread instantiation, although thread pools can mitigate
overhead

• Thread instantiated once, performs job, sleeps until next period, repeats
• Lower overhead, but relies on programmer to handle timing

• Pushes conceptual burden of handling timing onto programmer

• Hard to avoid timing drift due to sleep overruns

• Most common approach

11

Periodic Tasks

• Event list triggers sporadic and aperiodic tasks
• Might be external (hardware) interrupts

• Might be signalled by another task

• Several implementation strategies:
• Job runs as interrupt/signal handler

• Can be disruptive for other real-time tasks

• Handler often used to instantiate sporadic thread or queue job for server task

• Thread instantiated by system when job released
• Not well supported for user-level jobs, often used within the kernel (e.g., for device drivers;

network processing)

• Requires scheduler assistance; high overheads unless thread pool used

• Job queued for server task
• A background server (simple, widely implemented)

• A bandwidth preserving server (useful, but hard to implement)

12

Sporadic and Aperiodic Tasks

• States represent evolution of thread execution:
• Sleeping ⇒ Periodic thread queued between cycles

• Ready ⇒ Queued at some priority, waiting to run

• Executing ⇒ Running on a processor

• Blocked ⇒ Queued waiting for a resource

• Transitions happen according to scheduling policy,
resource access, external events

13

Thread States and Transitions

Sleeping

Ready

Executing

Blocked

Thread created Thread destroyed

Resource availability

End of cycle

Start of cycle
Schedule

Abstract states…

…realised as
a set of queues

Sleeping Ready BlockedExecuting

14

Mapping States onto Queues

Sleeping

Ready

Executing

Blocked

Thread created Thread destroyed

Resource availability

End of cycle

Start of cycle
Schedule

• How to schedule...
• Periodic fixed priority tasks

(RM and DM)?

• Periodic dynamic priority tasks (EDF
and LST)?

• Sporadic and aperiodic tasks?

• Vary number of queues, the
queue selection policy, service
discipline
• How to decide which queue holds a

newly released thread?

• How are the queues ordered?

• From which queue is the next job to
execute taken?

15

Building a Priority Scheduler

Sleeping Ready BlockedExecuting

• Provide one ready queue per priority level
• Tasks inserted according to priority

• FIFO or round-robin servicing
• RR task budget depleted on each clock interrupt; yield when budget exhausted

• FIFO tasks run until sleep, block or yield

• Run task at the head of highest priority queue with ready tasks

16

Fixed Priority Scheduling

Sleeping Ready BlockedExecuting

• Assign fixed priorities to tasks based on their rate 1/p
– Task resides in sleep queue until released at phase, φ
– When released, task inserted into a FIFO ready queue
– One ready queue for each distinct priority
– Run task at the head of the highest priority queue with ready tasks

17

Fixed Priority Scheduling: RM

Sleeping Ready BlockedExecuting

Implication: some tasks will be delayed relative to the
“correct” schedule

A set of tasks TE(i) is mapped to the same priority
queue as task Ti

This may delay Ti by up to

Schedulable utilisation of system will be reduced

• When building a rate monotonic system, ensure
there are as many ready queues as priority levels

• May be limited by the operating system if present,
and need more priority levels than there are
queues provided

18

Practical Considerations: Limited Queues

T1

T2

T3

T4

T5

T6

X

Tk2Te(i)

ek

• How to map a set of tasks needing Ωn priorities
onto a set of Ωs priority levels, where Ωs < Ωn?

19

Practical Considerations: Limited Queues

Uniform mapping: Q = | Ωn / Ωs | tasks
map onto each system priority level

Constant Ratio mapping: k = (πi-1+1)/πi tasks where k is
a constant map to each system priority with weight, πi

Better preserves executing time of high priority tasks.

π1 = 1

π2 = 4

π3 = 10

1

2

3

4

5

6

7

8

9

• Tasks may block for many reasons
• Disk I/O, network, inter-process communication, …

• Use multiple blocked queues

• This is a RTOS typical priority scheduler

20

Blocking on Multiple Events

Sleeping Ready BlockedExecuting

• Thread priority can change during execution

• Implies that threads move between ready queues
• Search through the ready queues to find the thread changing it’s priority

• Remove from the ready queue; calculate new priority; insert at end of new
ready queue

• Expensive operation:
• O(N) where N is the number of tasks

• Suitable for system reconfiguration or priority inheritance when the rate of
change of priorities is slow

• Naïve implementation of EDF or LST scheduling inefficient, since require
frequent priority changes

21

Dynamic Priority Scheduling

• To directly support EDF scheduling:
• When each thread is created, its relative deadline is specified

• When a thread is released, its absolute deadline is calculated from it’s
relative deadline and release time

• Could maintain a single ready queue:
• Conceptually simple, threads ordered by absolute deadline

• Inefficient if many active threads, since scheduling decision involves
walking the queue of N tasks

22

Earliest Deadline First Scheduling

• Maintain a ready queue for each relative deadline

• Maintain a queue, sorted by absolute deadline,
pointing to tasks at the head of each ready queue
• Updated when tasks complete; when tasks added to empty ready queue

• Always execute the task at the head of this queue

• More efficient, since only perform a linear scan through active tasks

23

Earliest Deadline First Scheduling

Sleeping Ready BlockedExecutingEDF Queue

• Straight-forward to schedule using EDF:
• Add to separate queue of ready sporadic tasks on release

• Perform acceptance test

• If accepted, insert into the EDF queue according to deadline

• Difficult if using fixed priority scheduling:
• Need a bandwidth preserving server

24

Scheduling Sporadic Tasks

Sleeping Ready BlockedExecutingEDF Queue

Acceptance TestSporadic Tasks

• Server scheduled as a periodic task

• When ready and selected to execute, given
scheduling quantum equal to the current budget
• Runs until pre-empted or blocked; or

• Runs until the quantum expires, sleeps until replenished

• At each scheduling event in the system
• Update budget consumption considering:

• time for which the bandwidth preserving server and other tasks have executed; algorithm
depends on BP server type

• Replenish budget if necessary

• Keep remaining budget in the thread control block

• Fairly complex calculations, e.g., for sporadic server

25

Bandwidth Preserving Servers

• Implementing real time systems
• Key concepts and constraints

• System architectures:
• Cyclic executive

• Microkernel with priority scheduler

• Implementing scheduling algorithms
• Jobs, tasks, and threads

• Priority scheduling of periodic tasks
• Rate monotonic

• Earliest deadline first

• Priority scheduling of aperiodic and sporadic tasks

26

Summary

