
Resource Access Control in Real-time Systems

Advanced Operating Systems (M)
Lecture 8

• Definitions of resources

• Resource access control for static systems
• Basic priority inheritance protocol

• Basic priority ceiling protocol

• Enhanced priority ceiling protocols

• Resource access control for dynamic systems

• Effects on scheduling

• Implementing resource access control

2

Lecture Outline

• A system has ρ types of resource R1, R2, …, Rρ
• Each resource comprises nk indistinguishable units; plentiful resources

have no effect on scheduling and so are ignored

• Each unit of resource is used in a non-preemptive and mutually exclusive
manner; resources are serially reusable

• If a resource can be used by more than one job at a time, we model that
resource as having many units, each used mutually exclusively

• Access to resources is controlled using locks
• Jobs attempt to lock a resource before starting to use it, and unlock the

resource afterwards; the time the resource is locked is the critical section

• If a lock request fails, the requesting job is blocked; a job holding a lock
cannot be preempted by a higher priority job needing that lock

• Critical sections may nest if a job needs multiple simultaneous resources

3

Resources

• Jobs contend for a resource if they try to lock it at
once

• Priority inversion occurs when a low-priority job executes while some
ready higher-priority job waits

• Deadlock can result from piecemeal acquisition of resources
• The classic solution is to impose a fixed acquisition order over the set of lockable resources,

and all jobs attempt to acquire the resources in that order (typically LIFO order)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

J3

J2

Preempt J3

J1

Preempt J3

J2 blocks

J1 blocks

EDF schedule of J1, J2 and J3 sharing a resource protected
by locks (blue shading indicated critical sections). The red
lines indicate release times and deadlines of jobs.

Contention for Resources

4

Priority inversion

• As seen, contention for resources can cause timing
anomalies due to priority inversion and deadlock

• Unless controlled, these anomalies can be arbitrary
duration, and can seriously disrupt system timing

• Cannot eliminate these anomalies, but several
protocols exist to control them:
• Priority inheritance protocol

• Basic priority ceiling protocol

• Stack-based priority ceiling protocol

5

Timing Anomalies

• Aim: to adjust the scheduling priorities of jobs
during resource access, to reduce the duration of
timing anomalies

• Constraints:
• Works with any pre-emptive, priority-driven scheduling algorithm

• Does not require any prior knowledge of the jobs’ resource requirements

• Does not prevent deadlock, but if some other mechanism used to prevent
deadlock, ensures that no job can block indefinitely due to uncontrolled
priority inversion

• We discuss the basic priority-inheritance protocol
which assumes there is only 1 unit of resource

6

Priority-Inheritance Protocol

• Assumptions (for all of the following protocols):
• Each resource has only 1 unit

• The priority assigned to a job according to a standard scheduling
algorithm is its assigned priority

• At any time t, each ready job Jk is scheduled and executes at its current
priority, πk(t), which may differ from its assigned priority and may vary with
time

• The current priority πl(t) of a job Jl may be raised to the higher priority πh(t)
of another job Jh. In such a situation, the lower-priority job Jl is said to
inherit the priority of the higher-priority job Jh, and Jl executes at its
inherited priority πh(t)

7

Basic Priority-Inheritance Protocol

• Jobs are pre-emptively scheduled according to
their current priorities
• At release time, the current priority of a job is equal to its assigned priority

• The current priority remains equal to the assigned priority, except when
the priority-inheritance rule is invoked:

• When a job, J, becomes blocked, the job Jl which blocks J inherits the current priority π(t) of J

• Jl executes at its inherited priority until it releases R; at that time, the priority of Jl returns to its
priority πl(t′) at the time t′ when it acquired the resource R

• When a job J requests a resource R at time t:
• If R is free, R is allocated to J until J releases it

• If R is not free, the request is denied and J is blocked

• J is only denied R if the resource is held by another job

8

Basic Priority-Inheritance Protocol

Basic Priority-Inheritance Protocol

9

J4

J3

J2

J1

J5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Job ri ei πi Critical Sections

J1 7 3 1 [; 1]

J2 5 3 2 [; 1]

J3 4 2 3

J4 2 6 4 [; 4 [; 1.5]]

J5 0 6 5 [; 4]

What does the schedule look like?

Jobs 1, 2, 4, 5 acquire resource after 1 time unit
Job 4 acquires blue after further 2 units

• Properties of the Priority-inheritance Protocol
• Simple to implement, needs no prior knowledge of resource requirements

• Jobs exhibit different types of blocking
• Direct blocking due to resource locks

• Priority-inheritance blocking

• Transitive blocking

• Lower blocking time than prohibiting preemption during critical sections,
but does not guarantee to minimise blocking

• Deadlock is not prevented: need to manage lock acquisition order in
addition

12

Basic Priority-Inheritance Protocol

• Sometimes desirable to further reduce blocking
times due to resource contention

• The basic priority-ceiling protocol provides a means
to do this, provided:
• The assigned priorities of all jobs are fixed (e.g. RM scheduling, not EDF)

• The resources required by all jobs are known a priori

• Need two additional terms to define the protocol:
• The priority ceiling of any resource Rk is the highest priority of all the jobs

that require Rk and is denoted by Π(Rk)

• At any time t, the current priority ceiling Π(t) of the system is equal to the
highest priority ceiling of the resources that are in use at the time

• If all resources are free, Π(t) is equal to Ω, a nonexistent priority level that
is lower than the lowest priority level of all jobs

13

Basic Priority-Ceiling Protocol

• Scheduling rules:
• Priority-driven scheduling; jobs can be preempted

• The current priority of a job equals its assigned priority, except when the
priority-inheritance rule (see next slide) is invoked

• Resource allocation rule:
• When a job J requests a resource R held by another job, the request fails

and the requesting job blocks

• When a job J requests a resource R that is available:
• if J’s priority π(t) is higher than current priority ceiling Π(t):

| R is allocated to J
else
| if J is the job holding the resource(s) whose priority ceiling is equal to Π(t):
| | R is allocated to J
| else
| | the request is denied, and J becomes blocked

• Unlike priority inheritance: can deny access to an available resource

14

Basic Priority-Ceiling Protocol

• Priority-inheritance rule:
• When the requesting job, J, becomes blocked, the job Jl which blocks J

inherits the current priority π(t) of J

• Jl executes at its inherited priority until the time when it releases every
resource whose priority ceiling is equal to or higher than π(t); then, the
priority of Jl returns to its priority πl(t′) at the time t′ when it was granted the
resource(s)

15

Basic Priority-Ceiling Protocol

Basic Priority-Ceiling Protocol

16

J4

J3

J2

J1

J5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Job ri ei πi Critical Sections

J1 7 3 1 [; 1]

J2 5 3 2 [; 1]

J3 4 2 3

J4 2 6 4 [; 4 [; 1.5]]

J5 0 6 5 [; 4]

What does the schedule look like?

• If resource access in a system of preemptable,
fixed priority jobs on one processor is controlled by
the priority-ceiling protocol:
• Deadlock can never occur

• A job can be blocked for at most the duration of one critical section: there
is no transitive blocking

• Differences between the priority-inheritance and
priority-ceiling protocols:
• Priority inheritance is greedy, while priority ceiling is not

• The priority ceiling protocol may withhold access to a free resource, causing a job to be
blocked by a lower-priority job which does not hold the requested resource – termed
avoidance blocking

• The priority ceiling protocol forces a fixed order onto resource accesses,
thus eliminating deadlock

18

Basic Priority-Ceiling Protocol

• The basic priority ceiling protocol performs well, but
is complex, and can result in high context switch
overheads

• This has led to two modifications to the protocol:
• The stack-based priority ceiling protocol

• The ceiling priority protocol

19

Enhancing the Priority Ceiling Protocol

• Based on original work to allow jobs to share a run-
time stack, extended to control access to other
resources

• Defining rules:
• Ceiling: When all resources are free, Π(t) = Ω; Π(t) updated each time a

resource is allocated or freed
• Π(t) current priority ceiling of all resources in currently use; Ω non-existing lowest priority level

• Scheduling:
• After a job is released, it is blocked from starting execution until its assigned priority is higher

than Π(t)

• Non-blocked jobs are scheduled in a pre-emptive priority manner; tasks never self-yield

• Allocation: when a job requests a resource, it is allocated
• The allocation rule looks greedy, but the scheduling rule is not

20

Stack-Based Priority Ceiling Protocol

Stack-Based Priority Ceiling Protocol

21

J4

J3

J2

J1

J5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Job ri ei πi Critical Sections

J1 7 3 1 [; 1]

J2 5 3 2 [; 1]

J3 4 2 3

J4 2 6 4 [; 4 [; 1.5]]

J5 0 6 5 [; 4]

What does the schedule look like?

Π = Ω 2 2 2 2 2 2 2 1 2 2 2 Ω Ω 1 1 1 1 Ω Ω Ω

Jobs blocked
from starting
since πi < Π

Context switches are reduced
compared to the basic priority
ceiling protocol; no jobs finish
later, but many jobs start later

• Characteristics:
• When a job starts to run, all the resource it will ever need are free (since

otherwise the ceiling would be ≥ priority)
• No job ever blocks waiting for a resource once its execution has begun

• Implies low context switch overhead

• When a job is pre-empted, all the resources the pre-empting job will
require are free, ensuring it will run to completion; deadlock cannot occur

• Longest blocking time provably not worse than the basic priority ceiling
protocol, i.e., not worse than the duration of one critical section

22

Stack-Based Priority Ceiling Protocol

• If tasks never self yield, the stack based priority
ceiling protocol is a better choice than the basic
priority ceiling protocol
• Simpler

• Reduce number of context switches

• Can also be used to allow sharing of the run-time stack, to save memory
resources

• Both give better performance than priority
inheritance protocol
• Assuming fixed priority scheduling, resource usage known in advance

23

Choice of Priority Ceiling Protocol

• The priority ceiling protocols assume fixed priority
scheduling

• In a dynamic priority system, the priorities of the
periodic tasks change over time, while the set of
resources required by each task remains constant
• As a consequence, the priority ceiling of each resource changes over time

• Example:

• What happens if T1 uses resource X, but T2 does not?
• Priority ceiling of X is 1 for 0 ≤ t ≤ 4, becomes 2 for 4 ≤ t ≤ 5, etc. even though the set of

resources required by the tasks remains unchanged

24

Resources in Dynamic Priority Systems

T1 = (2, 0.9)
EDF

T2 = (5, 2.3)
0 1 2 3 4 5 6 7 8

T2

T1

π(T1) = 1 π(T1) = 2 π(T1) = 1

• If a system is job-level fixed priority, but task-level
dynamic priority, a priority ceiling protocol can still
be applied
• Each job in a task has a fixed priority once it is scheduled, but may be

scheduled at different priority to other jobs in the task (e.g., EDF)

• Update the priority ceilings of all jobs each time a new job is introduced;
use until updated on next job release

• Proven to work and have the same properties as
priority ceiling protocol in fixed priority systems
• But very inefficient, since priority ceilings updated frequently

• May be better to use priority inheritance protocol, accept longer blocking

25

Resources in Dynamic Priority Systems

• Assume J1 and J2 contend for a resource, R, where
J1 is the higher priority job
• Worst case blocking time → duration of J2’s critical section over R

• When using priority inheritance protocol, J2 might
be transitively blocked for the duration of the next
priority job’s critical section
• Worst case: it is blocked by every other lower priority job, for the full

duration of each lower priority job’s critical section

26

Maximum Duration of Blocking

J1

J2

Blocking time

J2 pre-empted immediately
after it locks resource R

• The priority ceiling protocols implement avoidance
blocking, and so do not exhibit transient blocking
• Block for at most the duration of one low priority critical section

• Direct blocking: low priority jobs locks resource; can be blocked for up to the duration of the
critical section of that job

• Avoidance blocking: resource is free, but priority ceiling rules deny access

• Calculate worst case blocking duration:
• Simple:

• Assume can block for duration of longest critical section of lower priority jobs

• Probably overestimates blocking duration; likely not too significant

• More efficient:
• Trace direct conflicts with lower priority jobs, find longest critical section

• Trace indirect conflicts with lower priority jobs that may inherit priority and cause avoidance
blocking, find longest critical section

• Greatest of these is maximum possible blocking time

27

Maximum Duration of Blocking

• Jobs which block due to resource access affect
whether a system can be scheduled

• How to adjust scheduling test?
• Incorporate maximum blocking time as part of execution time of job;

scheduling test then runs as normal

• Priority ceiling protocols clearly preferred where possible

28

Effects on Scheduling Tests

• Have focussed on resource access control
algorithms which can be implemented by an
operating system

• How are these made available to applications?
• Some implemented by the operating system

• Some implemented at the application level

29

Implementing Resource Access Control

• Control access to resource using a mutex
• A mutex is embedded in an object at a location of the programmers

choosing to control access to that object/resource

• Basic API:

30

POSIX Mutex API

int pthread_mutex_init(pthread_mutex_t *mutex, pthread_mutexattr_t *attr);
int pthread_mutex_destroy(pthread_mutex_t *mutex);

int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_trylock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);

int pthread_mutexattr_init(pthread_mutexattr_t *attr);
int pthread_mutexattr_destroy(pthread_mutexattr_t *attr);

int pthread_mutexattr_setprotocol(pthread_mutex_attr_t *attr, int proto);
int pthread_mutexattr_getprotocol(pthread_mutex_attr_t *attr, int *proto);

• Can specify resource access protocol for a mutex:
• Use pthread_mutexattr_setprotocol() during mutex creation

• PTHREAD_PRIO_INHERIT Priority inheritance protocol applies

• PTHREAD_PRIO_PROTECT Priority ceiling protocol applies

• PTHREAD_PRIO_NONE Priority remains unchanged

• If the priority ceiling protocol is used, can adjust the ceiling to match
changes in thread priority (e.g. dynamic priority scheduling):
• pthread_mutexattr_getprioceiling(…)

• pthread_mutexattr_setprioceiling(…)

• Used with POSIX real-time scheduling:
• Allow implementation of fixed priority scheduling with a known resource

access control protocol

• Controls priority inversion, scheduling; allows reasoning about a system

31

POSIX Mutex: Priority Inheritance

• POSIX also defines a condition variable API:

• Combine a condition variable with a mutex to wait
for a condition to be satisfied:

(timed wait with priority inheritance)

32

POSIX Condition Variables

int pthread_cond_init(pthread_cond_t *cond, pthread_condattr_t *attr);
int pthread_cond_destroy(pthread_cond_t *cond);

int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);
int pthread_cond_timedwait(pthread_cond_t *cond, pthread_mutex_t *mutex
 struct timespec *wait_time);

int pthread_cond_signal(pthread_cond_t *cond);
int pthread_cond_broadcast(pthread_cond_t *cond);

lock associated mutex
while (condition not satisfied) {
 wait on condition variable
}
do work
unlock associated mutex

• As seen, many approaches to implementing
resource access control

• POSIX provides useful baseline functionality
• Priority scheduling abstraction, to implement Rate Monotonic schedules

• A mutex abstraction using either priority inheritance or priority ceiling
protocols to arbitrate resource access

• Similar, sometimes more advanced features,
provided by other real-time operating systems
• Examples: Ada supports the priority ceiling protocol; QNX supports

message based priority inheritance

33

Implementation Summary

• Defined resources, explaining timing anomalies
and the need for resource access control

• Illustrated operation of three resource access
control protocols:
• Basic priority inheritance protocol

• Basic priority ceiling protocol

• Stack-based priority ceiling protocol

• Discussed impact on scheduling tests

• Implementation of resource access control in
POSIX applications

34

Summary

