Umver51ty School of
of Glasgow | Computing Science

AAAAAAAAAAAAAA

Resource Access Control in Real-time Systems

Advanced Operating Systems (M)
Lecture 8

Lecture Outline

® Definitions of resources

® Resource access control for static systems

e Basic priority inheritance protocol
e Basic priority ceiling protocol

e Enhanced priority ceiling protocols

® Resource access control for dynamic systems
e Effects on scheduling

¢ |Implementing resource access control

Resources

e A system has p types of resource Ri, Ro, ..., R,
e Each resource comprises n; indistinguishable units; plentiful resources
have no effect on scheduling and so are ignored

e Each unit of resource is used in a non-preemptive and mutually exclusive
manner; resources are serially reusable

e |f a resource can be used by more than one job at a time, we model that
resource as having many units, each used mutually exclusively

® Access to resources is controlled using locks

e Jobs attempt to lock a resource before starting to use it, and unlock the
resource afterwards; the time the resource is locked is the critical section

e |If alock request fails, the requesting job is blocked; a job holding a lock
cannot be preempted by a higher priority job needing that lock

e C(Critical sections may nest if a job needs multiple simultaneous resources

Contention for Resources

® Jobs contend for a resource if they try to lock it at
once J, blocks

Preempt J, |—| l
Jy L 1 1 1 I I 1 - I I 1 I 1 1

Preempt J;

Priority inversion EDF schedule of J,, J, and J; sharing a resource protected

by locks (blue shading indicated critical sections). The red
lines indicate release times and deadlines of jobs.

® Priority inversion occurs when a low-priority job executes while some
ready higher-priority job waits
e Deadlock can result from piecemeal acquisition of resources

° The classic solution is to impose a fixed acquisition order over the set of lockable resources,
and all jobs attempt to acquire the resources in that order (typically LIFO order)

Timing Anomalies

As seen, contention for resources can cause timing
anomalies due to priority inversion and deadlock

Unless controlled, these anomalies can be arbitrary
duration, and can seriously disrupt system timing

Cannot eliminate these anomalies, but several
protocols exist to control them:

Priority inheritance protocol
Basic priority ceiling protocol

Stack-based priority ceiling protocol

Priority-Inheritance Protocol

¢ Aim: to adjust the scheduling priorities of jobs

during resource access, to reduce the duration of
timing anomalies

e (Constraints:

e \Works with any pre-emptive, priority-driven scheduling algorithm
e Does not require any prior knowledge of the jobs’ resource requirements

e Does not prevent deadlock, but if some other mechanism used to prevent

deadlock, ensures that no job can block indefinitely due to uncontrolled
priority inversion

e \We discuss the basic priority-inheritance protocol
which assumes there is only 1 unit of resource

6

Basic Priority-Inheritance Protocol

e Assumptions (for all of the following protocols):

Each resource has only 1 unit

The priority assigned to a job according to a standard scheduling
algorithm is its assigned priority

At any time ¢, each ready job J; is scheduled and executes at its current
priority, m«(¢), which may differ from its assigned priority and may vary with
time

The current priority 7i(f) of a job J; may be raised to the higher priority 7x(¢)
of another job J;. In such a situation, the lower-priority job J; is said to
inherit the priority of the higher-priority job J,, and J; executes at its
inherited priority zx(¢)

Basic Priority-Inheritance Protocol

® Jobs are pre-emptively scheduled according to
their current priorities

e At release time, the current priority of a job is equal to its assigned priority

® The current priority remains equal to the assigned priority, except when
the priority-inheritance rule is invoked:

L When a job, J, becomes blocked, the job J; which blocks J inherits the current priority #(¢) of J

° Ji executes at its inherited priority until it releases R; at that time, the priority of J; returns to its
priority m,(¢") at the time ¢' when it acquired the resource R

® \When a job J requests a resource R at time +:

e |IfRis free, R is allocated to J until J releases it
e |f Ris not free, the request is denied and J is blocked

e Jis only denied R if the resource is held by another job

Basic Priority-Inheritance Protocol

Job 7, e, T, Critical Sections
] .
What does the schedule look like? - . 14: 1
L | 5| 3] 2 (B
Jobs 1, 2, 4, 5 acquire resource after 1 time unit Y 4 | 2] 3
Job 4 acquires blue after further 2 units | 2| 6|4l (B4l 150
Js 0 6 | 5 [I; 4]

e £ 5+ 3+ £ .t 5 5+ 9J 9+ 9 90> 9 9 L
1 2 3 4 5 6 77 8 9 10 1M1 12 13 14 15 16 17 18 19 20

Basic Priority-Inheritance Protocol

® Properties of the Priority-inheritance Protocol

e Simple to implement, needs no prior knowledge of resource requirements

e Jobs exhibit different types of blocking

L Direct blocking due to resource locks
° Priority-inheritance blocking

° Transitive blocking

e Lower blocking time than prohibiting preemption during critical sections,
but does not guarantee to minimise blocking

e Deadlock is not prevented: need to manage lock acquisition order in
addition

Basic Priority-Ceiling Protocol

® Sometimes desirable to further reduce blocking
times due to resource contention

® The basic priority-ceiling protocol provides a means
to do this, provided:

e The assigned priorities of all jobs are fixed (e.g. RM scheduling, not EDF)
® The resources required by all jobs are known a priori

® Need two additional terms to define the protocol:

e The priority ceiling of any resource R; is the highest priority of all the jobs
that require R, and is denoted by I1(Rx)

e At any time ¢, the current priority ceiling I1(7) of the system is equal to the
highest priority ceiling of the resources that are in use at the time

e [f all resources are free, I1(¢) is equal to Q, a nonexistent priority level that
is lower than the lowest priority level of all jobs

13

Basic Priority-Ceiling Protocol

® Scheduling rules:

® Priority-driven scheduling; jobs can be preempted

e The current priority of a job equals its assigned priority, except when the
priority-inheritance rule (see next slide) is invoked

® Resource allocation rule:

e \When a job J requests a resource R held by another job, the request fails
and the requesting job blocks

e \When a job J requests a resource R that is available:

L if J's priority n(¢) is higher than current priority ceiling I1(¢):
R is allocated to J
else
if J is the job holding the resource(s) whose priority ceiling is equal to I1(¢):
R is allocated to J
else
the request is denied, and J becomes blocked

e Unlike priority inheritance: can deny access to an available resource

14

Basic Priority-Ceiling Protocol

® Priority-inheritance rule:

e When the requesting job, J, becomes blocked, the job J; which blocks J
inherits the current priority n(f) of J

® J executes at its inherited priority until the time when it releases every
resource whose priority ceiling is equal to or higher than n(z); then, the

priority of J; returns to its priority m/(¢") at the time ¢’ when it was granted the
resource(s)

Basic Priority-Ceiling Protocol

Job v e, T, Critical Sections
J, 7|1 3| 1 19 11
. L | 5| 3] 2 (B
What does the schedule look like?
Js 4 2 | 3
Jy 2 6 | 4 [;4[I;1-5]]
Js 0 6 | 5 [I ; 4]

Jy [[[[[[[I [] []] [[] []] 1 1
Dy 4 4 a4 a4 4 'R T T T T T T T R T DR R
J3 [[] I I [] I I] 1 1 [1 | | [| | [[
J4

e £ 5+ 3+ £ .t 5 5+ 9J 9+ 9 90> 9 9 L
1 2 3 4 5 6 77 8 9 10 1M1 12 13 14 15 16 17 18 19 20

Basic Priority-Ceiling Protocol

® |f resource access in a system of preemptable,
fixed priority jobs on one processor is controlled by
the priority-ceiling protocol:

e Deadlock can never occur

e Ajob can be blocked for at most the duration of one critical section: there
IS no transitive blocking

e Differences between the priority-inheritance and
priority-ceiling protocols:

® Priority inheritance is greedy, while priority ceiling is not

° The priority ceiling protocol may withhold access to a free resource, causing a job to be
blocked by a lower-priority job which does not hold the requested resource — termed
avoidance blocking

® The priority ceiling protocol forces a fixed order onto resource accesses,
thus eliminating deadlock

Enhancing the Priority Ceiling Protocol

® The basic priority ceiling protocol performs well, but
IS complex, and can result in high context switch
overheads

® This has led to two modifications to the protocol:

® The stack-based priority ceiling protocol

® The ceiling priority protocol

Stack-Based Priority Ceiling Protocol

® Based on original work to allow jobs to share a run-
time stack, extended to control access to other
resources

® Defining rules:

e Ceiling: When all resources are free, I1(¢) = Q; I1(¢) updated each time a
resource is allocated or freed

° I1(¢) current priority ceiling of all resources in currently use; Q non-existing lowest priority level

e Scheduling:

L After a job is released, it is blocked from starting execution until its assigned priority is higher
than I1(¢)

° Non-blocked jobs are scheduled in a pre-emptive priority manner; tasks never self-yield

e Allocation: when a job requests a resource, it is allocated

° The allocation rule looks greedy, but the scheduling rule is not

20

Stack-Based Priority Ceiling Protocol

What does the schedule look like?

Job v; e T, Critical Sections
J, 7| 3| 1 19 11

L | 5| 3] 2 (B

Jy 4 | 2] 3

J, 2 | 6| 4| (4151
Js 0 6 | 5 [I ; 4]

Jobs blocked
from starting
since m, < Il

Context switches are reduced
compared to the basic priority
ceiling protocol; no jobs finish

21

—_ 1l Z later, but many jobs start later
[|]]
] | | L
1 1 |] 1
| 1 | |] | 1] [| 1
9 10 11 12 13 14 15 16 17 18 19 20
2 2 2 Q Q 1 1 1 1 Q Q Q

Stack-Based Priority Ceiling Protocol

e (Characteristics:

e \When a job starts to run, all the resource it will ever need are free (since

otherwise the ceiling would be = priority)

° No job ever blocks waiting for a resource once its execution has begun

° Implies low context switch overhead

e When a job is pre-empted, all the resources the pre-empting job will
require are free, ensuring it will run to completion; deadlock cannot occur

® |ongest blocking time provably not worse than the basic priority ceiling
protocol, i.e., not worse than the duration of one critical section

22

Choice of Priority Ceiling Protocol

e |f tasks never self yield, the stack based priority
ceiling protocol is a better choice than the basic
priority ceiling protocol

e Simpler
e Reduce number of context switches

e (Can also be used to allow sharing of the run-time stack, to save memory
resources

e Both give better performance than priority
iInheritance protocol

e Assuming fixed priority scheduling, resource usage known in advance

23

Resources in Dynamic Priority Systems

® The priority ceiling protocols assume fixed priority
scheduling

® |n a dynamic priority system, the priorities of the
periodic tasks change over time, while the set of
resources required by each task remains constant

® As a consequence, the priority ceiling of each resource changes over time

e Example: (T,) = 1
Tl

n(Ty) =2 n(Ty) =1

T,=(2,0.9)

T, o g/ f % i T,= (5,152].)3F)

0 1 2 5 6 7 8

e \What happens if 77 uses resource X, but 7> does not?

° Priority ceiling of X'is 1 for 0 <7 <4, becomes 2 for 4 <t <5, etc. even though the set of
resources required by the tasks remains unchanged

24

Resources in Dynamic Priority Systems

e |f a system is job-level fixed priority, but task-level
dynamic priority, a priority ceiling protocol can still
be applied

e Each jobin a task has a fixed priority once it is scheduled, but may be
scheduled at different priority to other jobs in the task (e.g., EDF)

e Update the priority ceilings of all jobs each time a new job is introduced;
use until updated on next job release

® Proven to work and have the same properties as
priority ceiling protocol in fixed priority systems

e But very inefficient, since priority ceilings updated frequently

e May be better to use priority inheritance protocol, accept longer blocking

25

Maximum Duration of Blocking

e Assume J; and .J; contend for a resource, R, where
J1 Is the higher priority job

e \Worst case blocking time — duration of J,’s critical section over R

Blocking time

e o e,

LJZ pre-empted immediately
after it locks resource R

e \When using priority inheritance protocol, > might
be transitively blocked for the duration of the next
priority job’s critical section

e \Worst case: it is blocked by every other lower priority job, for the full
duration of each lower priority job’s critical section

26

Maximum Duration of Blocking

® The priority ceiling protocols implement avoidance
blocking, and so do not exhibit transient blocking

e Block for at most the duration of one low priority critical section

L Direct blocking: low priority jobs locks resource; can be blocked for up to the duration of the
critical section of that job

° Avoidance blocking: resource is free, but priority ceiling rules deny access

e (Calculate worst case blocking duration:

e Simple:
° Assume can block for duration of longest critical section of lower priority jobs
° Probably overestimates blocking duration; likely not too significant

e More efficient:

L Trace direct conflicts with lower priority jobs, find longest critical section

L Trace indirect conflicts with lower priority jobs that may inherit priority and cause avoidance
blocking, find longest critical section

L Greatest of these is maximum possible blocking time

27

Effects on Scheduling Tests

e Jobs which block due to resource access affect
whether a system can be scheduled

e How to adjust scheduling test?

e Incorporate maximum blocking time as part of execution time of job;
scheduling test then runs as normal

e Priority ceiling protocols clearly preferred where possible

28

Implementing Resource Access Control

® Have focussed on resource access control
algorithms which can be implemented by an

operating system
® How are these made available to applications?

e Some implemented by the operating system
e Some implemented at the application level

29

POSIX Mutex API

e (Control access to resource using a mutex

A mutex is embedded in an object at a location of the programmers
choosing to control access to that object/resource

Basic API:

int
int

int
int
int

int

int

int
int

pthread mutex_ init(pthread mutex t *mutex, pthread mutexattr t *attr);
pthread mutex destroy(pthread mutex t *mutex);

pthread mutex lock (pthread mutex t *mutex) ;
pthread mutex trylock (pthread mutex t *mutex);
pthread mutex unlock (pthread mutex t *mutex);

pthread mutexattr init(pthread mutexattr t *attr);
pthread mutexattr destroy(pthread mutexattr t *attr);

pthread mutexattr setprotocol (pthread mutex attr t *attr, int proto);
pthread mutexattr getprotocol (pthread mutex attr t *attr, int *proto);

30

POSIX Mutex: Priority Inheritance

e Can specify resource access protocol for a mutex:

e Usepthread mutexattr setprotocol () during mutex creation

° PTHREAD PRIO INHERIT Priority inheritance protocol applies
° PTHREAD PRIO PROTECT Priority ceiling protocol applies
° PTHREAD PRIO NONE Priority remains unchanged

e |f the priority ceiling protocol is used, can adjust the ceiling to match
changes in thread priority (e.g. dynamic priority scheduling):

° pthread mutexattr getprioceiling(...)

° pthread mutexattr setprioceiling(...)

e Used with POSIX real-time scheduling:

e Allow implementation of fixed priority scheduling with a known resource
access control protocol

e Controls priority inversion, scheduling; allows reasoning about a system

31

POSIX Condition Variables

e PQOSIX also defines a condition variable API:

int pthread cond init(pthread cond t *cond, pthread condattr t *attr);
int pthread cond destroy(pthread cond t *cond);

int pthread cond wait(pthread cond t *cond, pthread mutex t *mutex);
int pthread cond timedwait(pthread cond t *cond, pthread mutex t *mutex
struct timespec *wait time);

int pthread cond signal (pthread cond t *cond);
int pthread cond broadcast (pthread cond t *cond);

e Combine a condition variable with a mutex to wait

for a condition to be satisfied: 1ock associated mutex

while (condition not satisfied) {
wait on condition wvariable

}

do work
(timed wait with priority inheritance) unlock associated mutex

32

Implementation Summary

® As seen, many approaches to implementing
resource access control

e PQOSIX provides useful baseline functionality

® Priority scheduling abstraction, to implement Rate Monotonic schedules

® A mutex abstraction using either priority inheritance or priority ceiling
protocols to arbitrate resource access

e Similar, sometimes more advanced features,
provided by other real-time operating systems

e Examples: Ada supports the priority ceiling protocol; QNX supports
message based priority inheritance

33

Summary

e Defined resources, explaining timing anomalies
and the need for resource access control

e |llustrated operation of three resource access
control protocols:

e Basic priority inheritance protocol
e Basic priority ceiling protocol

e Stack-based priority ceiling protocol

® Discussed impact on scheduling tests

® |mplementation of resource access control in
POSIX applications

34

