
Priority-driven Scheduling of Aperiodic and 
Sporadic Tasks (1)

Advanced Operating Systems (M)
Lecture 6



• Assumptions, definitions and system model

• Simple approaches
• Background, interrupt-driven and polled execution

• Periodic servers

• Bandwidth-preserving servers
• Deferrable server

• Sporadic server

• …

2

Lecture Outline



• One processor system; independent preemptable 
periodic tasks scheduled using a priority-driven 
algorithm
• Parameters of all periodic tasks are known

• In the absence of aperiodic and sporadic jobs, periodic tasks meet 
deadlines

• Aperiodic and/or sporadic jobs exist
• They are independent of each other, and of the periodic tasks

• They can be preempted at any time

3

Assumptions



Processor
Aperiodic jobs

Periodic jobs

Sporadic jobs
Acceptance

Test

Rejection Accepted jobs placed on priority queues; each type 
of job queued separately with known queuing 
discipline

Scheduler selects 
from jobs at head of 
priority queues

S
ch

ed
ul

er

4

System Model



• Based on the execution time and deadline of each 
newly arrived sporadic job, decide whether to 
accept or reject the job
• Accepting the job implies that the job will complete within its deadline, 

without causing any periodic task or previously accepted sporadic job to 
miss its deadline

• Do not accept a sporadic job if cannot guarantee it will meet its deadline

• Aim to complete each aperiodic job as soon as 
possible, without causing periodic tasks or 
accepted sporadic jobs to miss deadlines
• Aperiodic jobs are always accepted

5

The Scheduling Problem



• A correct schedule is one where all periodic tasks, 
and any sporadic tasks that have been accepted, 
meet their deadlines

• A scheduling algorithm supporting aperiodic and/or 
sporadic jobs is a correct algorithm if it only 
produces correct schedules for the system

6

Definitions: Correctness



• An aperiodic job scheduling algorithm is optimal if it 
minimises either:
• The response time of the job at the head of the aperiodic job queue 

• The average response time of all aperiodic jobs for a given queuing 
discipline

• A sporadic job scheduling algorithm is optimal if it 
accepts a new sporadic job, and schedules that job 
to complete by its deadline, if and only if the new 
job can be correctly scheduled to complete in time
• An optimal algorithm always produces a feasible schedule if the job is 

accepted

7

Definitions: Optimality



• Consider the simple case: scheduling aperiodic 
jobs along with a system of periodic jobs
• Ignore sporadic jobs for now

• Two simple approaches: 
• Execute the aperiodic jobs in the background

• Execute the aperiodic jobs by interrupting the periodic jobs

8

Scheduling Aperiodic Jobs



• Aperiodic jobs are scheduled and executed only at 
times when there are no periodic or sporadic jobs 
ready for execution
• Clearly produces correct schedules; extremely simple to implement

• Not optimal since it is almost guaranteed to delay execution of aperiodic 
jobs in favour of periodic and sporadic jobs, giving unduly long response 
times for the aperiodic jobs

9

Background Scheduling of Aperiodic Jobs

T1 = (3, 1)

T2 = (10, 4)

A : ea= 0.1

Response time = 7.7

RM schedule
of T1 and T2



• How can we improve the response time for 
aperiodic jobs?

• Whenever an aperiodic job arrives, the execution of 
periodic tasks is interrupted, and the aperiodic job 
is executed.
• Reduces response times of aperiodic jobs

• But likely not correct, and will often cause periodic/sporadic tasks in the 
system to miss some deadlines

10

Interrupt Scheduling of Aperiodic Jobs



• Background or interrupt driven execution not ideal

• A better alternative is slack stealing
• Periodic jobs are be scheduled to complete before their deadline; there 

may be slack time between completion of the periodic job and its deadline

• Since we know the execution time of periodic jobs, can move the slack 
time earlier in the schedule, running periodic jobs ‘just in time’ to meet 
their deadlines

• Execute aperiodic jobs in the slack time, ahead of periodic jobs

• Reduces response time for aperiodic jobs and is 
correct, but complex and difficult to reason about
• Computing available slack is difficult in practice for priority-driven systems

11

Slack Stealing for Aperiodic Jobs



• Another common way to schedule aperiodic jobs is 
using a polling server
• A periodic job (ps, es) scheduled according to the periodic algorithm, 

generally as the highest priority job

• When executed, it examines the aperiodic job queue
• If an aperiodic job is in the queue, it is executed for up to es time units

• If the aperiodic queue is empty, the polling server self-suspends, giving up its execution slot

• The server does not wake-up once it has self-suspended, aperiodic jobs which become active 
during a period are not considered for execution until the next period begins

• Simple to prove correctness, performance less 
than ideal – since execute aperiodic jobs in 
particular time-slots – can we improve?
• Yes, this is the simplest periodic-server for aperiodic jobs

12

Polled Execution for Aperiodic Jobs



• A task that behaves much like a periodic task, but 
is created for the purpose of executing aperiodic 
jobs, is a periodic server
• A periodic server, TPS = (pPS, ePS) never executes for more than ePS units of 

time within each period pPS
• The parameter ePS is execution budget of the periodic server

• When a server is scheduled and executes aperiodic jobs, it consumes its budget at the rate of 
1 per unit time; the budget has been exhausted when it reaches 0

• A time instant when the budget is replenished is called a replenishment time

• A periodic server is backlogged whenever the aperiodic job queue is 
nonempty; it is idle if the queue is empty

• The periodic server is scheduled as any other periodic task based upon 
the priority scheme used by the scheduling algorithm

• Except: the server is eligible for execution only when scheduled and when it is backlogged 
and has non-zero budget

13

Periodic Servers



• Different kinds of periodic server differ in how the 
budget is consumed when idle, and when the 
budget is replenished

• A polling server is a simple kind of periodic server
• The budget is replenished to es at the beginning of each period

• The budget is immediately consumed if there is no work when the server 
is scheduled

14

Periodic Servers



• A deficiency of polling server: if server is scheduled 
when not backlogged, it loses its budget
• An aperiodic job arriving just after the polling server has been scheduled 

and found the aperiodic job queue empty will have to wait until the next 
replenishment time

• Want to preserve execution budget of the server when it finds an empty 
queue, to execute an aperiodic job that arrives later in the period, if doing 
so will not affect the correctness of the schedule

• Algorithms that improve the polling approach in this 
way are bandwidth-preserving server algorithms

15

Bandwidth-Preserving Servers



• Bandwidth-preserving servers are periodic servers 
with extra budget consumption and replenishment 
rules

• How do such servers work?
• A backlogged bandwidth-preserving server is ready for execution when it 

has budget

• The scheduler keeps track of the consumption of the budget and 
suspends the server when its is exhausted, or the server becomes idle

• The scheduler moves the server back to the ready queue once it 
replenishes its budget, if the server is backlogged at that time

• If arrival of an aperiodic job causes the server to become backlogged, and 
it has budget, the server is put back on the ready queue: this overcomes 
limitation of polling server

16

Bandwidth-Preserving Servers



• Many types of bandwidth-preserving server:
• Deferrable servers

• Sporadic servers

• Constant utilisation servers

• Total bandwidth servers

• Weighted fair queuing servers

• …

17

Bandwidth-Preserving Servers



• The simplest bandwidth-preserving server
• Improves response time of aperiodic jobs, compared to polling server

• Consumption rule: 
• The budget is consumed at the rate of one per unit time whenever the 

server executes

• Unused budget is retained throughout the period, to be used whenever 
there are aperiodic jobs to execute

• Instead of discarding the budget if no aperiodic job to execute at start of period, keep in the 
hope a job arrives

• Replenishment rule: 
• The budget is set to eS at multiples of the period

• i.e. time instants k⋅pS, for k = 0, 1, 2, …

• Note: the server is not allowed to carry over budget from period to period

18

Deferrable Server



19

Deferrable Server: Example

0 1 2 3 4 5 6 7 8 9

T2=(p=6.5, e=0.5)

T1=(φ=2, p=3.5, e=1.5)

Periodic tasks T1 and T2 are scheduled according to the rate monotonic algorithm



Add the deferrable server, scheduled according to the rate monotonic priority, but 
with the budget consumption and replenishment rules affecting its execution time

The deferrable server is usually run at highest priority, but this is not strictly required

0 1 2 3 4 5 6 7 8 9

T1=(φ=2, p=3.5, e=1.5)

T2=(p=6.5, e=0.5)

TDS=(pS=3, eS=1)

0

1
Budget

JA released
(aperiodic, e = 1.75)

Budget replenished

Budget exhausted

Budget replenished

20

Deferrable Server: Example



• Maximum schedulable utilisation test fails
• Utilisation varies depending on arrival times of jobs executed by server

• Use time demand analysis based on critical instants to determine if the 
system can be scheduled

• Finding the critical instants:
• Assume a fixed-priority system T in which Di ≤ pi ∀ i scheduled with a 

deferrable server (pS, eS) that has the highest priority among all tasks 

• A critical instant of every periodic tasks Ti occurs at a time t0 when all of 
the following are true:

• One of its jobs Ji,c is released at t0

• A job in every higher-priority periodic task is released at t0

• The budget of the server is eS at t0, one or more aperiodic jobs are released at t0, and they 
keep the server backlogged hereafter

• The next replenishment time of the server is t0 + eS

21

Deferrable Server: Schedulability (1)



• The definition of critical instant is identical to that 
for the periodic tasks without the deferrable server 
+ the worst-case requirements for the server

• The time-demand function is:

• To determine whether the task Ti is schedulable, we simply have to check 
whether wi(t) ≤ t for some t ≤ Di

• Remember, this is a sufficient condition, not necessary – i.e., if this 
condition is not true, the system may not be schedulable

22

Deferrable Server: Schedulability (1)

Execution time
of job Ji

Execution time of higher priority
jobs started during this interval

Execution time of
deferrable server

wi(t) = ei +
i�1X

k=1

⇠
t

pk

⇡
ek + es +

⇠
t� es
ps

⇡
es



• In general, no maximum schedulable utilization can 
determine schedulability for a fixed-priority system 
with a deferrable server
• One special case: a system of n independent, preemptable periodic tasks, 

whose periods satisfy ps < p1 < p2 < … < pn < 2ps and pn > ps + es, where the 
relative deadlines equal their respective periods, can be scheduled rate-
monotonically with a deferrable server provided U < URM/DS(n) where:

23

Deferrable Server: Schedulability (1)

URM/DS(n) = (n� 1)

$✓
us + 2

us + 1

◆ 1
(n�1)

� 1

%



• It is easier to reason about the schedulability of a 
deadline-driven system with a deferrable server
• The deadline of a deferrable server is its next replenishment time

• A periodic task Ti in a system of N independent, preemptable, periodic 
tasks is schedulable with a deferrable server with period pS, execution 
budget eS and utilization uS, according to the EDF algorithm if:

• Must be calculated for each task in the system, since Di included

• Example: tasks T1=(3, 0.6), T2=(5.0, 0.5), T3=(7, 1.4) scheduled with a 
deferrable server ps=4, es=0.8

• The left-hand side of the above inequality is 0.913, 0.828 and 0.792 
respectively; hence the three tasks are schedulable

24

Deferrable Server: Schedulability (2)

NX

k=1

ek
min(Dk, pk)

+ us

✓
1 +

ps � es
Di

◆
 1



• Assumptions, definitions and system model

• Simple approaches
• Background, interrupt-driven and polled execution

• Periodic servers

• Bandwidth-preserving servers
• Deferrable server

• …

• Should have an initial understanding of how to 
schedule aperiodic jobs in a more optimal manner

25

Summary


