
Priority-driven Scheduling of Periodic Tasks
(2)

Advanced Operating Systems (M)
Lecture 5

• Schedulability tests for fixed-priority systems
• Conditions for optimality and schedulability

• General schedulability tests and time demand analysis

• Practical factors
• Non-preemptable regions

• Self-suspension

• Context switches

• Limited priority levels

Lecture Outline

2

• You will recall:
• EDF and LST dynamic priority scheduling optimal:
• Always produce a feasible schedule if one exists – on a single processor, as long as

preemption is allowed and jobs do not contend for resources

• Fixed priority algorithms non-optimal in general:
• RM and DM sometimes fail to schedule tasks that can be scheduled using other algorithms

• Proof:

• Hence introduced schedulability tests in lecture 4

3

Optimality and Schedulability

J1,2 J2,1 J1,3 J2,2 J1,4 J1,5J2,2 J2,2J2,1J1,1

T1 = (2, 1)
T2 = (5, 2.5)

J1,1 J1,2 J1,3 J1,4 J1,5

J2,2J2,1 J2,3

J1,6

0 1 2 3 4 5 6 7 8 9 10

T1 > T2 T2 > T1
Misses deadlines unless relative priority
changes; cannot be scheduled using RM

• However, fixed priority algorithms can be optimal in
restricted systems

• Example:
• RM and DM are optimal in simply periodic systems

• A system of periodic tasks is simply periodic if the period of each task is
an integer multiple of the period of the other tasks, pk = n⋅pi, where pi < pk
and n is a positive integer; for all Ti and Tk

• True for many real-world systems, since easy to engineer around
multiples of a single run loop

4

Optimality of RM and DM Algorithms

• Theorum: A set of simply periodic, independent,
preemptable tasks with Di ≥ pi is schedulable on
one processor using RM or DM iff U ≤ 1

• Proof:
• A simply periodic system, assume tasks in phase
• Worst case execution time occurs when tasks in phase

• Ti misses deadline at time t where t is an integer multiple of pi

• Again, worst case ⇒ Di = pi

• Simply periodic ⇒ t integer multiple of periods of all higher priority tasks

• Total time required to complete jobs with deadline ≤ t is

• Only fails when Ui > 1

5

Optimality of RM and DM Algorithms

iX

k=1

ek
pk

t = t · Ui

• Identified several simple schedulability tests for
fixed-priority scheduling:
• A system of n independent preemptable periodic tasks with Di = pi can be

feasibly scheduled on one processor using RM iff U ≤ n⋅(21/n – 1)

• A system of simply periodic independent preemptable tasks with Di ≥ pi is
schedulable on one processor using the RM algorithm iff U ≤ 1

• [similar results for DM]

• But: there are algorithms and regions of operation
where we don’t have a schedulability test and must
resort to exhaustive simulation
• Is there a more general schedulability test?

• Yes, extend the approach taken for simply periodic system schedulability

6

Schedulability of Fixed-Priority Tasks

• Fixed priority algorithms are predictable and do not
suffer from scheduling anomalies
• The worst case execution time of the system occurs with the worst case

execution time of the jobs, unlike dynamic priority algorithms which can
exhibit anomalous behaviour

• Use as the basis for a general schedulability test:
• Find the critical instant when the system is most loaded, and has its worst

response time

• Use time demand analysis to determine if the system is schedulable at
that instant

• Prove that, if a fixed-priority system is schedulable at the critical instant, it
is always schedulable

7

Fixed-Priority Tasks: Schedulability Test

• A critical instant for a job is the worst-case release
time for that job, taking into account all jobs that
have higher priority
• i.e. a job released at the same instant as all jobs with higher priority are

released, and must wait for all those jobs to complete before it executes

• The response time of a job in Ti released at a critical instant is called the
maximum (possible) response time, and is denoted by Wi

• The schedulability test involves checking each task
in turn, to verify that it can be scheduled when
started at a critical instant
• If schedulable at all critical instants, will work at other times

• More work than the test for maximum schedulable utilisation, but less
than an exhaustive simulation

8

Finding the Critical Instant

• A critical instant of a task Ti is a time such that:
 If wi,k ≤ Di,k for every Ji,k in Ti then

 The job released at that instant has the maximum
 response time of all jobs in Ti and Wi = wi,k

 else if ∃ Ji,k : wi,k > Di,k then

 The job released at that instant has response time > D

 where wi,k is the response time of the job

• In a fixed-priority system where each job completes
before the next job in the same task is released, a
critical instant occurs when one of its jobs Ji,c is
released at the same time with a job from every
higher-priority task

All jobs meet deadlines,
but this instant is when
the job with the slowest
response is started

If some jobs don’t meet
deadlines, this is one of
those jobs

9

Finding the Critical Instant

10

Finding the Critical Instant: Example

0 1 2 3 4 5 6 7 8 9 10 11 12

T1 = (2.0, 0.6)

T2 = (2.5, 0.2)

T3 = (3.0, 1.2)

• 3 tasks scheduled using rate-monotonic

• Response times of jobs in T2 are: r2,1 = 0.8, r2,3 = 0.3, r2,3 = 0.2, r2,4 = 0.3, r2,5 = 0.8, …

• Therefore critical instants of T2 are t = 0 and t = 10

• Time demand analysis:
• For each job Ji,c released at a critical instant, if Ji,c and all higher priority

tasks complete executing before their relative deadlines the system can
be scheduled

• Compute the total demand for processor time by a job released at a
critical instant of a task, and by all the higher-priority tasks, as a function
of time from the critical instant; check if this demand can be met before
the deadline of the job:
• Consider one task, Ti, at a time, starting highest priority and working down to lowest priority

• Focus on a job, Ji, in Ti, where the release time, t0, of that job is a critical instant of Ti

• At time t0 + t for t ≥ 0, the processor time demand wi(t) for
this job and all higher-priority jobs released in [t0, t] is:

11

Using the Critical Instant

Execution time of job Ji Execution time of higher priority
jobs started during this interval

wi(t) = the time-
demand function

wi(t) = ei +
i�1X

k=1

⇠
t

pk

⇡
ek

• Compare the time demand, wi(t), with the available
time, t:
• If wi(t) ≤ t for some t ≤ Di, the job, Ji, meets its deadline, t0 + Di

• If wi(t) > t for all 0 < t ≤ Di then the task probably cannot complete by its
deadline; and the system likely cannot be scheduled using a fixed priority
algorithm
• Note that this is a sufficient condition, but not a necessary condition. Simulation may show that

the critical instant never occurs in practice, so the system could be feasible…

• Use this method to check that all tasks are
schedulable if released at their critical instants; if so
conclude the entire system can be scheduled

12

Time-Demand Analysis

Time-Demand Analysis: Example

Rate Monotonic:
T1 = (3, 1), T2 = (5, 2), T3 = (10, 2)
U = 0.933

The time-demand functions
w1(t), w2(t) and w3(t) are
not above t at their deadline
⇒ system can be scheduled

Exercise: simulate the
system to check this!

13

J3,1 starts with a time
demand of 5 units: 2
for itself, 2 for J2,1,
1 for J1,1

0 2 4 6 8 10
0

2

4

6

8

10

Time, t

Ti
m

e-
de

m
an

d
fu

nc
tio

n,
 w

i(t
)

w1(t)

w2(t)

t

Deadline for J1,1

Deadline for J2,1

Deadline for J3,1

w3(t)

• The time-demand wi(t) is a staircase function
• Steps in the time-demand for a task occur at multiples of the period for

higher-priority tasks

• The value of wi(t) – t linearly decreases from a step until the next step

• If our interest is the schedulability of a task, it
suffices to check if wi(t) ≤ t at the time instants
when a higher-priority job is released; test if a
system can be scheduled becomes:
• Compute wi(t)

• Check whether wi(t) ≤ t is satisfied at any of the instants t = j⋅pk

where k = 1, 2, …, i and j = 1, 2, …, ⎣min(pi, Di)/pk⎦

14

Time-Demand Analysis

• Time-demand analysis schedulability test is more
complex than the schedulable utilization test, but
more general
• Works for any fixed-priority scheduling algorithm, provided the tasks have

short response time (i.e. pi < Di)

• Only a sufficient test: guarantees that schedulable results are correct, but
requires further testing to validate a result of not schedulable

• Alternative approach: simulate the behaviour of
tasks released at the critical instants, up to the
largest period of the tasks
• Still involves simulation, but less complex than an exhaustive simulation

of the system behaviour

• Worst-case simulation method

15

Time-Demand Analysis: Summary

• We have assumed that:
• Jobs are preemptable at any time

• Jobs never suspend themselves

• Each job has distinct priority

• The scheduler is event driven and acts immediately

• These assumptions are often not valid… how does
this affect the system?

16

Practical Factors

• A ready job is blocked when it is prevented from
executing by a lower-priority job;

• A priority inversion is when a lower-priority job
executes while a higher-priority job is blocked

• These occur if jobs cannot be pre-empted:
• Many reasons why a job may have non-preemptable sections
• Critical section over a resource; some system calls are non-preemptable; I/O scheduling; etc.

• If a job becomes non-preemptable, priority inversions may occur, these
may cause a higher priority task to miss its deadline

• When attempting to determine if a task meets all of its deadlines, must
consider not only all the tasks that have higher priorities, but also non-
preemptable regions of lower-priority tasks
• Add the blocking time in when calculating if a task is schedulable

17

Blocking and Priority Inversion

• Self-suspension
• A job may invoke an external operation (e.g. request an I/O operation),

during which time it is suspended

• This means the task is no longer strictly periodic… again need to take into
account self-suspension time when calculating a schedule

• Context Switches
• Assume maximum number of context switches Ki for a job in Ti is known;

each takes tCS time units

• Compensate by setting execution time of each job, eactual = e + 2tCS

• (more if jobs self-suspend, since additional context switches)

18

Self-Suspension and Context Switches

• Previous discussion of priority-driven scheduling
driven by job release and job completion events

• Alternatively, can perform priority-driven scheduling
at with fixed scheduling quanta

• Additional factors to account for in schedulability
analysis
• The fact that a job is ready to execute will not be noticed and acted upon

until the next clock interrupt; this will delay the completion of the job

• A ready job that is yet to be noticed by the scheduler must be held
somewhere other than the ready job queue, the pending job queue

• When the scheduler executes, it moves jobs in the pending queue to the
ready queue according to their priorities; once in ready queue, the jobs
execute in priority order

19

Tick Scheduling

POSIX Real-time Scheduling API

• IEEE 1003 POSIX
• “Portable Operating System Interface”

• Defines a subset of Unix functionality, various (optional) extensions added
to support real-time scheduling, signals, message queues, etc.

• Widely implemented:
• Unix variants and Linux

• Dedicated real-time operating systems

• Limited support in Windows

• Several POSIX standards for real-time scheduling
• POSIX 1003.1b (“real-time extensions”)

• POSIX 1003.1c (“pthreads”)

• POSIX 1003.1d (“additional real-time extensions”)

• Supports a sub-set of scheduler features we have discussed

20

POSIX Scheduling API (Processes)

21

#include <unistd.h>
#include <sched.h>

struct sched_param {
 int sched_priority;
 int sched_ss_low_priority;
 struct timespec sched_ss_repl_period;
 struct timespec sched_ss_init_budget;
};

int sched_setscheduler(pid_t pid, int policy, struct sched_param *p);
int sched_getscheduler(pid_t pid);
int sched_getparam(pid_t pid, struct sched_param *sp);
int sched_setparam(pid_t pid, struct sched_param *sp);

int sched_get_priority_max(int policy);
int sched_get_priority_min(int policy);

int sched_rr_get_interval(pid_t pid, struct timespec *t);

int sched_yield(void);

POSIX Scheduling API (Threads)

22

#include <unistd.h>
#include <pthread.h>

int pthread_attr_init(pthread_attr_t *attr);

int pthread_attr_getschedpolicy(pthread_attr_t *attr, int policy);
int pthread_attr_setschedpolicy(pthread_attr_t *attr, int policy);

int pthread_attr_getschedparam(pthread_attr_t *attr, struct sched_param *p);
int pthread_attr_setschedparam(pthread_attr_t *attr, struct sched_param *p);

int pthread_create(pthread_t *thread,
 pthread_attr_t *attr,
 void *(*thread_func)(void*),
 void *thread_arg);
int pthread_exit(void *retval);
int pthread_join(pthread_t thread, void **retval);

Thread scheduling API mirrors process scheduling API

POSIX Scheduling API

23

• Four standard scheduling policies:
• SCHED_FIFO Fixed priority, pre-emptive, FIFO scheduler

• SCHED_RR Fixed priority, pre-emptive, round robin scheduler

• SCHED_SPORADIC Sporadic server

• SCHED_OTHER Unspecified (default time-sharing scheduler)

• Limited set of priorities:
• Use sched_get_priority_min(), sched_get_priority_max() to determine the

range

• Guarantees at least 32 priority levels

• Good support for fixed-priority scheduling

Implementing Rate Monotonic Scheduling

• Rate monotonic and deadline monotonic schedules
can naturally be implemented using POSIX
primitives
• Assign priorities to tasks in the usual way for RM/DM

• Query range of allowed system priorities (sched_get_priority_min()
and sched_get_priority_max())

• Map task set onto system priorities

• Start threads for each task using assigned priorities and SCHED_FIFO

• No explicit support for indicating deadlines, periods
• Implement by hand, as a run-loop for each task

24

• Have discussed fixed-priority scheduling of periodic
tasks:
• Optimality of RM and DM

• More general schedulability tests and time-demand analysis

• Outlined practical factors that affect real-world
periodic systems

Summary

25

