P Unaversity | School of
of Glasgow | Computing Science

Priority-driven Scheduling of Periodic Tasks

(2)

Advanced Operating Systems (M)
Lecture 5

Lecture Outline

e Schedulability tests for fixed-priority systems

e (Conditions for optimality and schedulability

e (General schedulability tests and time demand analysis

® Practical factors

e Non-preemptable regions
e Self-suspension
e (Context switches

e Limited priority levels

Optimality and Schedulabillity

e You will recall:
e EDF and LST dynamic priority scheduling optimal:

° Always produce a feasible schedule if one exists — on a single processor, as long as
preemption is allowed and jobs do not contend for resources

e Fixed priority algorithms non-optimal in general.
° RM and DM sometimes fail to schedule tasks that can be scheduled using other algorithms

* Proot: ;. s J\ 5 T J\s T

2.1 - Ja s 1 =@ 1)
: : : : : : : T2=(5, 25)

Jl,l J2,1 Jl,2 J2,1 Jl,3 J2,2 Jl,4 J2,2 JI,S J2,2

1
0 1 2 3 4 3 6 7 8 9 10
-) \ Misses deadlines unless relative priority
1= 72 > 1, changes; cannot be scheduled using RM

e Hence introduced schedulability tests in lecture 4

Optimality of RM and DM Algorithms

® However, fixed priority algorithms can be optimal in
restricted systems

e Example:

e RM and DM are optimal in simply periodic systems

e A system of periodic tasks is simply periodic if the period of each task is
an integer multiple of the period of the other tasks, pi = n-p;, where p; < pi
and n is a positive integer; for all 7; and Tk

e True for many real-world systems, since easy to engineer around
multiples of a single run loop

Optimality of RM and DM Algorithms

® Theorum: A set of simply periodic, independent,
preemptable tasks with D; > p; Is schedulable on

one processor using RMor DM iff U< 1

® Proof:

e Asimply periodic system, assume tasks in phase

° Worst case execution time occurs when tasks in phase

e T, misses deadline at time 7 where ¢ is an integer multiple of p;

° Again, worst case = D, = pi

e Simply periodic = ¢ integer multiple of periods of all higher priority tasks

(4
e
e Total time required to complete jobs with deadline <tis Z —kt =t-U;

k
® Only fails when U; > 1 P

Schedulability of Fixed-Priority Tasks

e |dentified several simple schedulability tests for
fixed-priority scheduling:
e A system of n independent preemptable periodic tasks with D; = p; can be

feasibly scheduled on one processor using RM iff U < n-(21" - 1)

e A system of simply periodic independent preemptable tasks with D; > p; is
schedulable on one processor using the RM algorithm iff U< 1

e [similar results for DM]

e But: there are algorithms and regions of operation
where we don't have a schedulability test and must
resort to exhaustive simulation

® |s there a more general schedulability test?

® Yes, extend the approach taken for simply periodic system schedulability

Fixed-Priority Tasks: Schedulability Test

e Fixed priority algorithms are predictable and do not
suffer from scheduling anomalies

® The worst case execution time of the system occurs with the worst case
execution time of the jobs, unlike dynamic priority algorithms which can
exhibit anomalous behaviour

® Use as the basis for a general schedulability test:
e Find the critical instant when the system is most loaded, and has its worst
response time

e Use time demand analysis to determine if the system is schedulable at
that instant

® Prove that, if a fixed-priority system is schedulable at the critical instant, it
Is always schedulable

Finding the Critical Instant

® A critical instant for a job is the worst-case release
time for that job, taking into account all jobs that
have higher priority

® |.e. ajobreleased at the same instant as all jobs with higher priority are
released, and must wait for all those jobs to complete before it executes

® The response time of a job in T; released at a critical instant is called the
maximum (possible) response time, and is denoted by W;

® The schedulability test involves checking each task
in turn, to verify that it can be scheduled when
started at a critical instant

e |f schedulable at all critical instants, will work at other times

e More work than the test for maximum schedulable utilisation, but less
than an exhaustive simulation

Finding the Critical Instant

® A critical instant of a task 7; is a time such that:

If wix <D for every Jix in T; then All jobs meet deadlines,
: : : but this instant is when
The job relgased at t.hat |pstant has the maximum the job with the slowest
response time of all jobs in T; and W; = w;x response is started
else if 3 Jix: wir > Dix then
_ _ _ If some jobs don’t meet
The job released at that instant has response time > D deadlines, this is one of

_ _ _ those jobs
where w; is the response time of the job

® |n a fixed-priority system where each job completes
before the next job in the same task is released, a
critical instant occurs when one of its jobs Ji. Is
released at the same time with a job from every
higher-priority task

Finding the Critical Instant. Example

T1=(2.O,O.6)§|:| | ,I:I | .I:I. l|:| | lI:I | II:II ,I:I

T2=(2'5’O'2)i:|. .Ij. | lj . .lj. . :—I:I, ..
[=3012) 1 @ 1 ,

» 3 tasks scheduled using rate-monotonic
 Response times of jobs in 7, are: r,,=0.8,r,,=0.3,r,;,=02,7,,=0.3,7,5=0.8, ...

 Therefore critical instants of 7, are t =0 and = 10

Using the Critical Instant

® TJime demand analysis:

e For each job J;. released at a critical instant, if J;. and all higher priority
tasks complete executing before their relative deadlines the system can

be scheduled

e Compute the total demand for processor time by a job released at a
critical instant of a task, and by all the higher-priority tasks, as a function
of time from the critical instant; check if this demand can be met before

the deadline of the job:
° Consider one task, T;, at a time, starting highest priority and working down to lowest priority
° Focus on a job, J;, in T;, where the release time, ¢y, of that job is a critical instant of T;

° At time 1 + ¢ for t > 0, the processor time demand wi(¢) for
this job and all higher-priority jobs released in [#, 7] is: wZ = e; + Z _‘
w,(t) = the time-
demand function
Execution time of job J. Executlon time of higher priority

jobs started during this interval

Time-Demand Analysis

e Compare the time demand, wi(¢), with the available
time, ¢:

o |[fwi(¢)<tforsome <D the job, J;, meets its deadline, 7 + D;

o If wi(r)>tforall 0 <z<D;then the task probably cannot complete by its
deadline; and the system likely cannot be scheduled using a fixed priority
algorithm

° Note that this is a sufficient condition, but not a necessary condition. Simulation may show that
the critical instant never occurs in practice, so the system could be feasible...

o Use this method to check that all tasks are
schedulable if released at their critical instants: if so
conclude the entire system can be scheduled

Time-Demand Analysis: Example

Rate Monotonic: 10
T,=(3,1), T, =(5,2), T,=(10, 2)
U =0.933
8
The time-demand functions g
w4 (2), wo(f) and wo(7) are § 6
not above ¢ at their deadline 2
— system can be scheduled H_E
C
e 4
S
o)
Exercise: simulate the £
system to check this! =5
0

Js 4 starts with a time

demand of 5 units: 2
for itself, 2 for J, 4,

1 for J,

wy(?)

Deadline for J; ,

Deadline for J, ,

Deadline for J, ,

. lime, ¢

Time-Demand Analysis

¢ The time-demand wi(¢) is a staircase function

e Steps in the time-demand for a task occur at multiples of the period for
higher-priority tasks

e The value of wi(f) — ¢ linearly decreases from a step until the next step

® |f our interest is the schedulability of a task, it
suffices to check if wi(¢) <t at the time instants
when a higher-priority job is released; test if a
system can be scheduled becomes:

e Compute wi(f)

® Check whether wi(r) <t is satisfied at any of the instants 1 =;-px
where k=1,2,...,iandj=1,2, ..., Lmin(pi, Di)/ka

Time-Demand Analysis: Summary

¢ [ime-demand analysis schedulability test is more

complex than the schedulable utilization test, but
more general

e \Works for any fixed-priority scheduling algorithm, provided the tasks have
short response time (i.e. p: < D;)

e Only a sufficient test: guarantees that schedulable results are correct, but
requires further testing to validate a result of not schedulable

e Alternative approach: simulate the behaviour of
tasks released at the critical instants, up to the
largest period of the tasks

e Still involves simulation, but less complex than an exhaustive simulation
of the system behaviour

e \Worst-case simulation method

Practical Factors

® \Ne have assumed that:

e Jobs are preemptable at any time
e Jobs never suspend themselves
e Each job has distinct priority

® The scheduler is event driven and acts immediately

® These assumptions are often not valid... how does
this affect the system?

Blocking and Priority Inversion

® Aready job is blocked when it is prevented from
executing by a lower-priority job;

® A priority inversion is when a lower-priority job
executes while a higher-priority job is blocked

® These occur if jobs cannot be pre-empted:

e Many reasons why a job may have non-preemptable sections

° Critical section over a resource; some system calls are non-preemptable; I/0O scheduling; etc.

e |f ajob becomes non-preemptable, priority inversions may occur, these
may cause a higher priority task to miss its deadline

e \When attempting to determine if a task meets all of its deadlines, must
consider not only all the tasks that have higher priorities, but also non-
preemptable regions of lower-priority tasks

° Add the blocking time in when calculating if a task is schedulable

|7

Self-Suspension and Context Switches

® Self-suspension

A job may invoke an external operation (e.g. request an I/O operation),
during which time it is suspended

This means the task is no longer strictly periodic... again need to take into
account self-suspension time when calculating a schedule

e Context Switches

Assume maximum number of context switches K; for a job in T; is known;
each takes rcs time units

Compensate by setting execution time of each job, eactual = € + 2tcs

(more if jobs self-suspend, since additional context switches)

Tick Scheduling

® Previous discussion of priority-driven scheduling
driven by job release and job completion events

e Alternatively, can perform priority-driven scheduling
at with fixed scheduling quanta

® Additional factors to account for in schedulability
analysis

e The fact that a job is ready to execute will not be noticed and acted upon
until the next clock interrupt; this will delay the completion of the job

e Aready job that is yet to be noticed by the scheduler must be held
somewhere other than the ready job queue, the pending job queue

e \When the scheduler executes, it moves jobs in the pending queue to the
ready queue according to their priorities; once in ready queue, the jobs
execute in priority order

POSIX Real-time Scheduling API

e |[EEE 1003 POSIX

e “Portable Operating System Interface”

e Defines a subset of Unix functionality, various (optional) extensions added
to support real-time scheduling, signals, message queues, etc.

e \Widely implemented:

° Unix variants and Linux
° Dedicated real-time operating systems
° Limited support in Windows

e Several POSIX standards for real-time scheduling

e POSIX 1003.1b (“real-time extensions”)

e POSIX 1003.1c (“pthreads”)

e POSIX1003.1d (“additional real-time extensions”)

e Supports a sub-set of scheduler features we have discussed

20

POSIX Scheduling APl (Processes)

‘#include <unistd.h>
i #include <sched.h>

Estruct sched param ({

int sched priority;

int sched ss low priority;

struct timespec sched ss repl period;
struct timespec sched ss init budget;

Eint sched setscheduler (pid t pid, int policy, struct sched param *p); !
iint sched getscheduler (pid t pid); ;
:int sched getparam(pid t pid, struct sched param *sp) ;
int sched setparam(pid t pid, struct sched param *sp) ;

'int sched get priority max(int policy) ;
int sched get priority min(int policy);

Eint sched rr get interval(pid t pid, struct timespec *t);

‘int sched yield(void) ;

21

POSIX Scheduling API (Threads)

‘#include <unistd.h>
‘#include <pthread.h>

Eint pthread attr init(pthread attr t *attr);

Eint pthread attr getschedpolicy(pthread attr t *attr, int policy);
‘int pthread attr setschedpolicy(pthread attr t *attr, int policy);

Eint pthread attr getschedparam(pthread attr t *attr, struct sched param *p);
‘int pthread attr setschedparam(pthread attr t *attr, struct sched param *p);

‘int pthread create (pthread t *thread,
| pthread attr t *attr,
void * (*thread func) (void¥),
: void *thread argqg);
‘int pthread exit(void *retval);
‘int pthread join(pthread t thread, void **retval);

Thread scheduling APIl mirrors process scheduling API

22

POSIX Scheduling AP

® [Four standard scheduling policies:

e SCHED FIFO Fixed priority, pre-emptive, FIFO scheduler

e SCHED RR Fixed priority, pre-emptive, round robin scheduler
e SCHED SPORADIC Sporadic server

e SCHED OTHER Unspecified (default time-sharing scheduler)

® | imited set of priorities:

e Use sched get priority_min(), sched get priority _max() to determine the
range

e (Guarantees at least 32 priority levels

® (Good support for fixed-priority scheduling

23

Implementing Rate Monotonic Scheduling

e Rate monotonic and deadline monotonic schedules
can naturally be implemented using POSIX
primitives
® Assign priorities to tasks in the usual way for RM/DM

e Query range of allowed system priorities (sched get priority min ()
and sched get priority max())

e Map task set onto system priorities
e Start threads for each task using assigned priorities and SCHED FIFO

® No explicit support for indicating deadlines, periods

e |mplement by hand, as a run-loop for each task

24

Summary

® Have discussed fixed-priority scheduling of periodic
tasks:

e Optimality of RM and DM

® More general schedulability tests and time-demand analysis

e (Qutlined practical factors that affect real-world
periodic systems

25

