

Priority-driven Scheduling of Periodic Tasks (1)

Advanced Operating Systems (M) Lecture 4

Priority-driven Scheduling

- Assign priorities to jobs, based on their deadline or other timing constraint
 - Make scheduling decisions based on the priorities, when events such as releases and job completions occur
 - Jobs are placed in one or more queues; at each event, the ready job with the highest priority is executed
 - The assignment of jobs to priority queues, along with rules such a whether preemption is allowed, completely defines a priority scheduling algorithm
- Priority-driven algorithms make locally optimal decisions about which job to run
 - Locally optimal scheduling decisions are often not globally optimal
 - Priority-driven algorithms never intentionally leave any resource idle;
 leaving a resource idle is not locally optimal

Advantages and Disadvantages

- Priority-driven scheduling has many advantages over clock-driven scheduling
 - Better suited to applications with varying time and resource requirements, since needs less a priori information
 - Run-time overheads are small
- But, harder to validate for correctness:
 - Scheduling anomalies can occur for multiprocessor systems, if preemption is disallowed, or if there is contention for resources
 - Reducing the execution time of a job in a task can increase the total response time of the task: not sufficient to show correctness with worse-case execution times, must simulate with all possible execution times for all jobs comprising a task
 - Can be proved that anomalies do not occur for independent, jobs with fixed release times, where preemption is allowed, executed using any priority-driven scheduler on a single processor

Priority-driven Scheduling

- Many priority-driven real-time scheduling algorithms exist
 - Earliest deadline first
 - Least slack time
 - Rate monotonic
 - Deadline monotonic
- Each has different characteristics

Fixed- and Dynamic-Priority Algorithms

A priority-driven scheduler is an on-line scheduler

- It does not pre-compute a schedule: instead assigns priorities to jobs when released, places them on a run queue in priority order
- When pre-emption is allowed, a scheduling decision is made whenever a job is released or completed
- At each scheduling decision time, the scheduler updates the run queues and executes the job at the head of the queue

The priority of jobs within a task may vary:

- Jobs in a task may be assigned the same priority (task level fixed-priority) or different priorities (task level dynamic-priority)
- The priority of each job is usually fixed (job level fixed-priority); but some systems vary the priority of a job after it has started (job level dynamicpriority)

Rate Monotonic Scheduling

- Well known fixed-priority algorithm
- Assigns priorities to tasks based on their periods
 - The shorter the period, the higher the priority; the rate (of job releases) is the inverse of the period, so jobs with higher rate have higher priority

- For example, consider a system of 3 tasks:
 - $T_1 = (4, 1)$ \Rightarrow rate = 1/4 $T_2 = (5, 2)$ \Rightarrow rate = 1/5 $T_3 = (20, 5)$ \Rightarrow rate = 1/20
 - Relative priorities: $T_1 > T_2 > T_3$

Example: Rate Monotonic Scheduling

Time	Ready to run	Running			
0					
1					
2					
3					
4					
5					
6					
7					
8					
9					

Time	Ready to run	Running			
10					
11					
12					
13					
14					
15					
16					
17					
18					
19					

Deadline Monotonic Scheduling

- The deadline monotonic algorithm assigns task priority according to relative deadlines – the shorter the relative deadline, the higher the priority
- When relative deadline of every task matches its period, then rate monotonic and deadline monotonic give identical results
- When the relative deadlines are arbitrary:
 - Deadline monotonic can sometimes produce a feasible schedule in cases where rate monotonic cannot; rate monotonic always fails when deadline monotonic fails
 - Hence deadline monotonic preferred if deadline ≠ period

The EDF and LST Scheduling Algorithms

- Two popular dynamic priority algorithms
- Earliest deadline first (EDF)
 - Assign priority to jobs based on deadline: earlier deadline = higher priority
 - Simple, just requires knowledge of deadlines
- Least Slack Time first (LST)
 - A job J_i has deadline d_i , execution time e_i , and was released at time r_i
 - At time $t < d_i$: remaining execution time $t_{\text{rem}} = e_i (t r_i)$
 - Assign priority based on least slack time, $t_{\text{slack}} = d_i t t_{\text{rem}}$
 - Strict LST: scheduling decision made whenever a queued job's slack time becomes smaller than the executing job's slack time – high overhead, not used; Non-strict LST: scheduling decisions made only when jobs release or complete
 - More complex, requires knowledge of execution times and deadlines

Example: Earliest Deadline First

Time	Ready to run	Running	Time	Ready to run		

Running

Optimality of EDF and LST

- The EDF and LST algorithms are optimal
 - On a single processor, as long as preemption is allowed and jobs do not contend for resources; can fail to schedule a feasible set of jobs if there are multiple processors, or if preemption is allowed

Optimality of EDF and LST: Proof

- Any feasible schedule can be transformed into an EDF schedule
 - If J_i is scheduled to run before J_k , but J_i 's deadline is later than J_k 's either:
 - The release time of Jk is after the Ji completes ⇒ they're already in EDF order
 - The release time of Jk is before the end of the interval in which Ji executes:

• Swap J_i and J_k (this is always possible, since J_i 's deadline is later than J_k 's)

Move any jobs following idle periods forward into the idle period

- The result is an EDF schedule
- So, if EDF fails to produce a feasible schedule, no such schedule exists
 - If a feasible schedule existed it could be transformed into an EDF schedule, contradicting the statement that EDF failed to produce a feasible schedule [proof for LST is similar]

Relative Merits

- Fixed- and dynamic-priority scheduling algorithms have different properties; neither appropriate for all scenarios
- The EDF algorithm gives higher priority to jobs that have missed their deadlines than to jobs whose deadline is still in the future
 - Not necessarily suited to systems where occasional overload unavoidable
- Dynamic algorithms like EDF can produce feasible schedules in cases where RM and DM cannot
 - But fixed priority algorithms often more predictable, lower overhead

Example: Comparing Different Algorithms

- Compare performance of RM, EDF, LST and FIFO scheduling
- Assume a single processor system with 2 tasks:
 - $T_1 = (2, 1)$
 - $T_2 = (5, 2.5)$ H = 10

- The total utilisation is 1.0; there is no slack time
 - Expect some of these algorithms to lead to missed deadlines!
 - This is one of the cases where EDF works better than RM/DM

Example: RM, EDF, LST and FIFO

 Demonstrate by exhaustive simulation that LST and EDF meet deadlines, but FIFO and RM don't

Schedulability Tests

 Simulating schedules is both tedious and errorprone... can we demonstrate correctness without working through the schedule?

- Yes, in some cases. This is a schedulability test
 - A test to demonstrate that all deadlines are met, when scheduled using a particular algorithm
 - An efficient schedulability test can be used as an on-line acceptance test;
 clearly exhaustive simulation is too expensive

Schedulable Utilisation

- Recall: a periodic task T_i is defined by the 4-tuple $(\varphi_i, p_i, e_i, D_i)$ with utilisation $u_i = e_i / p_i$
- Total utilisation of system $U = \sum_{i=1}^{n} u_i$ where $0 \le U \le 1$
- A scheduling algorithm can feasibly schedule any system of periodic tasks on a processor if U is equal to or less than the maximum schedulable utilisation of the algorithm, $U_{\rm ALG}$
- This gives a schedulability test, where a system can be validated by showing that $U \le U_{ALG}$
 - If $U_{ALG} = 1$, the algorithm is optimal

Schedulable Utilisation: EDF

- Theorem: a system of independent preemptable periodic tasks with $D_i = p_i$ can be feasibly scheduled on one processor using EDF if and only if $U \le 1$
 - $U_{\text{EDF}} = 1$ for independent, preemptable periodic tasks with $D_i = p_i$
 - Corollary: result also holds if deadline longer than period: $U_{\text{EDF}} = 1$ for independent preemptable periodic tasks with $D_i \ge p_i$

Notes:

- Result is independent of φ_i
- Result can also be shown to apply to strict LST

Schedulable Utilisation: EDF

• Test fails if $D_i < p_i$ for some i

 $J_{2,1}$ is preempted and misses deadline

• E.g. $T_1 = (2, 0.8), T_2 = (5, 2.3, 3)$

- However, there is an alternative test:
 - The density of the task, T_i , is $\delta_i = e_i / \min(D_i, p_i)$
 - The density of the system is $\Delta = \delta_1 + \delta_2 + ... + \delta_n$
 - Theorem: A system T of independent, preemptable periodic tasks can be feasibly scheduled on one processor using EDT if $\Delta \le 1$.
- Note:
 - This is a sufficient condition, but not a necessary condition i.e. a system is guaranteed to be feasible if $\Delta \le 1$, but might still be feasible if $\Delta > 1$ (would have to run the exhaustive simulation to prove)

Schedulable Utilisation: EDF

- How can you use this in practice?
 - Assume using EDF to schedule multiple periodic tasks, known execution time for all jobs
 - Choose the periods for the tasks such that the schedulability test is met
- Example: a simple digital controller:
 - Control-law computation task, T_1 , takes e_1 = 8 ms, sampling rate is 100 Hz (i.e. p_1 = 10 ms)
 - $\Rightarrow u_1 \text{ is } 0.8$
 - ⇒ the system is guaranteed to be schedulable
 - Want to add another task, T2, taking 50ms will the system still work?

Schedulable Utilisation of RM

• A system of n independent preemptable periodic tasks with $D_i = p_i$ can be feasibly scheduled on one processor using RM if $U \le n \cdot (2^{1/n-1})$

- $\bullet \qquad U_{\rm RM}(n) = n \cdot (2^{1/n} 1)$
- For large $n \to \ln 2$ (i.e., $n \to 0.69314718056...$)

• $U \le U_{\rm RM}(n)$ is a sufficient, but not necessary, condition – i.e., a feasible rate monotonic schedule is guaranteed to exist if $U \le U_{\rm RM}(n)$, but might still be possible if $U > U_{\rm RM}(n)$

Schedulable Utilisation of RM

- What happens if the relative deadlines for tasks are not equal to their respective periods?
- If the deadline is a multiple v of the period: $D_k = v \cdot p_k$

It can be shown that:

$$U_{RM}(n,v) = \begin{cases} v & \text{for } 0 \le v \le 0.5\\ n((2v)^{\frac{1}{n}} - 1) + 1 - v & \text{for } 0.5 \le v \le 1\\ v(n-1)[(\frac{v+1}{v})^{\frac{1}{n}-1} - 1] & \text{for } v = 2, 3, \dots \end{cases}$$

Schedulable Utilisation of RM

n	$\upsilon = 4.0$	$\upsilon = 3.0$	$\upsilon = 2.0$	v = 1.0	v = 0.9	$\upsilon = 0.8$	$\upsilon = 0.7$	v = 0.6	$\upsilon = 0.5$
2	0.944	0.928	0.898	0.828	0.783	0.729	0.666	0.590	0.500
3	0.926	0.906	0.868	0.779	0.749	0.708	0.656	0.588	0.500
4	0.917	0.894	0.853	0.756	0.733	0.698	0.651	0.586	0.500
5	0.912	0.888	0.844	0.743	0.723	0.692	0.648	0.585	0.500
6	0.909	0.884	0.838	0.734	0.717	0.688	0.646	0.585	0.500
7	0.906	0.881	0.834	0.728	0.713	0.686	0.644	0.584	0.500
8	0.905	0.878	0.831	0.724	0.709	0.684	0.643	0.584	0.500
9	0.903	0.876	0.829	0.720	0.707	0.682	0.642	0.584	0.500
∞	0.892	0.863	0.810	0.693	0.687	0.670	0.636	0.582	0.500

 $D_i > p_i \Rightarrow$ Schedulable utilisation increases

 $D_i < p_i \Rightarrow$ Schedulable utilisation decreases

$$D_i = p_i$$

Summary

- Different priority-driven scheduling algorithms
 - Earliest deadline first, least slack time, rate- and deadline- monotonic
 - Each has different properties, suited for different scenarios
- Scheduling tests, concept of maximum schedulable utilisation
 - Examples for different algorithms

 Next lecture: practical factors, more schedulability tests...