
Priority-driven Scheduling of Periodic Tasks
(1)

Advanced Operating Systems (M)
Lecture 4

Priority-driven Scheduling

• Assign priorities to jobs, based on their deadline or
other timing constraint
• Make scheduling decisions based on the priorities, when events such as

releases and job completions occur

• Jobs are placed in one or more queues; at each event, the ready job with
the highest priority is executed

• The assignment of jobs to priority queues, along with rules such a
whether preemption is allowed, completely defines a priority scheduling
algorithm

• Priority-driven algorithms make locally optimal
decisions about which job to run
• Locally optimal scheduling decisions are often not globally optimal

• Priority-driven algorithms never intentionally leave any resource idle;
leaving a resource idle is not locally optimal

2

Advantages and Disadvantages

• Priority-driven scheduling has many advantages
over clock-driven scheduling
• Better suited to applications with varying time and resource requirements,

since needs less a priori information

• Run-time overheads are small

• But, harder to validate for correctness:
• Scheduling anomalies can occur for multiprocessor systems, if

preemption is disallowed, or if there is contention for resources
• Reducing the execution time of a job in a task can increase the total response time of the task:

not sufficient to show correctness with worse-case execution times, must simulate with all
possible execution times for all jobs comprising a task

• Can be proved that anomalies do not occur for independent, jobs with
fixed release times, where preemption is allowed, executed using any
priority-driven scheduler on a single processor

3

Priority-driven Scheduling

• Many priority-driven real-time scheduling
algorithms exist
• Earliest deadline first

• Least slack time

• Rate monotonic

• Deadline monotonic

• Each has different characteristics

4

Fixed- and Dynamic-Priority Algorithms

• A priority-driven scheduler is an on-line scheduler
• It does not pre-compute a schedule: instead assigns priorities to jobs

when released, places them on a run queue in priority order

• When pre-emption is allowed, a scheduling decision is made whenever a
job is released or completed

• At each scheduling decision time, the scheduler updates the run queues
and executes the job at the head of the queue

• The priority of jobs within a task may vary:
• Jobs in a task may be assigned the same priority (task level fixed-priority)

or different priorities (task level dynamic-priority)

• The priority of each job is usually fixed (job level fixed-priority); but some
systems vary the priority of a job after it has started (job level dynamic-
priority)

5

• Well known fixed-priority algorithm

• Assigns priorities to tasks based on their periods
• The shorter the period, the higher the priority; the rate (of job releases) is

the inverse of the period, so jobs with higher rate have higher priority

• For example, consider a system of 3 tasks:
• T1 = (4, 1) ⇒ rate = 1/4

T2 = (5, 2) ⇒ rate = 1/5
T3 = (20, 5) ⇒ rate = 1/20

• Relative priorities: T1 > T2 > T3

Rate Monotonic Scheduling

6

Time Ready to run Running
0
1
2
3
4
5
6
7
8
9

Time Ready to run Running
10
11
12
13
14
15
16
17
18
19

0 4 8 12 16 20

J1,1 J1,2 J1,3 J1,4 J1,5

J2,2J2,1 J2,3 J2,4

J3,1R
el

ea
se

d

T1 = (4, 1)
T2 = (5, 2)
T3 = (20, 5)

7

Example: Rate Monotonic Scheduling

• The deadline monotonic algorithm assigns task
priority according to relative deadlines – the shorter
the relative deadline, the higher the priority

• When relative deadline of every task matches its
period, then rate monotonic and deadline
monotonic give identical results

• When the relative deadlines are arbitrary:
• Deadline monotonic can sometimes produce a feasible schedule in cases

where rate monotonic cannot; rate monotonic always fails when deadline
monotonic fails

• Hence deadline monotonic preferred if deadline ≠ period

Deadline Monotonic Scheduling

9

The EDF and LST Scheduling Algorithms

• Two popular dynamic priority algorithms

• Earliest deadline first (EDF)
• Assign priority to jobs based on deadline: earlier deadline = higher priority

• Simple, just requires knowledge of deadlines

• Least Slack Time first (LST)
• A job Ji has deadline di, execution time ei, and was released at time ri

• At time t < di: remaining execution time trem = ei − (t − ri)

• Assign priority based on least slack time, tslack = di − t − trem

• Strict LST: scheduling decision made whenever a queued job’s slack time
becomes smaller than the executing job’s slack time – high overhead, not
used; Non-strict LST: scheduling decisions made only when jobs release
or complete

• More complex, requires knowledge of execution times and deadlines

10

R
el

ea
se

d

11

Time Ready to run Running Time Ready to run Running

T1 = (2, 1)
T2 = (5, 2.5)

J1,1 J1,2 J1,3 J1,4 J1,5

J2,2J2,1 J2,3

J1,6

0 1 2 3 4 5 6 7 8 9 10

Example: Earliest Deadline First

Optimality of EDF and LST

• The EDF and LST algorithms are optimal
• On a single processor, as long as preemption is allowed and jobs do not

contend for resources; can fail to schedule a feasible set of jobs if there
are multiple processors, or if preemption is allowed

13

• Any feasible schedule can be transformed into an
EDF schedule
• If Ji is scheduled to run before Jk, but Ji’s deadline is later than Jk’s either:
• The release time of Jk is after the Ji completes ⇒ they’re already in EDF order

• The release time of Jk is before the end of the interval in which Ji executes:

• Swap Ji and Jk (this is always possible, since Ji’s deadline is later than Jk’s)

• Move any jobs following idle periods forward into the idle period

• The result is an EDF schedule

• So, if EDF fails to produce a feasible schedule, no such schedule exists
• If a feasible schedule existed it could be transformed into an EDF schedule, contradicting the

statement that EDF failed to produce a feasible schedule [proof for LST is similar]

14

Optimality of EDF and LST: Proof

Ji Jk

dk dirk

JiJkJk

Jk JiJk

• Fixed- and dynamic-priority scheduling algorithms
have different properties; neither appropriate for all
scenarios

• The EDF algorithm gives higher priority to jobs that
have missed their deadlines than to jobs whose
deadline is still in the future
• Not necessarily suited to systems where occasional overload unavoidable

• Dynamic algorithms like EDF can produce feasible
schedules in cases where RM and DM cannot
• But fixed priority algorithms often more predictable, lower overhead

15

Relative Merits

• Compare performance of RM, EDF, LST and FIFO
scheduling

• Assume a single processor system with 2 tasks:
• T1 = (2, 1)

• T2 = (5, 2.5) H = 10

• The total utilisation is 1.0; there is no slack time
• Expect some of these algorithms to lead to missed deadlines!

• This is one of the cases where EDF works better than RM/DM

16

Example: Comparing Different Algorithms

0 2 4 6 8 10

J1,1 J2,1 J1,2 J2,1 J1,3 J2,1 J2,2 J1,4 J1,5J2,2 J2,2

J2,1

J1,2 J2,1 J1,3 J2,2 J1,4 J1,5J2,2 J2,2

J2,1 J1,2 J2,1 J1,3 J2,2 J1,4 J1,5J2,2 J2,2

J2,1

J1,2 J1,3 J2,2 J1,4 J1,5

RM

EDF

LST

FIFO

J1,1

J1,1

J1,1

J1,1 J1,2 J1,3 J1,4 J1,5

J2,1 J2,2

Deadlines

17

Example: RM, EDF, LST and FIFO

• Demonstrate by exhaustive simulation that LST
and EDF meet deadlines, but FIFO and RM don’t

• Simulating schedules is both tedious and error-
prone… can we demonstrate correctness without
working through the schedule?

• Yes, in some cases. This is a schedulability test
• A test to demonstrate that all deadlines are met, when scheduled using a

particular algorithm

• An efficient schedulability test can be used as an on-line acceptance test;
clearly exhaustive simulation is too expensive

18

Schedulability Tests

• Recall: a periodic task Ti is defined by the 4-tuple
(φi, pi, ei, Di) with utilisation ui = ei / pi

• Total utilisation of system where 0 ≤ U ≤ 1

• A scheduling algorithm can feasibly schedule any
system of periodic tasks on a processor if U is
equal to or less than the maximum schedulable
utilisation of the algorithm, UALG

• This gives a schedulability test, where a system can
be validated by showing that U ≤ UALG

• If UALG = 1, the algorithm is optimal

19

Schedulable Utilisation

U =
nX

i=1

ui

• Theorem: a system of independent preemptable
periodic tasks with Di = pi can be feasibly
scheduled on one processor using EDF if and only
if U ≤ 1
• UEDF = 1 for independent, preemptable periodic tasks with Di = pi

• Corollary: result also holds if deadline longer than period: UEDF = 1 for
independent preemptable periodic tasks with Di ≥ pi

• Notes:
• Result is independent of φi

• Result can also be shown to apply to strict LST

20

Schedulable Utilisation: EDF

• Test fails if Di < pi for some i
• E.g. T1 = (2, 0.8), T2=(5, 2.3, 3)

• However, there is an alternative test:
• The density of the task, Ti, is δi = ei / min(Di, pi)

• The density of the system is Δ = δ1 + δ2 + … + δn

• Theorem: A system T of independent, preemptable periodic tasks can be
feasibly scheduled on one processor using EDT if Δ ≤ 1.

• Note:
• This is a sufficient condition, but not a necessary condition – i.e. a system

is guaranteed to be feasible if Δ ≤ 1, but might still be feasible if Δ > 1
(would have to run the exhaustive simulation to prove)

21

Schedulable Utilisation: EDF

J2,2J1,1 J1,2 J1,3 J1,4

0 1 2 3 4 5 6 7

J2,1 J2,1 J2,2

J2,1 is preempted and misses deadline

• How can you use this in practice?
• Assume using EDF to schedule multiple periodic tasks, known execution

time for all jobs

• Choose the periods for the tasks such that the schedulability test is met

• Example: a simple digital controller:
• Control-law computation task, T1, takes e1 = 8 ms, sampling rate is 100 Hz

(i.e. p1 = 10 ms)
⇒ u1 is 0.8
⇒ the system is guaranteed to be schedulable

• Want to add another task, T2, taking 50ms - will the system still work?

22

Schedulable Utilisation: EDF

• A system of n independent preemptable periodic
tasks with Di = pi can be feasibly scheduled on one
processor using RM if U ≤ n⋅(21/n – 1)

• URM(n) = n⋅(21/n – 1)

• For large n → ln 2
(i.e., n → 0.69314718056…)

• U ≤ URM(n) is a sufficient, but not necessary, condition – i.e., a feasible
rate monotonic schedule is guaranteed to exist if U ≤ URM(n), but might
still be possible if U > URM(n)

24

Schedulable Utilisation of RM

0.7

0.6

0.8

0.9

2 4 6 8 10 12 14 16 18
n

URM(n)

• What happens if the relative deadlines for tasks are
not equal to their respective periods?

• If the deadline is a multiple υ of the period: Dk = υ⋅pk

• It can be shown that:

25

Schedulable Utilisation of RM

URM (n, v) =

8
<

:

v for 0  v  0.5
n((2v)

1
n � 1) + 1� v for 0.5  v  1

v(n� 1)[(

v+1
v)

1
n�1 � 1] for v = 2, 3, . . .

n υ = 4.0 υ = 3.0 υ = 2.0 υ = 1.0 υ = 0.9 υ = 0.8 υ = 0.7 υ = 0.6 υ = 0.5

2 0.944 0.928 0.898 0.828 0.783 0.729 0.666 0.590 0.500

3 0.926 0.906 0.868 0.779 0.749 0.708 0.656 0.588 0.500

4 0.917 0.894 0.853 0.756 0.733 0.698 0.651 0.586 0.500

5 0.912 0.888 0.844 0.743 0.723 0.692 0.648 0.585 0.500

6 0.909 0.884 0.838 0.734 0.717 0.688 0.646 0.585 0.500

7 0.906 0.881 0.834 0.728 0.713 0.686 0.644 0.584 0.500

8 0.905 0.878 0.831 0.724 0.709 0.684 0.643 0.584 0.500

9 0.903 0.876 0.829 0.720 0.707 0.682 0.642 0.584 0.500

∞ 0.892 0.863 0.810 0.693 0.687 0.670 0.636 0.582 0.500

Di = pi

Di > pi ⇒ Schedulable
utilisation increases

Di < pi ⇒ Schedulable
utilisation decreases

26

Schedulable Utilisation of RM

• Different priority-driven scheduling algorithms
• Earliest deadline first, least slack time, rate- and deadline- monotonic

• Each has different properties, suited for different scenarios

• Scheduling tests, concept of maximum schedulable
utilisation
• Examples for different algorithms

• Next lecture: practical factors, more schedulability
tests…

27

Summary

