

Monday 16 May 2011
2.00 pm – 4.00 pm

 (Duration: 2 hours)

DEGREES OF MSci, MEng, BEng, BSc, MA and MA (Social Sciences)

ADVANCED OPERATING SYSTEMS (M)

 (Answer 3 out of 4 questions)

This examination paper is worth a total of 60 marks

You must not leave the examination room within the first hour or the last half-
hour of the examination.

Summer Diet - 1 - Continued Overleaf/

1. (a) It is possible to determine whether a system of n independent periodic tasks,
scheduling in a pre-emptive manner on a single processor, can be scheduled
using the rate monotonic algorithm using a maximum schedulable utilization test.
What is the expression for the maximum schedulable utilization in such a
system? What are the implications for scheduling the system if its utilisation is
greater than the maximum schedulable utilisation?

[3]

 (b) How does the maximum schedulable utilisation for a system of rate monotonic
tasks change as their relative deadlines increase to be greater than their periods?

[1]

 (c) An alternative to the maximum schedulable utilisation test is to perform time
demand analysis of the behaviour of a system at its critical instants. Describe
when the critical instants of a task occur, outline what time demand analysis is,
and discuss how it can be used to determine if a system can be scheduled.

[6]

 (d) When sporadic tasks are introduced into a priority-scheduled system of periodic
tasks, it becomes necessary to incorporate an acceptance test into that system.
Describe the purpose of an acceptance test, and why is it important for error
handling.

[5]

 (e) Are sporadic tasks incompatible with hard real-time systems? Discuss.
[5]

Summer Diet - 2 - Continued Overleaf/

2. (a) A system of independent periodic tasks is to be scheduled using the pre-emptive
rate monotonic algorithm on a single processor. Those tasks are potentially
subject to blocking due to conflicting resource access by other tasks in the
system. How should one take into account this potential blocking when
determining if the system can be scheduled using a maximum schedulable
utilisation test?

[4]

 (b) Two ways of managing resource access are the priority inheritance protocol and
the priority ceiling protocol. Describe how each of these resource access control
protocols works, outlining the rules by which priority is inherited, and when
access to resources is granted.

[12]

 (c) How does the maximum blocking time for a job that has a resource conflict with
a lower priority job differ between the priority ceiling protocol and the priority
inheritance protocol?

[4]

Summer Diet - 3 - Continued Overleaf/

3. We discussed the following two papers in the lectures and tutorials:

• J. Shapiro. Programming language challenges in systems codes: why
systems programmers still use C, and what to do about it. Proceedings of
the Workshop on Programming Languages and Operating Systems, San
Jose, CA, USA, October 2006. ACM.

• E. Brewer, J. Condit, B. McCloskey, and F. Zhou. Thirty years is long
enough: Getting beyond C. Proceedings of the Workshop on Hot Topics in
Operating Systems, Santa Fe, NM, USA, June 2005. USENIX.

 These papers outline the authors’ opinion on why the C programming language is
not appropriate for systems code in modern operating systems, and outline some
ways in which its limitations can be mitigated. Outline the key arguments
expressed, and discuss the extent to which you believe the arguments outlined in
these papers. Should future operating systems be written in C? Justify your
answer.

[20]

Summer Diet -4- /END

4. (a) The traditional approach to supporting concurrency in programming languages
and operating systems has been to provide threads, shared memory, and locking.
Examples of such support include the pthreads API for POSIX-derived
systems implemented in C, and threads with synchronised methods/statements in
Java. While this is clearly a sufficient way to provide concurrency, it has been
found to have a number of limitations when it comes to building reliable systems.
With the aid of examples, describe the limitations inherent in this method of
providing support for concurrency, and outline the type of problems it causes in
the development of robust software.

 [10]

 (b) Two alternative abstractions for concurrency are transactional memory with
automatic rollback and retry; and communication via message passing, where
copies of immutable data are passed between shared-nothing processes. While
one could implement both abstractions in a system, a cleaner architecture would
be based around one single abstraction for concurrency. Which of these
abstractions do you think would be the an appropriate basis for future systems
programming? Justify your answer, and explain your rationale for making this
design choice.

[10]

